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Abstract: In this work, a software sensor is presented in order to monitor the pollutant
concentrations in an activated sludge process for industrial and municipal wastewater
treatment. The software sensor consists of a model-based state estimator to infer the
(unmeasured) biodegradable substrate and ammonia concentrations, based on a reduced
process model with approximated model parameters and considering only on-line
measurements of dissolved oxygen and nitrate concentrations. The software sensor
performance is showed with experimental data from a real process and it is compared
versus a complex process model, obtaining good estimated concentrations. Copyright ©
2003 IFAC
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1. INTRODUCTION

Biological wastewater treatment is an essential
operation for the processing of liquid waste, where
the main objectives are the degradation of the organic
pollutant compounds and the removal of nutrients
such as nitrogen that can damage the ecosystem.
However during the wastewater treatment, variables
such as concentrations are determined by off-line
laboratory analysis, making a limitation for on-line
monitoring and control purposes. Moreover, a control
system design is not straightforward due to (Shimizu,
1996): the lack of reliable sensors, the significant
model uncertainty, and the nonlinear time-varying
nature of the system.

In a successful manner, concentrations can be on-line
estimated using a software sensor (Aubrun et al.,
2001; De Asís and Filho, 2000), which consists in
using a state estimation technique in combination
with a sensor that allows on-line measurements of
some process variables, to reconstruct the time
evolution of the unmeasured states. Having an
important advantage since software sensors can be

constructed based on a simple model with uncertain
inputs and parameters (Stephanopoulos and San,
1984). Recently, several studies have been reported
concerning the software sensor design in wastewater
treatment for real time monitoring applications
(Aubrun et al., 2001; Bernand et al., 2001; Larose
and Jorgensen, 2001; Gomez-Quintero and Queinnec,
2001).

In this work, a software sensor is designed for on-line
estimation of the pollutant concentrations in a
wastewater treatment. In particular, we are
considering a real case: the Tecnocasic plant (located
near Cagliari, Italy), which collects industrial and
municipal wastewater, and its biological treatment is
done by the activated sludge process. The software
sensor consists of a model-based state estimator to
infer the (unmeasured) biodegradable substrate and
ammonia concentrations, based on a reduced process
model with approximated parameters and considering
on-line measurements of dissolved oxygen and
nitrate concentrations. The implementation is done
with experimental data from the real process and it is
compared versus a complex complete process model.



2. PROCESS MODEL

2.1 Process description

In general, wastewater treatment includes as a first
step a mechanical treatment to remove floating and
settleable solids, then a biological treatment with
activated sludge for removal of nitrogen and other
organic pollutants, and after that other operations
such as sludge treatment and water chemical
treatment.

Here the continuous activated sludge process is
considered for the biological wastewater treatment
with the main purpose of nitrogen removal. This
process (see Fig. 1) includes a reactor divided in two
zones: a pre-denitrification step (in an anoxic zone)
followed by a nitrification one (in an aerobic zone),
and afterward by a settler from which the sludge is
partly recirculated to the reactor (return activated
sludge, RAS) and partly wasted as excess sludge
(waste activated sludge, WAS). The global process is
considered isothermal (around 20°C), and both
anoxic (with low aeration for mixing purposes) and
aerobic (with high aeration for reaction and mixing
purposes) zones are controlled by the aeration supply
in order to maintain a specific dissolved oxygen set
point.

In particular, we are considering a real case: the
Tecnocasic plant (located near Cagliari, Italy), which
collects industrial and municipal wastewater, and its
treatment is done by the activated sludge process as
described previously.

2.2 Mathematical modeling

The mathematical modeling was done first by the
plant simulation in the GPS-X (a commercial
software of Hydromantis), using the two-step-mantis
model (Technical reference manual, 2001) which
corresponds to the so-called IAWQ Activated Sludge
Model No. 1 (Henze et al., 1987) with two
modifications: (a) the nitrification is modeled by a
two-step process (the conversion of ammonia to
nitrite by the nitrosomona bacteria and the
conversion of nitrite to nitrate by the nitrobacters),
and (b) the hydrolysis of rapidly biodegradable
substrate is included. This complex model, that  will
be referred as GPS-X model, consists of 18 state
variables (particle and soluble concentrations) for
each anoxic and aerobic reactor, so that the process is
modeled with 36 ordinary differential equations,
including 15 reaction rates and 30 model parameters.
The GPS-X model is included in this work in order to
show the advantages of using simple models together
with the available measurements, since a great
problem for having an exact model is the parameter
identification which strongly changes for each waste
and biomass type (Maria et al., 2000).

Fig. 1. Diagram of the activated sludge process.

Since we are interested on having estimates of
soluble concentrations before the settler, a reduced
model proposed by Gomez-Quintero et al. (2000) is
considered. Differently from the complete GPS-X
model, this model consists of eight state variables:
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where SO2, SNO3, SNH4, and SS are the dissolved
oxygen, nitrate, ammonia and biodegradable
substrate concentrations for each reactor zone (p and
n denote pre-denitrification and nitrification,
respectively). The exogenous inputs
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are the influent concentrations and flow rates. The
model needs of only five reaction rates given by
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and it has twelve model parameters
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The reactor model is given as follows:
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where

( )1 1 2 86H HA Y / Y.= α −  ,  1 XBB i= α ,  4 hC = α η

1 HD / Y= α ,  ( )1 1 H HE Y / Y= α − ,  24 57F .= α

2.3 Test motion

As it was mentioned before, the experimental data
correspond to the Tecnocasic plant (Cagliari, Italy)
for industrial and municipal wastewater treatment.
The experimental motion is shown in Fig. 2 (where
the data were taken one per day), with an operation
condition around the mean valued ≈ [0.0 gN/m3,
16.25 g N/m3, 118.3 g COD/m3, 3.10 d-1, 3.90 d-1,
0.28 d-1]T with some disturbances. For the dissolved
oxygen control, a PI-controller was used to calculate
the airflow supply to each reactor (equivalent to
calculate the necessary oxygen mass transfer
coefficient, kLa). And the identified model parameters
(according Gomez-Quintero et al., 2000) are given in
Table 1.

In Fig. 2 the test motion for the two considered
models are shown in comparison with the
experimental one. As we can see, the GPS-X model
gives a very good approximation, while the reduced
model gives the motion tendency but with significant
offsets due to the errors in the model assumptions
and parameter identification. With these results, it
can be stated one of the tasks that the software sensor
should do: using the reduced model, the software
sensor should give a good inference of the modeling
errors in order to reach the actual (experimental)
concentration motions.

Table 1. Reduced model parameters

Parameter (p) Value
YH 0.7
iXB 0.086 g N (g COD)-1

KO2,H 0.2 g O2 m
-3

KO2,A 0.23 g O2 m
-3

KNO3 0.1 g N m-3

KNH4 0.8 g NH3-N m-3

ηg 0.5
ηH 0.4
α1 163.9 d-1

α2 224.63 g m-3d-1

α3 92.12 g m-3d-1

α4 739.74 g m-3d-1

Fig. 2. Performance of the GPS-X (_____) and
reduced (_ _ _ _) models, in comparison with the
experimental data ( ).



2.4 On-line monitoring problem

In our experimental study, the on-line monitoring
problem consists on designing a software sensor for
estimating mainly the ammonia and biodegradable
substrate concentrations in the reactor exit (before the
settler), from available measurements of dissolved
oxygen in both reactor zones and the ammonia
concentration in the (aerobic) nitrification zone.
Meaning that the measured output is given by
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The software sensor will be based on the reduced
model [Eqs. (1)] and these three measurements [Eq.
(2)], and it should be robust to have tolerance to the
modeling error and to the uncertain inputs and
measured outputs.

3. SOFTWARE SENSOR DESIGN

For this purpose, the design is based on the geometric
nonlinear estimation methodology developed in
Alvarez and Lopez (1999) and Lopez (2000), which
has a systematic construction, with a robust
convergence criterion connected to the convergence
rate, and with a simple tuning procedure.

Next the observability analysis, the estimator
construction and tuning are presented for our specific
case study.

3.1 Observability analysis

According to Alvarez and Lopez (1999), the motion
x(t) of the reactor [Eqs. (1) and (2)] is RE (robustly
exponentially) - detectable (i.e. partial observable)
with the observability indices

(κ1, κ2, κ3)
T = (2, 2, 2)T  (4)

and with the state partition (xI and xII are the
observable and unobservable states, respectively)

[ ]2 3 5 6 7 8

T

Ix x ,x ,x ,x ,x ,x=  (5a)

[ ]1 4

T

IIx x ,x= (5b)

if the two following conditions are met along the
reactor motion x(t):

(i) The map φ(x, d, p) is invertible for xI, and
(ii) The motions of the unobservable dynamics xII(t)

are stable.

Where the map φ is given by the measured outputs
and some of their time-derivatives:
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To verify that the plant is detectable for all time, next
the two conditions are verified.

Assessment of the invertibility condition. Here it is
important to mention that the observability matrix Q
corresponds to

I

Q
x

∂φ=
∂

(7)

Such that the invertibility condition [condition (i)] is
equivalent to verify that Rank[Q] = κ1 + κ2 + κ3 = 6,
or else, det[Q]  0 for all time. In fact this condition
was evaluated numerically as can be seen in Fig. 3,
showing that det[Q] < 0 for all time.

Assessment of the stability condition. The stability
condition [condition (ii)] is equivalent to verify that
the dynamics of

( )1 1 1 2 3 4 5x f x ,x ,x ,x ,x ,d
•

= (8a)

( )4 4 1 2 4 8x f x ,x ,x ,x ,d
•

= (8b)

are stable, consideringx2,x3,x5,x8
 andd as

nominal known motions. These equations are stable
if the eigenvalues of its linear system have strictly
negative real part. This is verified also numerically
along the reactor motion and is shown in Fig. 4,
concluding that the unobservable dynamics are
stable.

0 5 10 15 20
10

2

103

10
4

105

10
6

- 
de

t  [
Q

 ]

time  (d)

Fig. 3. Determinant of the observability matrix.
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Fig. 4. Eigenvalues of the unobservable dynamics.



As the two conditions are met, therefore the reactor
motion is RE-detectable, and a state estimator can be
implemented.

3.2 Construction

Considering the previous state partition  [Eqs. (5)],
the plant [Eqs. (1) and (2)] can be rewritten as

( )I I I IIx f x ,x ,d , p
•

= (9a)

( )II II I IIx f x ,x ,d , p
•

= (9b)

( )Iy h x= (9c)

The construction of the geometric estimator
(Luenberguer-like high-gain) follows from a
straightforward consequence of the detectability
property, according to the following expression (see
Theorem 1 in Alvarez and Lopez, 1999). So that the
estimator for our case is given by

( ) ( )1
I I I II o Iˆ ˆ ˆ ˆx f x ,x ,d , p Q K y h x

•
−= + −   (10a)

( )II II I IIˆ ˆ ˆx f x ,x ,d , p
•

= (10b)

( )I
ˆ ˆy h x= (10c)

Here Q-1 is the inverse of the observability matrix
[Eq. (7)], and Ko is the gain matrix which should be

chosen such that the estimation error dynamics are
stable (this will be discussed in next subsection). It
can be seen that the observable part [Eq. (10a)] of the
estimator has two terms: (i) a predictor term given by
the model, and (ii) a corrector term driven by the
error in the measurements. While the unobservable
part [Eq. (10b)] only has a predictor term given by
the model.

3.3 Tuning

Some strategies for the estimator tuning are also
given in Alvarez and Lopez (1999) and Lopez
(2000). According to this, the gains can be calculated
as follows
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Where ζ is the damping factor, which can be set
according the literature (Stephanopoulos, 1984) as ζ
= 0.71 in order to have a response with moderate
oscillations. While ωi is the characteristic frequency,
which can be selected such that the estimator
response is faster than the reactor response. For this

purpose, first we calculated the residence time as θ =
0.1428 d, then to obtain an estimator response faster,
we selected the estimator characteristic time as ωi

>10 / θ. Meaning that a good initial test can be ωi =
70 d-1. In fact after some trials, the final tuning values
were set as ω1 = ω2 = ω3 = 150 d-1 (≈ 20 times faster
than the natural dynamics).

5. IMPLEMENTATION RESULTS

Here it is worth of mention that the experimental data
(shown in Fig. 2) are off-line laboratory analysis
taken one per day, however with purpose of
implementation of the software sensor [Eqs. (10)],
the outputs [Eq. (2)] are incorporated as on-line
measurements. So that when the software sensor is
implemented there is exact converge for the
measured states ( 2 3 2

p n n
O NO OS ,S ,S ) as was expected,

while for the other states good estimates are obtained.
In Fig. 5, the inference of the two main (ammonia

4
n
NHS  and biodegradable substrate n

SS ) concentrations

of interest in the reactor exit is shown. In this figure,
we can see that the estimated ammonia concentration
reaches closely the experimental data, in fact better
than the GPS-X model estimation (shown in Fig. 2).
With this result, we can say that the biodegradable
substrate estimation should be reliable, in spite of no
having experimental data for comparison.
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Fig. 5. Software sensor  (_____) in comparison with
the off-line experimental data ( ).



6. CONCLUSIONS

In this study, the on-line estimation of unmeasurable
concentrations of ammonia and biodegrable substrate
in a wastewater treatment has been investigated,
using a software sensor based upon a reduced model
and considering only on-line measurements of
dissolved oxygen and nitrate concentrations. The
positive results, validated with experimental data,
displays that the estimated concentrations are reliable
in spite of the presence of input disturbances and of
using a simple reduced model with uncertain
parameters. Showing that not always the use of
complex models is the best way to obtain a good
process representation for monitoring and control
purposes.

The solution of using a software sensor gives
promising guidelines to tackle in the future the
problem of real time control of wastewater treatment
plants.
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NOMENCLATURE

d exogenous input
f model map
iXB Mass  N/ mass COD in biomass
Ko observability matrix gain
kLa oxygen mass transfer coefficient (d-1)
KO2,H Aerobic oxygen half-saturation coefficient
KO2,A Aerobic/anoxic oxygen half-sat. coefficient
KNO3 Nitrate half-saturation coefficient
KNH4 Ammonia half-saturation coefficient
p model parameter
Q observability matrix
Qn flow rate, m3/d (n = in, out, r, w)
ri i-th reaction rate (1 ≤ i ≤ 5)
SNO3 nitrate concentration (g N/m3)
SO2 dissolved oxygen concentration (g O2/m

3)
SNH4 ammonia concentration (g N/m3)
SS biodegradable substrate conc. (g COD/m3)
SOST dissolved oxygen saturation conc. (g O2/m3)
V reactor volume (m3)
x process state
y measured output
YH Heterotrophic yield

Greek symbols
αi i-th reduced model parameter (1 ≤ i ≤ 4)
ηg Correction factor for anoxic growth
ηH Correction factor for anoxic hydrolysis
φ observable map
κi observability index (1 ≤ i ≤ 3)
ζ damping factor
ωi characteristic frequency (1 ≤ i ≤ 3)

Subscripts
in influent
r RAS
w WAS
out reactor exit
eff (clean) effluent
I observable partition
II unobservable partition

Superscripts
p pre-denitrification
n nitrification
^ estimated
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