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Abstract- The dynamics of a fluid catalytic cracking unit (FCCU) is a typical nonlinear system. 

The purpose of this study is to develop a nonlinear control of a FCC unit via feedback linearization. 

Based on the mechanistic model of a FCC unit, a nonlinear controller is designed. The servo and 

tracking properties of the closed loop system are verified by simulation for a sample FCC unit. The 

simulation shows that the controller is valid and can be applied to practical FCC units. 
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1.  INTRODUCTION 
 
The catalytic cracking has been one of the most 

important processes in petroleum refining. FCC 
units are known to be very difficult to modeling and 
control because of complex kinetics and dynamics 
of both cracking and coke burning reaction, 
multivariable character and the strong interaction 
between the riser and regenerator. Early papers on 
FCC unit modeling are mainly concerned with the 
reaction kinetics or steady-state process behavior. 
Weekman[9] proposed the three-lump and 10-lump 
cracking reaction models. Since Kurihara[6] firstly 
presented a dynamic model for bed-cracking type 
FCC unit in 1967, dynamic models for the 
riser-type FCC unit have been developed in recent 
years. Zheng [11, 12, 13] described a 
comprehensive dynamic model for side-by-side 
type FCC unit, including the reactor and the tow 
stage regenerator. 

Most of controllers successfully used in FCC 
units are PID. Recently, model predictive control 
(MPC) based advanced control has been proposed 
and implemented in some plants [2, 8]. Since the 

dynamic model of the FCC unit is strongly 
nonlinear, the goal of the paper is to design a 
nonlinear controller based on the mechanistic model. 
By applying the theory of feedback linearization 
which developed mature in differential geometric 
control [3, 4, 5, 7], a nonlinear controller is 
synthesized. For a sample FCC unit, the simulation 
shows that the proposed controller assures not only 
the setpoint tracking but also the inner stability of 
the closed loop system.  

 
2.  FEEDBACK LINEARIZATION 

OF MIMO NONLINEAR SYSTEMS 
 

Consider a following affine nonlinear system            
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where nRX ∈ is the state vector; 

)(Xf and )(Xg i are n dimension vector fields; ui are 



the control variables; )( ty i
are the controlled 

variable; )( Xhi
is a scalar function of X, 

mi ,,2,1 �= . Assume X0 is an equilibrium point, 

i.e. 0)( 0 =Xf , 0)()()( 00201 ==== XhXhXh m� . 

If system (2.1) has relative degree =r  

},,,{ 21 mrrr � [7], where r satisfies mrrr +++ �21  

nr ≤= , following nonlinear coordinate 
transformation can be acquired: 
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If nr ≠ , the other rn −  nonlinear coordinate 
transformation should be chosen: 

   )(,),(11 xzxz rnnr −+ == ηη �  

If the Jacobian matrix 
X
XZ

∂
∂ )( is nonsingular at 

0XX = , following system can be obtained            
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where, mi ,,2,1 �=  and 11 −≤≤ irj  

Since A(z) is nonsingular, solved the 
following equation 
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can obtain u 

      ))()((1 vzbzAu +−= −  

If the zero dynamics of the system += ),0( ηη q�  

)],0(),0()[,0( 1 ηηη bAp −−  is asymptotically stable, 

let mizcscscsv iri
ri

ri
i ,,1,)( 101

1
1 �� =++++= −

− . Here 

the ic are chosen so that 01
1

1 cscscs ri
ri

ri ++++ −
− �  

is a Hurwitz polynomial. Then, an asymptotically 
stable closed loop system is obtained. 
 
3. FEEDBACK LINEARIZATION OF 

A FCC UNIT 
 
3.1 Process model of a FCC unit 
 

Fig.1. shows the reactor and regenerator part 
of a FCC unit. The feed injected into the reactor 
riser, where it mixes with hot regenerated catalyst 
and vaporizes. The hot catalyst provides the heat of 
vaporization and the heat of reaction. As a result of 
the cracking reactions, a carbonaceous material 
(coke) is deposited on the surface of the catalyst. 
The catalyst and gas are separated in the settler. 
Then spent catalyst is transported from the reactor 
to the regenerator. In the regenerator, catalyst is 
fluidized with air flow injected from the bottom of 
the regenerator. Carbon and hydrogen on the 
catalyst react with oxygen to produce carbon 
monoxide, carbon dioxide and water. Regenerated 
catalyst flows into the reactor riser. 

Manipulated variables are mass flow rate of 



the catalyst entering the riser (RC), mass flow rate of 
the spent catalyst entering the spent catalyst 
transport line (RCS) and mass flow rate of the 
regenerated catalyst in the first stage of regenerator 
(RCG1).Controlled variables are temperature of 
reactor riser outlet (TRA2e), inventory of catalyst in 
the settler (HS) and inventory of catalyst in the 
second stage of regenerator (HGC2). 

Based on the references [11] [12] and [13], a 
dynamic mathematical model of a FCC unit can be 
obtained 
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The physical significance of each variable shows in 
appendix A. the detailed expressions of �, �, CCAe, 
TRAi and OFG are shown in references [11] [12] and 
[13].  
 
3.2 Design of the controller 
 

Before designing the controller, we assumpt 
that the total inventory of catalyst is a constant; that 
is to say, the losing of catalyst is neglected. 

Then we can draw that the inventory of 
catalyst in the first stage of regenerator HGC1 can be 
computed by using the following equation: 

  21 GCSGC HHHH −−=  

where H is the total inventory of catalyst. 
Moreover, because of the characteristics of 

catalyst transport line, the system has another two 
qualities: 

1: Mass flow rate of the catalyst entering the 
riser RC, mass flow rate of the spent catalyst 
entering the spent catalyst transport line RCS, mass 
flow rate of the regenerated catalyst in the first 
stage of regenerator RCG1 and mass flow rate of the 
regenerated catalyst in the second stage of 
regenerator RCG2 are all constrained: 

<0  RC , RCS, RCG1, RCG2 R<  
2: mass flow rate of the regenerated catalyst in 

the second stage of regenerator is equal to mass 
flow rate of the catalyst entering the riser: 

         RCG2 = RC 

It shows that the reactor and regenerator part 
of a FCC unit is a nine stage nonlinear system with 
three inputs and three outputs, but it is not an affine 
system. We introduce a new variable u1defined as 
below  

1uR C =�  

Let, CSR = 2u ; 1CGR = 3u ; 11 xT eRA = ;

22 xT eRA = ; 3xRC = ; 4xH s = ; 51 xC G = ;

61 xTRG = ; 72 xH GC = ; 82 xC G = ; 92 xTRG = . 

Assume that some disturbance exists such as 

mass flow rate of feed OR , temperature of 

feed OiT and pressure of regenerator RGP . Then, an 



affine system can be obtained as follows 
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                         (3.2.1) 
The relative degree of system (3.2.1) is 

}1,1,2{},,{ 321 =rrr .   

Let, 74432221 ,,, xzxzxLzxz f ==== , 

{ } 4
7432 ,,,| −⊂≠∈= nRxxxxxz ηηηη . Then, 

system (3.2.1) can be changed to: 
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ηηηξη dwq += ),(�                 (3.2.2b  

TT zzzyyy ],,[],,[ 431321 =            (3.2.2c)  

The feedback linearization controller of 
system (3.2.2) is: 

32

2221121
1

)()(
xf

fxffxfv
u

∂∂
∂∂−∂∂−

= ; 

232 vxu −= ; 333 vxu += , 

where, 

[ ]Tddd yzyzzyzv )()()( 3432322121111 −−+−−= αααα , 

0,,, 321211 >αααα  and  y1d, y2d, y3d  are desired 

outputs.   
 If (3.2.2b) is asymptotically stable at the steady 

point, the output of the closed loop system can 
asymptotically track the desired output [5].  
 

3.3 The verification of stability of zero dynamics  
Based on the above analysis, if the zero 

dynamics of system (3.2.2b) is asymptotically stable 
at the steady point, the closed loop system is stable.  

Because zero dynamics of this system is very 
complex, proving its stability by using Lyapunov 
function is difficult. Therefore, we prove zero 
dynamics stability by computing the eigenvalues of 
the Jacobian matrix of zero dynamics (3.2.2b) at 
some steady point. If the eigenvalues are in the 
left-half plane, the zero dynamics (3.2.2b) is 
asymptotically stable in the neighborhood of the 
steady point. We choose several steady points, and 
calculate the Jacobian matrix of system (3.2.2b) in 
each steady state. The results show that the 
eigenvalues of each Jacobian matrix are in the 
left-half plane. Therefore, the stability of the closed 
loop system can be assured. 

 
4. RESULTS OF SIMULATION 

 
The values of the variables in steady states are 

shown in appendix 2. In the simulation, the desired 
outputs: temperature of reactor riser outlet TRA2e, 
inventory of catalyst in the settler HS and inventory 
of catalyst in the second stage of regenerator HGC2 
are changed from [ 800.5754,990,32.662] to 
[790,1000,260]. Fig.2, Fig.3 and Fig.4 show the 
comparison results of tracking reference trajectories 
of outputs by using feedback linearization and PID 
controllers respectively. It is shown that the 
controller designed by using feedback linearization 
makes the closed loop   have better properties than 
a PID controller does. (the outputs of feedback 
linearization: , the outputs of PID: ----). Fig.5 
shows the capability of rejecting disturbance of 
feedback linearization controller. 

 
Fig.2. Temperature of riser outlet 



 

Fig.3. Inventory of catalyst in settler 

 

Fig.4. Inventory of catalyst in the second stage of 
regenerator 

 
Fig.5. Temperature of riser out let when flow rate of 

feed reduce 5% 
To show the stability of the closed loop system, 

the Jacobian matrix of zero dynamics of system 
in the steady point (appendix B) is computed as 
follows: 
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The eigenvalues of the Jacobian matrix are-17.3, 
-5.7, -0.3, -2.8*103 and -0.3, which are in the 
left-half plane. Therefore, the closed loop system is 
asymptotically stable. 

Fig.6, Fig.7 and Fig.8 show the simulation 
results of the temperature of the second feed inlet, 
the temperature of the second stage of regenerator 
and the mass fraction of coke in regenerated catalyst 
at the second stage of regenerator. The results 

validate the stability of zero dynamics. 

 

Fig.6. Temperature of the second feed inlet of riser 

 

Fig.7. Temperature of the second stage of regenerator 

 

Fig.8. Mass fraction of coke in catalyst at the second 
stage of regenerator 

 
5. CONCLUSIONS 

 
In this paper, by designing a nonlinear 

controller of a FCC unit, we can draw the following 
conclusions. 

1. The feedback linearization method can be 
used in the controller design of a FCC unit. The 
simulation results show that the proposed nonlinear 
controller can guarantee not only the closed loop 
stability, but also setpoint tracking.  

2. The controller can effectively reject some 
disturbance which shows the robustness of the 
controller. When some disturbance, such as RO, TOi 
and PRG, exist in the system, the controller can still 
assure the closed loop stability. 

The above analysis demonstrates that the 
controller proposed in this paper can be applied in 
practical plants. 



 
APPENDIX A. NOMENCLATURE 

 
Riser 
CCA    Mass fraction of reactive carbon in catalyst, [0-1] 

CG     Mass fraction of carbon in regenerated catalyst 

CS        Mass fraction of carbon in spent catalyst 

HCR   Heat of reaction J/Kg catalyst 

PRA    Pressure of reactor Pa 

R      Universal gas constant 8.315J/mol*K 

RC       Mass flow rate of catalyst Kg/S 

RO       Mass flow rate of feed Kg/S 

RW       Mass flow rate of vapor Kg/S 

ST        Feed space time S 

TRA      Temperature of reactor K 

t       Time S 

YA     Mass fraction of unconverted hydrocarbons 

HS     Inventory of catalyst in settler, Kg 

 

Regenerator 
CG     Mass fraction of carbon in regenerated catalyst 

CS        Mass fraction of carbon in spent catalyst 

CPA       Specific heat of air KJ/(Kg*K) 

CPC
     Specific heat of catalyst J/Kg*K 

HGC      Inventory of catalyst in regenerator, Kg 

HCB   Heat of carbon burning , KJ/Kg carbon 

OFG      Mole fraction of oxygen in flue gas [0-1] 

RA       Volume flow rate of flue gas, Nm3/h 

RCG      Mass flow rate of regenerated catalyst 

RCS      Mass flow rate of spent catalyst 

TA       Temperature of air at regenerator inlet 

TA       Temperature of air 

TRG     Temperature of regenerator 

TS     Temperature of spent catalyst 

OC     Stoichiometric coefficient, Nm3oxygen/Kg carbon 

 
APPENDIX B 

 
     The values of the variable in steady states are shown 

as follow. The definition of symbols which were not shown 

in this paper can be found in reference [11], [12] and [13]. 

KA0=199.476     KC0=0.04916     K�0=0.05652             

EA=79100        EC=41300        PRA=101325  

R=8.315         Vr1=14.2545      Vr2=25.7634      

Vl1=5.50128      Vl2=6.93312       �Oi=0.8 �L=2050   

RO=250          R‘
O=50          RC=1578.085          

Rw1=16          Rw2=3           To1i=473.15  

Tc1i=1012.15      Tw1i=523.15       To2i=606.65      

Tw2i=523.15      �HCR=257200    �HV=40000      

Cpo=800         Cpc=260         Cpw=200         

Cpl=0.21         Pa=2.8          n=2             

KR0=83600000   ECB=50          KDO=1.43 
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