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Abstract: In this paper, we provide a novel iterative identification algorithm for multi-rate
sampled data systems. The procedure involves, as a first step, identifying a simple initial
model from multi-rate data. Based on this model, the “missing” data points in the slow
sampled measurements are estimated following the expectation maximization approach.
Using the estimated missing data points and the original data set, a new model is obtained
and this procedure is repeated until the models converge. An attractive feature of the
proposed method lies in its applicability to irregularly sampled data. An application of
the proposed method to an industrial data set is also included.
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1. INTRODUCTION

Traditional identification methods assume that the
data are sampled at uniformly spaced sample instants.
There is extensive literature on identification of pro-
cesses from such data (Ljung (1999)). However, in
many chemical processes it is either not physically
possible to measure certain variables at regular inter-
vals or it is impractical to have frequent or rapid lab
assays done. For instance, estimating the composition
of the distillate in a distillation column generally takes
a few minutes while control moves are implemented
at much smaller sample intervals. Such processes with
differing sample times for the measured variables are
termed multi-rate processes in the rest of this paper.
In particular, identification of models for multi-rate
processes at the fastest sample rate is the subject of
this paper. We refer to the fastest sample rate as the
base sample rate and the unavailable data points in the
slowly sampled measurements asmissing data. This
allows us to accommodate systems in which outputs
are irregularly sampled within the same identification
scheme.

A commonly used approach for the identification of
processes from multi-rate data is to interpolate be-

tween available sampled data. Techniques such as lin-
ear or quadratic interpolation are used. Interpolations
of these types do not take into account the variation
in the input during the period over which the inter-
polations are made. There have also been attempts
at solving the multi-rate identification problem using
lifting techniques (Li et al. (2001)). The lifting op-
erator is used to convert the multi-rate identification
problem into a multivariable identification problem.
However, applying these techniques towards process
identification in chemical industries is not easy be-
cause the difference in the sampling rates is generally
large. For example, (input to output) sampling ratios
of 1 : 15 are common and estimation techniques to
identify a 15-input ‘lifted’ process would have to be
considered. Hence, for processes with a number of
inputs and/or large output to input sampling ratios,
the identification problem using lifting techniques can
become unmanageable. In addition, these techniques
are incapable of handling irregularly sampled data.

In this paper we present a method which uses an initial
crude model to estimate the unavailable data points
in the slowly sampled variables. The estimated un-
available data points are then used with original data
set to identify a new model. From the new model,



the missing data is again estimated and this process
is repeated until the models converge. This approach
reduces to theExpectation Maximization(EM) algo-
rithm if optimal estimates of the missing data points
are used in the estimation stage. The advantage of
this method lies in the methodical manner in which
the missing data points are estimated instead of using
the traditional interpolation methods. Instead of inter-
polating, the missing data are estimated based on the
current estimate of the process model at each iteration.
Use of the EM algorithm guarantees convergence and
consistency of the identified models (Dempster et al.
(1977)).

The rest of this paper is organized as follows: section
2 lists the assumptions and the notation. In section
3, the EM algorithm is presented and in section 4 a
method for identification of linear dynamical systems
using the EM approach is developed. In section 5 the
EM based identification method is extended to the
missing data case. An industrial example is presented
in section 6 followed by concluding remarks in section
7.

2. ASSUMPTIONS AND NOTATION

Let us assume that the true process is of the form

xt+1 = Axt +But +wt

yt =Cxt +vt (1)

whereA,B,C are the system matrices andxt ∈ Rn is
then-dimensional state vector. Assume thatu(t) ∈Rm

andy(t) ∈ Rp. wt andvt are uncorrelated white noise
sequencesi.e.,

E[wtw
T
t ] = Q ; E[wt ] = 0 ∀ t

E[vtv
T
t ] = R ; E[vt ] = 0 ∀ t

E[wtvt ] = 0 ∀ t (2)

Let us represent the time series data fromt = 1 to
t = N of any variable by(.)1:N. Through out this paper,
we will use the following notation for the expected
values of various variables,

xs
t := E(xt |Y1:s) (3)

and

Ps
t := E(xt −xs

t )(xt −xs
t )

T

Ps
t,t−1 := E(xt −xs

t )(xt−1−xs
t−1)

T

In addition, the following assumptions are made:

Assumptions

A1. Inputs are sampled uniformly everyT units of
time.

A2. Outputs are sampled atT1, · · · ,Tn respectively.
A3. The input sampling time,T, is assumed to be the

smallest sampling timei.e.,

T ≤ Ti ∀ i (4)

A4. Assume that the initial state is zeroi.e.,x0 = 0.

3. THE EM ALGORITHM

The central idea behind the algorithm presented in this
paper is to pose the multi-rate identification problem
in the maximum likelihood framework and solve for
the system matrices. The iterative algorithm presented
in this section is based on the popularExpectation
Maximization algorithm(EM algorithm) developed in
Dempster et al. (1977). Before utilizing this algorithm
in identifying multi-rate processes, a brief summary of
the algorithm is presented below.

The EM algorithm addresses the problem of estimat-
ing model parameters under the maximum likelihood
framework. More often than not, the maximum likeli-
hood function is a complicated nonlinear function of
the unknown parameters. Hence, one of the earliest
methods proposed for solving for the optimal param-
eters was to use the Newton-Raphson method (Gupta
and Mehra (1974)). A simpler method based on the
EM algorithm was proposed in Shumway and Stoffer
(1982).

The EM algorithm can be summarized in the follow-
ing few steps :

• Obtain an initial estimate of the parameter vector,
Θ0.

• Carry out the following steps at each iteration,k,
until convergence:
· Expectation (E-step): Find the expected

value of the complete data log likelihood
function(Q-function) given the observed data
set and the previously estimated parameter
vector,Θk.

· Maximization (M-step): Maximize the Q-
function with respect to the parameter vector

The above steps ensure that the log likelihood func-
tion of the observed data increases at every iteration.
Therefore, the EM algorithm is guaranteed to con-
verge to a local maximum of the likelihood function.
This is an important feature of the EM algorithm.
However, there are a few drawbacks associated with
any iterative algorithm. The EM algorithm can be sen-
sitive to the initial guess and also the rate of conver-
gence can sometimes be extremely slow. In order to
avoid problems with a bad initial parameter guess, we
identify an initial unbiased FIR model of the process.
An example illustrating the use of EM algorithm in
estimating models from multi rate data is presented
below.

Example1. Consider an ARX model



y(k) = 0.8y(k−1)+0.3u(k−1)+e(k) (5)

wheree(k) is normally distributed white noise with
varianceσ2

e = 0.01. Let us assume that the output is
sampled at every alternate sample instant and thaty(1)
is known. Then the following identification objective
function based on squared prediction errors can be
used

VN(θ) :=
1
N

N

∑
k=1

ε(t,θ)2

=
1
N

N

∑
k=1

[y(k)−θ2y(k−1)−θ1u(k−1)]2

whereN is the data length andθ = [θ1 θ2]T . Since
only alternate data points are available, the above
objective function can not be evaluated. Instead, it is
possible to estimate the expected value of the above
objective function given the estimate ofθ from the
previous iteration,̂θ ( j−1) i.e.,

E
[
VN(θ)|θ̂ ( j−1),ZN

]
= E[

1
N

N

∑
k=1

[y(k)−θ2y(k−1)

−θ1u(k−1)]2] (6)

whereZN denotes all the available data. Now let us
consider two cases:
Case I: y(k) is known, then

E [y(k)−θ2y(k−1)−θ1u(k−1)]2 =

(y(k)−θ1u(k−1))2 +θ 2
2 (θ̂ ( j−1)

1 u(k−2)

+θ̂ ( j−1)
2 y(k−2))2 +θ 2

2 σ2
e

−2(y(k)−θ1u(k−1))θ2(θ̂
( j−1)
1 u(k−2)

+θ̂ ( j−1)
2 y(k−2)) (7)

Case II: y(k) is unknown, then

E [y(k)−θ2y(k−1)−θ1u(k−1)]2 =

(θ̂ ( j−1)
1 u(k−1)+ θ̂ ( j−1)

2 y(k−1))2

+σ2
e +(θ1u(k−1)+θ2y(k−1))2

−2(θ1u(k−1)+θ2y(k−1))(θ̂ ( j−1)
1 u(k−1)

+θ̂ ( j−1)
2 y(k−1)) (8)

Using (7) and (8) in (6) it is possible to find the model
parameters at the current iteration,j,

θ ( j) = min
θ

E
[
VN(θ)|θ̂ ( j−1),ZN

]
(9)

The iterations are performed until the parameters con-
verge. A plot showing the two parameters in this ex-
ample and the number of iterations is shown in fig.1.
The estimated model parameters converge to the true
parameters despite missing data. In general, the esti-
mates using the EM algorithm need not converge to
the true parameters with finite data sets. However, the

estimated parameters converge to the true parameters
asymptotically as the data length increases. On the
other hand, the least squares model obtained by in-
terpolating the data iŝθ1 = 0.83andθ̂2 = 0.24, which
is clearly not the true model. There is a small amount
of bias in the estimated model using the interpolated
data. In general, the estimated models are biased if
arbitrary interpolation methods are used to fill the
missing data points.
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Fig. 1. Plot of θ1 and θ2 as a function of number of
iterations

Now it is possible to use this algorithm to estimate the
state matrices of a linear dynamical system described
in (1). As a first step we provide an algorithm to esti-
mate the model from the complete data seti.e., there
are no missing data. Even though the data set is com-
plete the states are unknown/unobserved and hence
the EM algorithm can be utilized. Once a method for
identification of single rate systems is developed, it
can be extended to multi-rate systems.

4. ESTIMATION OF LINEAR DYNAMICAL
SYSTEMS

A maximum likelihood framework is adopted in this
section to identify the system matrices of (1). Two
independent sequences of noise enter the dynamical
system in (1). Hence, the joint log likelihood function
of the complete data set can be expressed as

logL (y1:N,x1:N,Θ) = logL (w1:N,v1:N,Θ)

=−N
2

log|Q|− N
2

log|R|

−1
2

N

∑
t=1

(xt −Axt−1−But−1)TQ−1(xt −Axt−1−But−1)

−1
2

N

∑
t=1

(yt −Cxt)TR−1(yt −Cxt)

where the parameter vectorΘ = {A,B,C,Q,R}. The
Q-function can then be evaluated by taking the expec-
tation of the log likelihood function given the observed
data and parameters from the previous iterate (sayΘk).
Let us define the conditional expectation operatorEk

as follows



Ek(.) = E(.|y1:N,u1:N,Θk) (10)

Now using the above expectation operator the Q-
function can be evaluated,

Q(y1:N,Θk,Θ) =−N
2

log|Q|− N
2

log|R|

−1
2

N

∑
t=1

tr{Q−1Ek(xt −Axt−1−But−1)(xt −Axt−1−But−1)T}

−1
2

N

∑
t=1

tr{R−1Ek(yt −Cxt)(yt −Cxt)T}

where tr(.) denotes the trace of a matrix. At each
iteration in the EM algorithm a new estimate of the
model is obtained by maximizingQ(y1:N,Θk,Θ) with
respect toΘ i.e.,

Θk+1 = max
Θ

Q(y1:N,Θk,Θ) (11)

Complete details on obtaining the new estimate,Θk+1

are given in the appendix.

Example2. Consider the following state space model

A=




0.3688 0.4767 0.0114
−0.5976 0.6095 −0.5408
−0.0156−0.0686 0.0422


 B =




0.34
0.56
0.78




C = [1.2 0.96 1.5] (12)

with the true covariance matrices

Q =




0.0407 0.0001 0.0015
0.0001 0.0407 −0.0020
0.0015−0.0020 0.0428


 ; R= 0.398

Using the method proposed in this section one can
estimate the model parameters. A plot showing the
step responses of the true model, a model obtained
using the subspace identification method - N4SID
and the model obtained using the EM algorithm are
shown in fig.2. The EM algorithm performs as well
as the subspace method. The EM algorithm presented
in this section, theoretically, will provide asymptotic
unbiased estimates. However, in practice the algorithm
may not converge fast enough or if a bad initial guess
is given, it may converge to a local maximum. Hence,
a good initial guess for the EM algorithm is needed.
An unbiased least squares model can be used as the
initial guess.

5. ESTIMATION WITH MISSING DATA

The strength of EM algorithm lies in being able to
estimate asymptotically unbiased models even if a
portion of the data is missing. As shown in the pre-
vious section, it is possible to use the EM algorithm
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Fig. 2.Step responses of - the true model, the N4SID
model and EM model

for identification of models from single rate data sets.
However, the computational effort involved in using
the EM algorithm is too heavy to warrant this method
for single rate identification problems. Moreover, tra-
ditional identification methods can provide asymptot-
ically unbiased estimates for single rate data sets. On
the other hand, in general, identification methods in-
volving arbitrary interpolations to substitute for miss-
ing data result in biased estimates; thus, necessitating
the development of new methods for identification of
models from multi-rate data.

It is interesting to note that the EM algorithm pre-
sented in the previous section for identification of lin-
ear dynamical systems from single rate data, treats the
states as unknown/missing data. Hence, it is possible
to extend the same algorithm to include the case of
missing data in the outputs by making appropriate
changes to the Kalman filter and the Kalman Smoother
presented in the Appendix. Full details regarding these
modifications can easily be derived along the lines of
the arguments given in Shumway and Stoffer (2000).

The procedure can be summarized as follows:

Step 1: Obtain an initial estimate of the model. For in-
stance, it is easy to obtain an FIR model.

Step 2: Estimate the missing data points using the initial
estimate of the model. This can be done using the
Kalman Filter and the Kalman Smoother.

Step 3: Predict all missing data points using the current
model.

Step 4: Using the true and the estimated missing data
points identify a new model by minimizing the
Q-function.

Step 5: Repeat the above steps until convergence.

Example3. The process in example 2 is used to gen-
erate multi-rate data. The input is sampled every sec-
ond and the output is sampled every four seconds. Ini-
tially, a model is identified using linearly interpolated
data and the N4SID algorithm. Then the proposed
method is used on the same data set without interpo-
lating the data. The step responses of both the models
are shown in fig.3. Clearly, the EM based method
outperforms the N4SID method.
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Fig. 3.Step responses of - the true model, the N4SID
model and EM model; Output sampled every four
seconds

6. INDUSTRIAL APPLICATION

In this application, modelling of a mechanical pulp
bleaching process at Millar Western, Whitecourt, AB,
Canada is shown. The system has four manipulated
inputs, two measured disturbance variables and one
output. The output, pulp brightness, is an irregularly
measured quality variable (distribution of sampling
intervals are provided in fig.4). The manipulated in-
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puts are chemical add-rates (Peroxide and Caustic)
to two towers. The measured disturbances are two
wood quality variables (Aspen and Freeness). All in-
puts are sampled every 10 minutes). The process is
known to be a time-delay dominant recycle process.
The step responses of the true model have large delay,
fast dynamics and recycle characteristics. In general,
the presence of a recycle stream can significantly al-
ter the dynamics of a process (Morud and Skogestad
(1994),Kwok et al. (2001)). This is especially evi-
dent when the process dynamics are faster than the
time-delay effects in the process. For example, a step
change in one of the inputs in a time-delay dominant
recycle process, can cause a staircase-like structure in
the output as shown in the fig.5.

When the time-delay in the system is greater than the
settling time, including lagged inputs (the extra lags
being equal to the sum of the delays in the forward
path and the recycle path) as predictors can give a
better model. In this particular modelling exercise,
there was no provision for performing dynamic tests
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Fig. 5. Step response of a Delay-dominant recycle
process

to aid model development. Hence we used routine
operating data to perform model identification. The
routine operating data has enough excitation in the
form of grade changes to justify the exercise of model
identification using this data.

We used the proposed method based on the EM algo-
rithm for identifying the model. The predictions based
on the EM model (without interpolation) and N4SID
model (with zero order hold interpolation) are pre-
sented in fig.6. The models shown have been adjusted
taking the recycle characteristics into account. Hence,
only the forward path dynamics are shown. Though
it appears that the EM model and the N4SID model
perform comparably well for the given data set, it is
clear from the step responses (fig.7) that the EM model
is representative of the true process dynamics (fast
dynamics).
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Fig. 6. Comparison of N4SID and EM model predic-
tions with actual brightness

7. CONCLUSIONS

An identification approach for multi-rate data, based
on the Expectation Maximization approach is pre-
sented. Unlike, traditional identification methods for
multi-rate data, the proposed method does not use
interpolation. An attractive feature of the algorithm is
that it can easily handle irregularly sampled data. It
leads to asymptotically unbiased estimates of the true
model. However, the proposed method is sensitive to
the initial guess and is computationally intensive.
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APPENDIX : ESTIMATES OF SYSTEM
MATRICES AT EACH ITERATION

Let us first evaluate the second term in theQ-function

T2 :=−1
2

N

∑
t=1

tr{Q−1Ek(xt −Axt−1−But−1)

(xt −Axt−1−But−1)T}
= −1

2
tr{Q−1[

Φ1 +AΦ2AT +BΦ4BT +2Φ3AT

+2Φ5BT −2AΦ6BT]} (A-1)

where

Φ1 :=
N

∑
t=1

E[xtx
T
t ] Φ2 :=

N

∑
t=1

E[xt−1xT
t−1]

Φ3 :=
N

∑
t=1

E[xtx
T
t−1] Φ4 :=

N

∑
t=1

ut−1uT
t−1

Φ5 :=
N

∑
t=1

xN
t uT

t−1 Φ6 :=
N

∑
t=1

xN
t−1uT

t−1 (A-2)

All the expectations are evaluated using the previous
model estimatei.e., using Θk = {Ak,Bk,Ck,Qk,Rk}.
Observe that this is the only term in theQ-function
that depends on the system matricesA andB. Now it
is straightforward to differentiate the above expression
to obtain the optimal estimates of the system matrices
at the (k+1)th iteration.

Ak+1 = [Φ3−Φ5Φ−1ΦT
6 ][Φ2−Φ6Φ−1

4 ΦT
6 ]−1

Bk+1 = [Φ5−AΦ6]Φ−1
4 (A-3)

Similarly we can differentiate the first two terms to
obtain the optimal new estimate of the covariance
matrix,Qk+1

Qk+1 =
1
N

[
Φ1 +AkΦ2AkT

+BkΦ4BkT
+2Φ3AkT

+2Φ5BkT −2AkΦ6BkT
]

(A-4)

The fourth term in theQ-function can similarly be
evaluated,

T4 :=−1
2

N

∑
t=1

tr{R−1Ek(yt −Cxt)(yt −Cxt)T}

= −1
2

tr{R−1

[
N

∑
t=1

yty
T
t +CΦ1C

T −2C
N

∑
t=1

xN
t yT

t

]
}

:=−1
2

tr{R−1[
Φ7 +CΦ1C

T −2CΦ8
]} (A-5)

Since the matrixC appears only inT4, the new esti-
mate ofC, Ck+1 can be obtained by differentiatingT4

and equating it to zero.

Ck+1 = ΦT
8 Φ−1

1 (A-6)

In order to obtain an expression for the optimal value
of R at the current iteration, we must differentiate
the third and fourth term in theQ-function. The new
estimate ofR can be shown to be

Rk+1 =
1
N

[
Φ7−ΦT

8 Φ−1
1 Φ8

]
(A-7)

Now we must evaluate allΦis. In order to do so,
we need to use a Kalman filter and a Kalman
smoother. Expressions for the Kalman filter and
Kalman smoother provided in Shumway and Stoffer
(2000) can be modified to suit the current problem.
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