
DEVELOPMENTS IN MULTI-RATE

PREDICTIVE CONTROL

J.A. Rossiter ∗ Tongwen Chen and Sirish L. Shah ∗∗

∗ Dept. of Automatic Control & Systems Engineering,

Sheffield University, Mappin Street Sheffield, S1 3JD,

email: J.A.Rossiter@sheffield.ac.uk
∗∗ University of Alberta, Edmonton, AB, Canada, T6G 2V4.

tchen@ee.ualberta.ca,sirish.shah@ualberta.ca

Abstract: Much of the work on predictive based multi-rate control has been based
on the GPC algorithm (Clarke et al, 1987). However academic practitioners in
single rate predictive control tend to favour approaches with better stability and
performance guarantees. This paper demonstrates how those approaches might be
deployed in a multi-rate framework and discusses some issues that arise.
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1. INTRODUCTION

A system is considered multi-rate (MR) when the
inputs and outputs of a system are sampled at
different rates. Typically this would be necessary
if there were no restrictions on the speed at which
the input is updated (denote this the fast rate
(FR)), but output measurements are available
only at a relatively slow rate (SR), for instance
where a laboratory test is needed. MR systems
take many forms depending on the system dimen-
sions and the sampling rates used. Although quite
common in industry, such systems have recieved
relatively little study from process control (Li et

al, 2001; Sheng, 2002) academics and hence this
paper is preliminary work and we will adopt the
simplest case of a dual rate (DR) system where
only two sample rates are present. Moroever we
assume that the output sample period is a simple
multiple of the input sample period. The study of
more complex cases constitutes future work.

One reason why MR systems may have recieved
little attention is that one cannot easily use all the
tools of linear control design. Single rate control
assumes that an output measurement is available
every sampling instant, then using z-transform
theory one can analyse the behaviour of the nom-
inal loop. However, such linear theory is not ap-

plicable when output measurements are available
only periodically and hence at first appearances
conventional design approaches cannot be used.
There are two popular solutions to this difficulty:
(i) inferential control (IC) (Lee et al, 1992) and
(ii) lifting (Kranc, 1957).
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Figure 1: Internal model structure

IC makes use of an internal (see figure 1 (Garcia et

al, 1982)) process model which operates at the fast
rate (FR). This model is used to supply output
estimates at the fast sample rate much like a state
estimator supplies state values to be used in lieu of



the actual (and unknown) state. However, this ap-
proach needs more study as there are several ob-
vious weaknesses: (i) the state estimator/internal
model receives actual output updates very slowly
and this could have repercussions on accuracy and
(ii) the approach relies on knowledge of a fast
SR model which would have to be identified from
MR data; recent work (Li et al, 2001) has shown
that this is possible in some cases but a clear
understanding of the robustness of these models
constitutes work in progress.

A more popular alternative (Kranc, 1957) has
been to use lifting. In essence this transforms a
MR single input single output system (SISO) to
a single rate multi input multi output (MIMO)
system or if the system were already MIMO it
increases the dimension. As the lifted system is
SR (the slow rate at which the output is updated)
one can use linear design and analysis methods.
However: (i) there is the price of working in a
significantly increased dimension and hence the
design itself maybe far more complex and (ii)
there is the so called causality constraint (Chen
et al, 1994; Sheng et al, 2002) whereby one must
ensure that the structure of the controller does
not make current controls dependent on future
controls. This implies a structure constraint that
the feedthrough term in the controller is block
lower triangular. For both IC and lifting based
schemes there is also the issue of intersample rip-
ple (Tangirala et al, 2001); to avoid this requires
additional constraints in the controller structure.

This paper will contrast two alternative model
predictive control (MPC) methods in both the
lifted and IC frameworks with the aim of giving
the reader a clear summary of what they gain and
lose with each scenario. Section 2 will describe the
necessary notation and background information.
Section 3 will discuss a finite horizon algorithm
(denoted FHMPC) and section 4 will develop
and discuss an infinite horizon algorithm denoted
(IHMPC). Section 5 will discuss the impact of
constraints and section 6 presents the conclusions.

2. BACKGROUND AND OBSERVATIONS

2.1 Model predictive control

For simplicity of notation the following is re-
stricted to single input single ouput systems,
however the results are equally applicable to
MIMO processes. Assume for now a single rate
process. Design a finite horizon predictive con-
trol (FHMPC) law at the FR along the lines of
GPC (Generalised predictive control (Clarke et al,
1987)) or Dynamic matrix control (DMC,(Cutler
et al, 1980)), that is at every sample instant min-
imise a performance index of the form:

min
u0,...,unc−1

J =

ny∑

i=0

(r − yi+1)
2 +

nc−1∑

i=0

λ(ui − uss)
2

s.t.

{
ui = uss, i ≥ nc

constraints
(1)

where uss is the current estimate of the input re-
quired to remove steady-state offset 1 . The signals
u, y, x, r are the inputs, outputs, states and set
point respectively. The constraints include limits
on the input, input rate and states and are as-
sumed affine in the degrees of freedom (d.o.f.).

The weakness of FHMPC is that there are no
guaranteed a priori stability results, largely be-
cause of the mismatch between the prediction
assumption and the closed-loop behaviour. For
computational reasons one requires the no. of
d.o.f. (nc) to be small but as a consequence the
implied constraint (see (1), ui = uss, i ≥ nc, is not
close to the closed-loop evolution that is desired.
This inconsistency can result in the performance
being poor because the minimisation is ill posed;
that is one is minimising predicted performance
subject to an artifical prediction constraint that
is never invoked. Hence the minimum may lie
a good distance from the minimum that would
arise without the artificial constraint. The effect
is much less marked for larger nc but can cause a
significant degradation when nc is small.

2.2 Infinite horizon MPC

In order to improve the properties of MPC, many
authors have proposed the use of infinite costing
horizons. One of the most popular of the IHMPC
algorithms is given in (Scokaert et al, 1996). It can
be summarised as at every sample minimise a cost
w.r.t nc degrees of freedom (d.o.f.),

min
u0,...,unc−1

J =

∞∑

i=0

(r − yi+1)
2 + λ(ui − uss)

2

s.t.

{
ui − uss = −K(xi − xss), i ≥ nc

constraints
(2)

K is an optimal state feedback; that is the optimal
control minimising J in the absence of constraints.

The strength of IHMPC is that the open-loop
predictions match the expected closed-loop be-
haviour, for the nominal case. Hence the optimisa-
tion is well posed and one can guarantee, a priori,
stability and good performance. The main issue
with this method is a possible inconsistency be-
tween the terminal constraint ui−uss = −K(xi−
xss), i ≥ nc and constraints, but that is not a
topic of this paper.

1 The control law takes a slightly different form if one uses
input increments as the control variables.



2.3 Inferential control and lifting

The above algorithms were summarised for the
SR case. However the context of this paper is MR
systems or in particular dual rate (DR) processes
where the input is updated every T seconds, but
a measurement is taken every nT seconds. The
algorithms need modifying to fit into this scenario.
How this modification can be performed depends
upon what model is available.

Inferential control (IC) requires a FR model. This
assumption is a weakness but one should also
state that if such a model exists, then it is to be
expected that a control design using this model
should outperform one based on a slow rate model.

Lifting based approaches use a DR model. There
is a need to show how the IHMPC algorithm can
be reformulated for this scenario and moreover
to analyse its behaviour. In particular one should
note (Rossiter et al, 2003) as discussed in section
2.1 that the restriction to DR models can give
quite poorly performing control laws when one
uses FHMPC. It will be shown how the move to
IHMPC can overcome this weakness.

2.4 Dual rate and single rate models

Consider a FR state space model of the form

xk+1 = Axk + Buk; yk = Cxk (3)

The DR equivalent to this system could be written
down as

xk+n = Γxk+ΘUk; yk = Cxk ; Uk =






uk

...
uk+n−1






(4)
where Γ = An, Θ =

[
An−1B · · · AB B

]
. In

many scenarios (Li et al, 2001) one may be able
to identify Γ, Θ (or equivalent model form) from
input/output data fairly easily but not A, B.
Model (4) will be denoted the lifted model as
the input has been lifted from uk to Uk. Also the
output/state is updated only every n samples of
the FR. Effectively this gives a SR model with a
lifted input.

IC assumes knowledge of the FR model whereas
lifted control will make use of the lifted model and
assumes the FR model is unknown.

3. FINITE HORIZON MPC

3.1 FHMPC in the lifted environment

This section will illustrate how the FHMPC con-
trol laws must be modified to cope with DR sig-

nals. First define the performance index to take
the form:

min
u0,...,unc−1

J =

ny∑

i=1

(r − yk+ni)
2 +

nc−1∑

i=0

λ(uk+i − uss)
2

s.t.

{
uk+i = uss, i ≥ nc

constraints
(5)

Define the corresponding prediction vectors as:

y
→

=








yk+n

yk+2n

...
yk+nyn








; u
→

=

[
u
→1

Z

]

; u1
→

=








uk

uk+1

...
uk+nc−1








where Z is a vector of zeros and it is noted
that the output can only be predicted every nth
sample due to the limitations of the model (4).
However, the input can be updated every sample.
Assuming the state x is available (via an observer)
the prediction model takes the form

y
→

= [H1|H2]
︸ ︷︷ ︸

H

[
u
→1

Z

]

+ Pxk;

H =






Θ 0 0 . . .

ΓΘ Θ 0 . . .
...

...
...

...




 ; P =






Γ
Γ2

...






(6)

where the partition of H is conformal with that of
u
→

. One can now subsitute this prediction into (5)
to derive the first nc steps of the optimal control
trajectory as:

u
→1

− Luss = [HT
1 H1 + λI ]HT

1 P (x − xss) (7)

where L is an nc vector of ones and uss, xss

depend upon r and a disturbance estimate.

Remark 3.1. The main weakness of this approach
(Rossiter et al, 2003) is the assumption that in
the predictions uk+i = uss. This assumption
ensures the number of d.o.f. (nc) is small. Where
nc < n in particular the input signal has large
discontinuities which are not removed by the
usual receding horizon arguments as the receding
horizon update takes place only every n samples
in the lifted framework.

3.2 FHMPC with inferential control

In inferential control, one assumes that a fast
rate model is available. Hence one can update the
control optimisation at the fast sample rate, albeit
the estimates of uss, xss are only updated at the
slow rate. The advantage of such a change is that
one no longer has to deal with the discontinuites
within the input signal. What is not obvious is
how to compare IC and lifting based approaches.
One would expect IC control to be better simply
because the receding horizon update is faster and
this will be demonstrated. However this may not
be a logical comparison:



• Due to modelling restrictions, lifting based
MPC can only cost every nth value of
the predicted output (5). No account can
be taken of the unknown intersample out-
put behaviour and this may be oscillatory
(Tangirala et al, 2001).

• With IC one can estimate intersample out-
puts and hence it would be more appropriate
to use the cost function of (1).

For simplicity we compare lifting and IC FH
algorithms with the cost of (5). However it is noted
that in practice if one were to adopt IC methods,
then it would be better to use cost (1).

3.3 Example contrasting lifting and inferential

control with FHMPC

Consider an example with a fast rate state space
model

xk,l+1 =

[
0.3 0.5
0.1 0.9

]

xk|l+

[
0.1
0.2

]

uk|l; yk = [1 0]xk

(8)
For the lifted algorithm one would assume that
only the equivalent model of form (4) is known.
Assume that the output is sampled 4 times slower
than the input, i.e. n = 4. The FHMPC algorithm
of (7) and (5) is implemented for nu = 1 with ny =
8, λ = 1. The simulations are displayed in figures
2a,b for outputs and inputs respectively; circles
and dotted lines are used for the IC algorithm
and crosses and solid lines are used for the lifted
algorithm. The x-axis has units of the fast sample
rate so new output measurements are given only
every 4th sample. The corresponding closed-loop
runtime costs are given in table 1 for nu = 1.

Lifted algorithm 3.18
Inferential Control 2.21

Table 1: Closed-loop runtime costs J
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Figure 2: Simulations with nu = 1

It is clear both from the table and the figure
that the the use of a fast receding horizon update
allowed in IC has given a dramatic improvement
in performance, even though there has been not

new output measurements. The limitation of the
prediction assumption in FHMPC is very clear in
figures 2b where it can be seen that the input
moves to a poor default value, that is uss, during
the later intersample periods. If one uses a fast
receding horizon the negative effects of this poor
assumption can be alleviated, as the only pre-
dicted value actually implemented is the current
and the far future is continually updated. In the
lifted framework, the first n moves are used and
hence one is forced to use a poorly defined input
trajectory.

3.4 Summary of FHMPC

FHMPC algorithms typically use input predic-
tions which do not match the expected or desired
closed-loop behaviour. This limitation is over-
come by the use of the receding horizon concept
whereby one updates the predictions at every sam-
ple instant so that there is a continual improve-
ment on the initial assumption. Unfortunately in
a lifted framework, the receding horizon update
only takes place at a slow rate (every n samples)
and as a consequence a naive use of FHMPC
will cause the control law to inherit a poor input
prediction. One obvious solution to this is to use
IC, which was popular in some early papers on
MR systems (Lee et al, 1992). IC allows the use of
a fast receding horizon update to improve perfor-
mance. However it should be emphasised that IC
assumes the knowledge of a fast rate model which
is not always a realistic assumption. Alternative
ways around this are a topic of current research
(Rossiter et al, 2003).

4. IHMPC IN THE MULTI-RATE
ENVIRONMENT

4.1 The motivation for IHMPC

In conventional single rate MPC, there has been
a move towards infinite horizons because of the
attendant guarantee of stability that can be ob-
tained. However there has been less thought given
to understanding what underpins this guarantee
as typically it is assumed simply to be a conse-
quence of facilitating the definition of a Lyapunov
function. However, there is a more significant
change which was made use of in (Scokaert et

al, 1996) and mentioned in section 2.2.

Ideally one wants the optimised open-loop predic-
tions to match the actual closed-loop behaviour.
Then the optimisation is well posed (unlike in
FHMPC where one minimises over a class known
to be different from the behaviour that will re-
sult). The consequence of this change is that the
input discontinuities apparent in Fig. 2b should



not occur, even in the lifted environment! To
rephrase this, in the nominal case, the optimum
input trajectory at time k will match exactly the
optimum computed at the previous sample (in
the absence of constraints). Hence whether one
updates the control law at the fast rate or the
slow rate, the control inputs will be the same.

We will illustrate this using the example of the
previous section and the control implied by the
optimisation of (2) 2 . Figure 3 below shows the
simulation plots with both a lifted control law
(crosses) and an IC control law (circles). Clearly
the plots are identical. This implies that if one sets
up the infinite horizon algorithm such that only
outputs at the same sample rate are costed, then
the use of lifting or IC will give the same closed-
loop behaviour (in the constraint free case). How-
ever this is confusing because one would expect IC
control to have more potential due to the faster
receding horizon update. This apparent anomaly
is discussed in section 5.
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Figure 3: Simulations with optimal control

4.2 Infinite horizons need not imply that IC is

equivalent to lifting

The example in the previous section made the
assumption that the performance index J was the
same for both the IC control and the lifting based
control, that is they costed the outputs at the
same sample rate, be it fast or slow. Of course
in a true multi-rate framework, one does not have
access to intermediate output estimates without a
fast rate model. So one would use IC if a fast rate
model were available and lifting otherwise. These
would be based on different performance indices
hence giving different control. Logically the lifted
approach could not give as tight control over the
unmeasured and hence uncontrolled intersample
outputs (Tangirala et al, 2001). However there is a
more noticeable difference which is discussed next.

2 Assume that the lifted algorithm has access to intersam-
ple output estimates. One also gets the same result if both
algorithms assume the cost of (5).

5. THE IMPACT OF CONSTRAINTS AND
COMPUTATIONAL LOAD ON ALGORITHM

SET UP

The conclusions of the previous two sections
are contradictory. They imply that if one uses
FHMPC then there are significant benefits from
using IC. However if one uses IHMPC, then there
are no benefits, that is one can obtain just as good
control with an algorithm updating the control
actions only at the slow rate. But, these conclu-
sions apply to the constraint free case only, that is
in the presence of constraints the global optimal
input trajectory may not be known.

A popular (Rossiter et al, 1998) reparameterisa-
tion of the IHMPC optimisation (2) is given as

min
ci, i=0,...,nc−1

J =

nc−1∑

i=0

cT
i ci

s.t.







ui − uss = −K(xi − xss) + ci, i < nc

ui − uss = −K(xi − xss), i ≥ nc

constraints
(9)

Typically the global optimal requires ci 6= 0, i ≥
nc that is the global optimal differs from the
unconstrained optimal for p steps where p > nc;
this is not allowed for in the prediction class so the
global optimal can be reached in the optimisation.
In this case it is evident that a fast receding hori-
zon approach will give benefits as the speed of the
receding horizon update governs the rate at which
new d.o.f., in this case ci, are introduced into the
optimisation. Although no new observations ap-
pear at “inter-observation” instants, nevertheless
the solution of the optimisation (2) does change,
moving closer to the global optimal with each
extra d.o.f., and hence there is a major advantage
in using IC where that is possible.

5.1 Numerical example

Next a simple simulation study is used to illus-
trate the point that a IHMPC using IC outper-
forms a lifting based approach in the presence of
constraints. Consider a model represented by the
state equation:

xk+1 =





1.4 −0.105 −0.108
2 0 0
0 1 0



 xk +





2
0
0



 uk

y = [0.5 0.75 0.5]xk

(10)
and n is taken to be 5. For a unit set point
change simulations are displayed in Figs. 4a, 4b
for the constraint free case and Figs. 4c, 4d with
constraints |u| ≤ 0.06 and |ui − ui−1| ≤ 0.03.
The solid lines are with a lifted algorithm and the
dotted lines represent the IC. The runtime costs
J are summarised in table 2.
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Figure 4: Simulations with optimal control

Algorithm Figs 4a,b Figs 4c,d
Lifted 1.11 1.946
IC 1.11 1.926

Table 2: Runtime costs

It is clear that IC has outperformed the lifted algo-
rithm when constraints are active, although in this
case by only a small amount. Larger differences
will occur when the prediction class available is
further from the global optimal, such as may arise
with non-minimum phase and unstable systems.

5.2 Conclusion

The differences between FHMPC and IHMPC

for MR systems: It was shown that the assump-
tion, usual in FHMPC, that the predicted input
move to a fixed value after nc steps does not mesh
well with MR control design. This is because the
assumption is made to reduce computation not
to improve control and does not match expected
closed-loop behaviour well enough. Good control
is recovered only by applying the receding horizon
concept at a fast enough update rate. Conversely
IHMPC techniques are setup to ensure a good
match between predictions and expected closed-
loop behaviour. Hence in this case the slow rate
algorithm moves across to the MR case with a far
smaller (zero for some algorithms) deterioration
in performance.

The advantages of updating control with

a fast receding horizon based on a FR in-

ternal model: IHMPC is identical with a FR
update or lifting only in the case where the global
optimal is in the class of allowable predictions.
Usually restrictions to the number of d.o.f. imply
this is not the case and hence one can improve
performance by introducing more d.o.f. Clearly
the faster the rate of receding horizon update the
more quickly extra d.o.f. can be introduced to
improve performance. Hence IC will always out-
perform lifting during constraint handling, even
for IHMPC in the nominal case.

The weakness of these conclusions is the implicit
assumption that one should use IC control as it
gives better control for FHMPC and IHMPC. Also
there is also an implication that IHMPC should
always be prefered. However this is a simplistic.
FR models are not always available and there
is still study required to analyse their reliability.
Also work in progress (Rossiter et al, 2003) is
looking at means of obtaining control of similar
quality to that obtained with IC, but based only
on a lifted model. The argument of finite or
infinite horizons is well known in the single rate
literature of MPC and will not be repeated here.
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