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Abstract: Identification based PID tuning is studied. The proposed approach consists of 
the identification of linear or nonlinear process model and model based control design. 
The identification test can be performed in both open loop and closed-loop. The so-called 
ASYM method is used to solve the identification problem. The method identifies a low 
order process model with a quantification of model errors (uncertainty). The PID tuning is 
based on internal model control (IMC) tuning rules. Two case studies will be performed 
to demonstrate the methodology. The first one is the adaptive control of the dissolved 
oxygen of a bioreactor; the second one is the nonlinear PID control of a pH process. 
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1. INTRODUCTION 
 
Although MIMO model based control such as MPC  
is becoming more popular in process control, most 
control loops are still PID controllers. PID tuning is 
also part of the pre-test in an MPC project. 
Therefore, good tuning of PID loops is very 
important to maintain good performance of the 
overall process control system.  
 
PID tuning follows basically two approaches: 
Manual tuning and model based tuning. Manual 
tuning is effective for simple loops. The 
disadvantages are that the quality of the tuning is 
dependent on the knowledge of the control engineer 
and the control performance will be, in general, not 
optimal. Moreover, manual tuning will be difficult 
and inefficient for processes with complex dynamics 
and/or nonlinearity. For the control of complex 
industrial processes, a model-based control approach 
has been proven the most effective. There are many 
advantages of a model-based approach. The 
controller can have a high performance because the 
controller parameters can be optimized based on the 
process model. The quality of the tuning is 
independent of the tuning experience of the control 
engineer. More complex dynamics can be controlled. 

Nonlinear processes can be controlled using 
nonlinear models; time-variant processes can be 
controlled using an adaptive PID. 
 
In this paper a model based PID auto-tuning method 
is outlined. The model is identified using open or 
closed-loop test data. Both linear and block-oriented 
nonlinear models can be obtained. Model error 
(uncertainty) is also estimated, which makes the 
robust tuning possible. Internal model control (IMC) 
tuning rules (Rivera et. al., 1986) are used to 
determine the PID parameters. In Section 2, the 
identification method is introduced. Section 3 
discusses the controller tuning and implementation. 
Two case studies are presented in Section 4. 
Conclusions are given in Section 5. 
 

2. IDENTIFICATION OF LINEAR AND 
NONLINEAR MODELS 

 
2.1 Cloced-loop Identification of Linear Models 
 
Single-input single-output (SISO) system (process) 
identification using data from closed-loop operation 
will be introduced here.  
  

     



The control system block-diagram is shown in Figure 
2.1 where u(t) and y(t) are the process input and 
output signals at time t, v(t) represents an 
unmeasured disturbance acting at the output, r(t) is 
the setpoint of the controlled process. It should be 
clear that the open loop situation is a special case of 
closed-loop identification. 
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Figure 2.1 Process identification in closed-loop 
operation 

 
A linear time-invariant discrete-time model that 
describes the relation between process input and 
output in terms of the backword shipt operator q-1 is 
given as follows: 
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is called process transfer function model, and 
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is a disturbance shaping filter,  n is called the order 
of the model, {e(t)} is white noise with zero mean 
and variance λ2 and 
 

{a1, …, an, b0, …, bn, c1, …, cn, d1, …, dn}  
 
are the parameters of the model. This model structure 
is called Box-Jenkins model in the literature. 
 
A process identification procedure consists of four 
steps: test design, parameter estimation, order 
selection and model validation. The following is the 
so-called ASYM method (Zhu, 2001) that solves 
these four problems. 
 
1) Test Design 
 
Often binary test signals are used for linear model 
identification. Tulleken (1990) has proposed the so-
called generalized binary noise (GBN) signal for use 
in identification. The character of a GBN signal is 
determined by its power spectrum which is in turn 
determined by its amplitude and average switch time.  
 
A good test design should meet two requirements: 1) 
the test signal should excites the process such that 
the identified model is most accurate for control, 2) 
the test will not disturb normal production, or, the 

disturbance is minimized. The spectrum of the test 
signal should be determined such that the control 
error of the identified model is minimal. An 
approximate optimal spectrum formula of the test 
signal at the setpoint of the closed-loop system is 
given as (Zhu and van den Bosch, 2000) 
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where Φr(ω) is the power spectrum of the reference 
signal r, Φv(ω) is the power spectrum of the 
disturbance, and µ is a constant adjusted so that the 
signal power (or amplitude) is constrained. In 
practice, the average switch time of the GBN signal 
is adjusted so that its spectrum approximates the 
optimal one in (2.2). The amplitude is chosen so that 
the process output will stay within a given range. 
 
2) Parameter Estimation 
Parameters of G(q) and H(q) can be estimated in 
several ways. The well known prediction error 
method (Ljung, 1987) estimates the parameters of 
both G(q) and H(q) by minimizing the prediction 
error criterion according to (2.1). This approach is 
numerically difficult. Local minima and non-
convergence can occur.  
 
In the so-called ASYM method (Zhu, 2001), first a 
high order ARX (equation error) model is estimated: 
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The high order model in (2.3) is practically unbiased, 
provided that the process behaves linear around the 
working point. The variance of this model is high due 
to its high order. Using the asymptotic result of 
Ljung (1987) it can be shown that the asymptotic 
negative log-likelihood function for the reduced 
process model is given by (Wahlberg, 1989) 
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The reduced model G  is thus calculated by 
minimizing (2.4) for a fixed order.   
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3) Order Selection 
The best order of the reduced model is determined 
using a frequency domain criterion ASYC which is 
relate to the noise-to-signal ratios and to the test 
time; see Zhu (2001). The basic idea of this criterion 
is to equalize the bias error and variance error of the 
transfer function in the frequency range that is 
important for control.   
 
If the optimal order is higher than 2, a model 
reduction is used to reduce the order to 2 for PID 
tuning. 
 
4) Model Validation 

     



Model validation is to check whether the identified 
model is suitable for control. The main task of model 
validation is to check if the identification test data is 
rich enough for control purpose, and if not, provide a 
test redesign. In Zhu (2001), a stochastic model error 
bound has been derived based on the asymptotic 
properties of high order models. Denote ∆(eiω) as the 
high order model error, then the additive error bound 
∆( )ω  is given as: 
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where nh is the order of the high order model, N is the 
number of samples, Φv(ω) is the power spectrum of 
disturbance, Φu(ω) is the power spectrum of input, 
Φue(ω) is the cross power spectrum between input 
and white noise sequence {e(t)}. When the optimal 
model order is higher than 2, the model order will be 
reduced to 2. In this case, the difference between the 
optimal model and the 2nd order model will be 
added to the upper bound (2.5). 
 
One way to use upper bound (2.5) for model 
validation is as follows. First simulate the control 
system using the model and controller. Then check 
the robust stability of the system using the model, the 
upper bound and the controller parameters; see 
Section 3. If the controller simulation show good 
performance and robust test is passed, the identified 
model passes the validation and the controller can be 
implemented. If the robust test is failed, then, 
according to the upper bound formula (2.5), a test 
redesign can be done using the following rules: 
 
• Doubling the test signal amplitude will half the 

error over the whole frequency band.  
• Doubling the test time will reduce the error by a 

factor of 1.414 over the whole frequency band.  
• Doubling the average switch time of GBN signal 

will half the error at low frequencies and double 
the error at high frequencies.  

 
 
2.2 Identification of Block-Oriented Nonlinear 

Models 
 
Commonly used block-oriented models are the 
Hammerstein model, the Wiener model and 
combined Hammerstein-Wiener models. A 
Hammerstein model is formed by a nonlinear gain at 
the input followed by a linear block, hence it can also 
be called a N-L model; see Figure 2.2. A linear block 
followed by a nonlinear gain forms a Wiener model 
or a L-N model; see Figure 2.3. One way to combine 
the Hammerstein Model and and the Wiener model is 
the so-called N-L-N Hammerstein-Wiener model; 
see Figure 2.4. 
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Figure 2.2  Hammerstein model 
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Figure 2.3  Wiener model 
 

f1(u) G(q) f2(w)
u(t) w1(t) wo(t) w(t)

v(t)

y(t)

 
 

Figure 2.4  N-L-N Hammerstein-Wiener model 
 
 
Here,  represents a linear time-invariant 
transfer function,  denotes the static nonlinear 
gain. It is assumed that: 1) the nonlinear function 

 is continuous, monotone and invertible; 2) the 
unmeasured disturbance {  is a stationary 
stochastic process.  
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One can parametrize the linear part with the 
disturbance using the Box-Jenkins model; and 
parametrize the nonlinear function using cubic 
splines. Recently, identification algorithms have been 
developed for such models by extending the ASYM 
method; see Zhu (1999, 2000, and 2002).  
  
 

3. ROBUST PID TUNING 
 
3.1   Tuning for Linear PID  
 
There are many model-based PID tuning rules, such 
as dominant pole placement, optimization by 
minimizing integral square error (ISE) or integral 
absolute error (IAE), and internal model control 
(IMC) tuning; see Åström and Hägglund (1995).  
 
Here we will use the IMC tuning rules introduced by 
Rivera et. al. (1986). The idea of the IMC tuning is to 
use the two-step IMC design method to derive the 
PID parameters based on a low order (up to 2nd 
order) plus delay model of the process. The PID 
parameters are determined so that the closed-loop 
behavior approximates the behavior given by a first 
order filter 
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   (3.1) 

For controller tuning, the user only needs to specify 
the time constant τcl of the filter, or the desired speed 
of the closed-loop system. In general, a large time 
constant leads to a slow response and a more robust 
controller; a small time constant leads to a fast 
response, but a less robust controller. Tuning 
formulae for typical process models are available in 
tables; see, e.g., Chien and Fruehauf (1990). 
Therefore, when a process model is identified, it is 

     



straightforward to obtain PID parameters. The 
closed-loop system can be simulated using the model 
and the controller. Industrial experience of the IMC 
tuning rules is very positive; see Chien and Fruehauf 
(1990). 
 
Because model errors are inevitable in real process 
identification, a good control performance according 
to simulation does not necessarily mean good 
performance in reality. The robustness of the 
controlled system against model errors can be 
analyzed using the upper error bound in (2.5). 
Denote  as the process model in continuous-
time, 

$ ( )G s
C s( )  as the controller and ∆ as the upper 

bound. Then it can be shown (see, e.g., Rivera et. 
at.,1986) that the controlled system is robustly stable 
for all the errors bounded by the upper bound if and 
only if 
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The performance of the true system will be close to 
the simulation if the left hand side of (3.2) is much 
smaller than 1, for example, smaller than 0.5. 
 
3.2 Tuning for Nonlinear PID 
 
When a Hammerstein model or a Wiener model is 
identified, the simplest tuning is to invert the 
nonlinearity and then use the same IMC tuning rules 
to find the linear part of PID controller. The robust 
stability analysis can also be used after the nonlinear 
compensation. Denote as the identified 
nonlinear gain, then the block diagram for the 
nonlinear PID control using the Hammerstein model 
is given in Figure 3.1; and that using the Wiener 
model is shown in Figure 3.2. 
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Figure 3.1  Nonlinear PID for Hammerstein model 

Go(z-1) f(w)
r(t) u(t)

v(t)

y(t)

-
f-1(r) PID

Process

f-1(y)
 

Figure 3.2  Nonlinear PID for Wiener model 
 
 

4 CASE STUDIES 
 
4.1  Adaptive Control of the Disolved Oxygen of a         
      Bioreactor 
 

The setup is a 20 liter fermentor (Figure 4.1). In this 
setup, base and acid are used to control the pH value; 
heating and (water) cooling are used to control 
temperature and airflow is used to control dissolved 
oxygen.  
The production specifications for the three controlled 
variables are: 
1) pH   Normal range: setpoint ± 
0.05. Worst case range: setpoint ± 0.05. 
2) Dissolved oxygen Nornal range: setpoint ± 
2.0%. Worst case range: setpoint ± 5.0%. 
3) Temperature Normal range: setpoint ± 0.1 °C. 
Worst case range: setpoint ± 1.0 °C. 
Each variable is controlled using a PID controller. 
Experience has shown that, when fixed PI controllers 
are used, the controls of pH and dissolved oxygen are 
difficult, but the control of temperature is easier. 
The main disturbances to the dissolved oxygen are 
changes in the oxygen consumption rate during the 
fermentation, the addition of anti-form the changes of 
the medium properties.  
Applikon ADI 1065 unit that is connected to the 
sensors and actuators controls the fermentor. The low 
level PID control loops are run in a PC. The 
supervisory controller sets the PID parameters. The 
supervisor controller runs in another PC under  
Matlab/Simulink/ Stateflow. The sampling time is 5 
seconds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. The bioreactor setup 
 

The adaptive control scheme is as follows. 
 
1) Control loop performance monitoring 

Is control performance OK? 
Yes, goto 1); no, goto 2) 

2) Identification test; identifying model and 
error bound 

3) Performing PID tuning and simulating 
closed-loop responses 

4) Performing robust stability test 
Is the control system robust? 
Yes, goto 5);  
No, goto 2) (for collecting more test data), 
or, goto 3) (detune the controller) 

5) Implement the new PID parameters 
Goto 1) 
 

     



In this work, control performance monitoring (Huang 
and Shah, 1999) is not studied; only identification 
and PID tuning are shown. 
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Figure 4.2  DO control loop before, during and after 

the adaptation 
 
 
Figure 4.2 shows the signal plots of the real-time 
measurements during the test. First the existing PID 
tuning is made very slow; see the first plot of Figure 
4.2. Then the identification test is started. A GBN 
signal is added at the process input. The test lasted 
for about 20 minutes; see the second plot of Figure 
4.2. At the end of the 20 minutes, the input/output 
data is used to identify a model and its error bound, 
and PID parameters are computed. The desired 
settling time of the closed-loop is 1 minute. The 
closed-loop system is simulated and the robust 
stability is tested using the model and the control 
parameters see Figure 4.3. It shows that the new PID 
controller has good performance with robust 
stability. The new PID parameters are implemented 
in the low level controller and the step responses is 
measured after the adaptation; see the third plot of 
Figure 4.2. 
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Figure 4.3  Identification and robust PID tuning 

 
It can be seen that the performance of the adaptive 
control is very satisfactory. The simulation and the 
real-time measurements agree very well. Only a few 
seconds are needed to carry out the off-line 
identification, PID tuning and robust stability 
analysis. 

 
When the closed-loop is in oscillation, the identified 
model is very poor. This results in a large error 
bound and the robust stability test will fail. Therefore 
the new control parameters will not be implemented. 
To solve this problem, and oscillation detection is 
performed before the identification test. The existing 
controller is detuned until the oscillation disappears. 
 
The adaptive control of the pH and the temperature 
can be done in the same way. 
 
4.2 Nonlinear PID Control of a pH Process 
 
The pH process consists of a continuous stirred tank 
reactor (CSTR) with two input streams and one 
output stream. The scheme is shown in figure 4.4. 
The first input flow consists of solution of strong 
acid and the second flow consists of a solution of 
strong base. The acid flow has a constant rate and the 
rate of base flow can be adjusted using a controlled 
pump. These two flows react with each other and 
produce a pH value. The pH of the solution inside the 
CSTR is measured by using a pH sensor. The base 
flow rate is used to control the pH value of the 
solution inside the tank. 
 
Closed-loop identification test has been carried out. 
Staircase test signal with different step length is 
applied at the pH setpoint. Wiener model is identified 
using the test data. The linear model has an order of 
2, but a first order model is almost as good. The 
nonlinear part has degree 10. Figure 4.4 shows the 
identified nonlinear gain which decreases as the pH 
increases.  
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Figure 4.4  Identified nonlinear gain 

 
Based on the identified Wiener model, a nonlinear 
PID controller is designed and tested for the pH 
process. In the control scheme, the inverse of the 
nonlinear gain is placed in the feedback path and 
before the setpoint as shown in Figure 3.2. Figure 4.5 
shows the control result of the nonlinear PID (step 
responses); Figure 4.6 shows the result of linear PID. 
One can see that the system with linear controller 
becomes slower when the pH value is high, but with 
the nonlinear controller the performance is nearly the 
same for low and high pH values.  
 
The control scheme is implemented in a LabView 
environment. See Erol (1999) for more details on the 
study. 
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Figure 4.5  Step responses of the nonlinear PI 

controller 

0 200 400 600 800 1000 1200
7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

 
Figure 4.6  Step responses of the linear PI control 

 
 

5. CONCLUSIONS 
 

An identification based robust PID tuning method is 
proposed. Both linear and simple nonlinear models 
can be identified in a possibly closed-loop operation. 
An error bound of the linear model part can be 
estimated, which makes the robust tuning possible. 
The linear or nonlinear PID controller is determined 
using the so-called IMC tuning rules. The robust 
stability analysis is then carried out using the 
identified model, the error bound and the controller 
parameters. There are many ways to implement the 
proposed method to solve industrial control 
problems. The first way is to use the linear method in 
an auto-tuner to tune fixed PID controllers. The 
second way is to use the linear identification and PID 
tuning in an adaptive controller. The third way is to 
design a time-invariant nonlinear PID controller. The 
two case studies have shown the capability of the 
methodology.  our experience, the use of such test 
signals is often permitted in industrial environments. 
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