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Abstract: Based on a reduced-order model of a cement grinding circuit, a nonlinear
model predictive control strategy is developed. The first step of this NMPC study
is the definition of control objectives which consider product fineness, product flow
rate and/or grinding efficiency. At this stage, one of the main concerns is to relate
these objectives to easily measurable particle weight fractions. Second, NMPC is
implemented so as to take the various constraints on the manipulated variables and
operating conditions of the mill into account. Third, robustness with respect to
model uncertainties is analyzed, and the most critical parameters are highlighted.
Finally, an NMPC scheme, combining a stable inner loop for controlling the mill
flow rate and a DMC-like compensation of the model mismatch, is proposed.
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1. INTRODUCTION

Control of cement grinding circuits is a delicate
task. According to (Hulbert, 1989) and (Hodouin
and Del Villar, 1994), the difficulties associated
with control arise from two major causes:

• process complexity and nonlinearity: grind-
ing depends on the material content of the
mill, separation is affected by the material
flow rate and the process has recycle;

• lack of measurements: some variables cannot
be measured on-line, others are heavily cor-
rupted by noise.

In recent years, some studies have witnessed the
relevance of model predictive control for cement
grinding processes. In (Mart́ın Sánchez and Rodel-
lar, 1996), a single mill is considered (no down-

1 Author to whom correspondence should be addressed:
e-mail: Renato.Lepore@fpms.ac.be
phone: +32 (0)65374140 fax: +32 (0)65374136

stream classification) and maximization of the
product flow rate is achieved while stabilizing the
degree of material filling. In (Magni et al., 1999), a
nonlinear model of a grinding circuit has been de-
veloped and the delicate problem of stability has
been treated. These studies essentially consider
global variables, e.g., flow rates, total material
content of the mill,. . . .

In contrast with these studies, the authors have
focused on the transport of the material in the
mill and, mostly, on the particle size distribution,
which is highly related to the final properties of
cement, such as the compressive strength. From
this latter philosophy, they have developed:

(1) a distributed-parameter population model,
which has been identified on an industrial
closed-loop grinding process (C.B.R., Bel-
gium) (see (Boulvin, 2000) and (Boulvin et
al., 2002));



(2) a simplified distributed-parameter model,
based on a reduced number of size intervals
(Lepore et al., 2002).

The contribution of the present study is:

• to formulate new control objectives in agree-
ment with the coarser size discretization used
in the reduced-order model (2), i.e., a) a well-
determined fineness of the product, b) either
a maximization of the product flow rate or
an optimization of the grinding efficiency;

• to design a multivariable, constrained NMPC
scheme achieving these objectives, which
considers the input flow rate and the classi-
fier selectivity as manipulated variables. Con-
straints apply a) on magnitudes and slew
rates of the inputs (saturation effects), b)
on the mill flow rate variable (preventing
temperature increase and/or wear as well as
mill overfilling);

• to treat the following aspects of model inac-
curacy: to investigate NMPC robustness to
model uncertainties, to perform a thorough
parameter sensitivity analysis and to study
two types of model mismatch compensation:
(a) a typical DMC-like scheme, which consid-
ers the mismatch as a constant disturbance
over the prediction horizon, (b) the DMC-
like scheme with prior stabilization of the mill
flow rate by a proportional control loop.

In the sequel, the document is divided into five
sections. Section 2 contains the description of the
process and the equations of the reduced-order
model. New control objectives are formulated in
Section 3. In Section 4, the NMPC strategy is
presented, then robustness analysis is considered
in Section 5. Some conclusions and perspectives
are finally presented in Section 6.

2. PROCESS DESCRIPTION AND
MODELING

2.1 Process description

A typical cement grinding circuit is represented in
figure 1, which consists of a single-compartment
ball mill in closed-loop with an air classifier.
The raw material (usually clinker) flow qC is
fed to the rotating mill, in which balls perform
the breakage of the material particles by fracture
and/or attrition. At the other end, the output or
mill flow qM is lifted up by a bucket elevator onto
the classifier which separates the material into
two parts: the product flow qP and the rejected
flow qR, which is recirculated to the mill inlet.
The selectivity of the classifier and, in turn, the
product fineness, can be modified by acting on
special registers Rp. The sum of qC and qR is the
total feed flow, denoted by qF .
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Fig. 1. Closed-loop grinding circuit

2.2 Modeling

Consider the size continuum as divided into three
size intervals numbered 1, 2 and 3 for the coarse,
intermediate and fine particles, respectively. Mass
balances lead to:
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where:

- Xi is the mass per unit of length of the
particles in size interval i;

- k is the yield fraction of the particles in size
interval 2 appearing from the breakage of the
particles in size interval 1; ϕj is the breakage
rate of the material in size interval j;

- ui is the convection velocity and Di is the
diffusion coefficient of the particles in size
interval i;

The partial differential equations (1) are supple-
mented by initial (2) and boundary (3) conditions:

Xi(0, x) = H0(x)w0;i(x) ∀ x; i=1,2,3 (2)

0 = uiXi − Di

∂Xi
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∂Xi

∂x
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where:

- H0(x) is the initial material content per unit
of length, w0;i(x) is the corresponding mass
fraction in size i;

- qF is the total feed flow rate, wF ;i is the
corresponding mass fraction in size i.

The breakage rates are formulated as follows:

ϕj = αjXje
−βH ; j=1,2 (4)

where:



- αj is the specific rate of breakage for size
interval j;

- H is the hold-up, i.e., (X1 + X2 + X3);
- β is an inhibition coefficient.

The classifier has very fast dynamics compared to
the mill and is therefore described by a steady-
state model. Selectivity is the fraction of material
in each size interval which is recirculated (see the
”fish-hook” curves in 2).
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Fig. 2. Classifier selectivity (for a single register
position and several mill flow rates)

3. CONTROL OBJECTIVES

The compressive strength specified by the client is
the main goal of the cement manufacturer. Among
the many characteristics of cement, the chemical
composition, which is essentially set during the
kiln operation, and the particle size distribution
are the variables influencing at most the compres-
sive strength. So, given the chemical composition
(as it is considered for the grinding circuit), the
compressive strength is dependent a priori on the
total particle size distribution, which represents a
very complex, hardly interpretable objective.
However, from recent industrial results (experi-
mental data collected at C.B.R., Belgium), it ap-
pears that a strong relationship exists between the
compressive strength and the weight fraction of
the fine particles in the product, denoted by wP ;3.
In figure 3 (wM ;2 is the weight fraction of the inter-
mediate particles at the mill outlet), the arc AB
represents all operating points corresponding to
some constant wP ;3 that are compatible with op-
erational restrictions on the mill flow rate, which
prevent on the one hand dramatic temperature
increase and/or wear of the equipment (e.g., at
least 50 t/h), on the other hand mill overfilling
(e.g., at most 140 t/h).

The second objective, usually more related to
the economical strategy of the company itself,
will set a well-determined operating point on the
characteristic AB. One common strategy is the
maximization of the product flow rate. Provided
that the process characteristic AB is available,
this objective can be uniquely identified by the
corresponding value wPmax

M ;2 (see point 1). This

strategy requires the process to be run at the
stability limit. In fact, the arcs A1 and 1B cor-
respond to stable and unstable operating points,
respectively.
Another strategy could be to optimize the grind-
ing efficiency or, in other words, to avoid over-
grinding. From our description based on three size
intervals, it is suggested to achieve this goal by
avoiding at maximum coarse particles (obviously!)
and also fine particles (overgrinding) at the mill
outlet. So, increasing wM ;2 up to a reasonable
limit, could be the criterion (e.g., point 2). It is
noted that this strategy requires the process to be
run completely in the unstable region.

Several advantages arise from using wP ;3 and
wM ;2 as controlled variables:

• the measurements are simple (two sieve mea-
surements only for each variable) and can
be achieved automatically at moderate cost;
measurement error is small since one can
expect high values for wP ;3 (0.7 ∼ 0.8) and
wM ;2 (0.5 ∼ 0.7); the measurement of wM ;2

is more reliable than, say, the elevator power
which is very affected by mechanical vibra-
tions (low-frequency noise);

• the use of wM ;2 for the achievement of op-
erating point 1 converts an ill-conditioned
optimization problem (well-determined prod-
uct fineness and maximization of the product
flow rate) into a well-conditioned minimiza-
tion of an output error.
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Fig. 3. Steady-state relationship for constant wP ;3

4. NMPC STRATEGY

NMPC consists in determining a set of manipulated-
variable moves over a control horizon of Nu sam-
pling periods that minimizes an objective func-
tion J over a prediction horizon of Nh sampling
periods. The manipulated variables are the feed
flow rate qC and the register position Rp and the
controlled variable y is the vector [wP ;3 wM ;2]

T .
At time instant k, the function J and the reference
trajectory yr;i are defined as follows:

J(k) =

Nh
∑

i=1

(yr;i − ŷk;i)
T Q(yr;i − ŷk;i) (5)



yr;i = y∗ + (yk − y∗)e−
iTs

Tr (6)

where:

- ŷk;i is the predicted value at time (k + i)Ts;
- yr;i is the reference value at time (k + i)Ts;
- Q is the weighting matrix
- Ts is the sampling period;
- Tr is the time constant of the reference tra-

jectory;
- y∗ is the two-component set point [w∗

P ;3 w∗

M ;2]
T

- yk is the two-component measured value

In addition, the following constraints apply:

• box constraints on the manipulated vari-
ables: 0 ≤ qC ≤ qmax

C (saturation of the feed-
ing mechanism), 0 ≤ Rp ≤ Rpmax (minimum
and maximum displacement of the registers)

• linear constraints on the manipulated vari-
ables (limits to the slew rates): | qC(i + 1) −
qC(i) |≤ ∆qmax

C , | Rp(i + 1) − Rp(i) |≤
∆Rpmax

• nonlinear constraints: limits to the mill flow
rate value at the end of the prediction hori-
zon preventing high cement temperatures
(qM ((k + Hp)Ts) ≥ qmin

M ), mill overfilling
(qM ((k + Hp)Ts) ≤ qmax

M )

Table 1 contains the values of the most important
parameters mentioned above.

Ts 10 min qmax
C

50 t/h qmin
M

50 t/h
Tr 10 min Rpmax 100 qmax

M
140 t/h

Hu 1 ∆qmax
C

10 t/h Q I(2,2)

Hp 5 ∆Rpmax 50

Table 1. Parameter values of the NMPC

The minimization of the objective function (5) is
performed using the ”Optimization toolbox 2.0”
from Matlab 6.0. The solution of the partial differ-
ential equations is achieved using (a) a ”method
of lines” Matlab procedure for spatial differentia-
tion (b) standard solvers from Matlab 6.0 for the
integration in time of the differential equations.

5. ROBUSTNESS ANALYSIS AND MODEL
MISMATCH COMPENSATION

In the sequel, we will (1) study the effect of grind-
ing efficiency on steady-state characteristics , and,
in turn, on the performance of the NMPC (2)
evaluate systematically the impact of individual
changes in the parameters (sensitivity analysis)
(3) discuss two correction schemes, i.e., a simple
DMC-like scheme and a DMC-like scheme with
prior stabilization of the mill flow rate by an
internal proportional loop.
For illustration purposes, we consider a step
change in the set point y∗ from the steady-state

value [0.71 0.46]T (stable region) to [0.80 0.56]T

(stability limit).

5.1 Effect of grinding efficiency on steady-state
characteristics

Occurrences of model mismatch are obtained by
modifying the process specific rates of breakage
αmod

i = αproc
i · C (i = 1, 2); cases (a) (C = 0.9)

and (b) (C = 1.1) correspond to lower and higher
efficiency, respectively. The static characteristics
for the process and the two model occurrences are
represented in figure 4, circles indicate the two
corresponding operating points targeted by the
optimization algorithm.
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From the temporal evolution of the most relevant
variables (see figure 5), it can be deduced that:

• in case (a), the high gain existing between
Rp and wP ;3 allows the desired steady-state
value wP ;3 = 0.8 to be reached for the pro-
cess. On the other hand, the input flow rates
computed by the algorithm drive the process
to the operating point represented by a star
in figure 4 (wM ;2 = 0.498); so, NMPC leads
to the desired product fineness but to lower
production flow rate than expected, the dif-
ference increasing with the model mismatch;

• in case (b), the manipulated-variable val-
ues computed by the optimization algorithm
(particularly a too high input flow rate) lead
inevitably to process overfilling. As a result,
the two weight fractions, wP ;3 and wM ;2,
tend to zero.

5.2 NMPC sensitivity to individual parameter
inaccuracies

In the sequel, each parameter is modified by −10%
and +10% from the estimated value and figure 6
represents the resulting effect on the steady-state
characteristics. It is mostly noted that:

- variations in α2 affect substantially the be-
haviour of the model whereas those in α1 do



not (in fact, the lower values of α2 determine
the dominant time constants of the model);

- the parameters k and β are as relevant as α2;
- changes in the velocity u and, particularly,

the diffusion D have little influence on the
steady-state characteristics.
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Fig. 5. NMPC performance with model mismatch
(solid) : C = 0.9; (dashed) : C = 1.1;
(dotted): maximum value constraints
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(top figures), k and β (intermediate figures),
u and D (bottom figures); (dashed) −10%,
(dash-dotted) +10% on the parameter esti-
mate, respectively

5.3 Model mismatch compensation

5.3.1. DMC-like scheme In this scheme, the
mismatch at time tk between the process and the

model is viewed as an external, constant distur-
bance on the state vector all over the prediction
horizon. The disturbance dk is first estimated by
dk = xproc;k−xmod;k, then the reference trajectory
is adjusted by the corresponding constant value
over the prediction horizon. Figures 7 and 8 show
the following results when this correction is ap-
plied in cases (a) and (b) of model mismatch:

- case (a): the modified reference trajectories
(dotted lines) require the model to be run
in the unstable region where constraints on
the mill flow rate variable (140 t/h) become
active (see the evolution of the model predic-
tion in figure 8). This constraint is responsi-
ble for the limitation on the input flow rate
qC . The closed-loop process is stable but the
steady-state values (particularly wM ;2) are
not satisfactory;

- case (b): the modification of the reference
trajectory brings the targeted set point into
the stable region, so that the closed-loop
process is stable and no steady-state error
appears.
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Fig. 7. DMC-like compensation results; (solid):
C = 0.9, (dashed): C = 1.1

In conclusion, the DMC-like correction, which
considers the model inaccuracy as a disturbance,
guarantees feasibility and stability but does not
guarantee satisfactory performance, particularly
with respect to the steady-state error of wM ;2.

5.3.2. DMC-like scheme with prior stabilization
Two embedded schemes are used: (a) an inner
proportional loop controls the mill flow rate by
acting on the input flow rate and ensures stable
operation (b) the outer scheme is the NMPC itself
which uses the mill flow rate set point q∗M of the
inner loop instead of the input flow rate qC as
the second manipulated-variable component. The
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Fig. 8. DMC-like compensation results; (solid):
C = 0.9, (dashed): C = 1.1

capabilities of the NMPC are entirely devoted
to the performance achievement. Box constraints
apply on q∗M (0 and 200 t/h) and supplementary
nonlinear constraints apply on the absolute value
of qC , which is now an intermediate variable.
Figure 9 shows the results obtained when the cor-
rection is applied to cases (a) and (b). Both cases
demonstrate stability, satisfactory time responses
and negligible steady-state error.
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Fig. 9. DMC-like with prior stabilization; (solid):
C = 0.9, (dashed): C = 1.1

6. CONCLUSION

Based on a reduced-order model of a cement
grinding plant, a nonlinear model predictive con-
trol strategy is developed and analyzed. As a first
step, new control objectives are defined, which
are based on two weight fractions only: (a) the
fraction of fine particles in the product, which
is related to the compressive strength (b) the
fraction of intermediate-size particles at the mill
output, which is related to product maximization

or optimum grinding efficiency. One major ad-
vantage is that two-sieve measurements of these
variables could be achieved at low cost.
NMPC achieves these objectives by using the reg-
isters’ position and the input flow rate as manip-
ulated variables.
Robustness analysis leads to the following obser-
vations:

• model mismatch may lead to closed-loop in-
stability (for example when the model has
higher grinding efficiency); otherwise, steady-
state errors affect the mill output but not the
product fineness;

• not all the individual parameters have the
same impact; experiments should be designed
to accurately estimate grinding efficiency
and, particularly, the appearance and the dis-
appearance mechanisms of the intermediate-
size particles and the inhibition effect of the
material content;

• a DMC-like scheme cannot guarantee satis-
factory performance; however, when a prior
stabilization of the mill flow rate is achieved
(here with a simple proportional loop using
the input flow rate as a manipulated vari-
able), very satisfactory results are obtained
with DMC-like scheme in terms of stability
and steady-state error.
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