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Abstract:  In process plants with recycle streams some level control architectures 
are inoperable.  Their use leads to large excursions in manipulated and/or 
controlled variables and this behavior has been termed the snowball effect.  The 
snowball effect is a steady state phenomenon and it can be analyzed using steady 
state process models.  In this paper a steady state mixed integer nonlinear 
programming (MINLP) approach is used to analyze for large excursions in 
process variables.  This MINLP approach can be used to detect the likely 
occurrence of a snowball effect in a plant and to develop control architectures that 
can avoid this problem.  The optimization-based approach is illustrated on a three-
reactor three-distillation column plant taken from the literature. 

 
 
 
 

 
Introduction 

 
The design of plantwide control systems 
has received increasing attention in the last 
few years.  Tighter plant designs, due to 
such considerations as energy integration 
and reduced emissions, are leading to more 
challenging control problems.  Several 
authors have proposed approaches to the 
problem of configuring plantwide control 
systems.  These approaches range from 
those based on optimization1-3 to those that 
are heuristic in nature4.  In all plantwide 
control designs, it is necessary to control 
variables that are non-self regulating in 
nature.  The most common process 
example of such variables is liquid level in 
a vessel.  Buckley5 was the first to address 
the problem of controlling inventory in a 
plant.  If one considers only controlling 
liquid inventories, then controlling liquid 
levels can result in problems with other 
variables in the process.  These problems 

have been labeled as snowball effects by 
Luyben and co-workers4,6. 
 
Luyben and Luyben6 presented a control 
study of a three-reactor/three-distillation 
tower process that is shown in Fig. 1.  
Most control schemes for this plant were 
found to be inoperable, and these schemes 
exhibited the snowball effect.  As 
discussed by Luyben et.al.4 the snowball 
effect arises in systems with recycle flows 
when small changes in one variable result 
in extremely large changes in other 
process variables.  Their results indicate 
that in designing a plantwide control 
system, liquid level loops need to be 
configured carefully so that a snowball 
effect does not occur.  Luyben et.al.4 point 
out that the snowball effect is essentially a 
steady state phenomenon.  Thus, whether 
or not it is likely to occur can be analyzed 
using a steady state model that includes 
integrating variables.  This paper proposes 



an approach, using mixed integer 
nonlinear programming (MINLP) on 
steady state process models coupled with a 
model for the integrating variables, that 
can detect whether the snowball effect is 
likely to occur in a process.  Once a 
potential snowball problem is detected, 
then a second MINLP optimization can be 
solved to determine which additional 
variables need to be controlled to avoid the 
snowball problem.  Using the results of the 
optimization one can systematically select 
level control systems together with any 
additional variables that need to be 
controlled to avoid snowball effects. 
 
This paper is organized as follows.  First 
the development of the steady state model 
used is discussed.  Next the MINLP 
optimization approach is discussed and 
applied to the three-reactor/three-
distillation tower process6.  It is shown that 
snowball effects will occur in this plant.  
Then, a second optimization problem is 
proposed to determine if additional 
variables can be controlled to avoid 
snowball effects.  Finally conclusions are 
presented.  
 

Development of Steady State Model 
 
The steady state model used for the 
snowball analysis consists of two parts. 
The measurement vector, y, is separated 
into yN, for non-integrating measurements, 
and yI for the integrating measurements.  
For yN a typical nonlinear steady state 
process model is used: 
 
 0 = f (x,u,dj )    (1) 
 
 yN = g(x,u,dj )    (2) 
 
where x is the state vector, u is the vector 
of manipulated variables and dj is the 
disturbance being considered.  In 
essentially all cases the yI measurements 
are not included in a steady state model.  
Here they are included and it is assumed 
that a linearized model for their rate of 

change is acceptable for analyzing 
snowball effects.  This model can be 
developed from a linearized dynamic 
model using the approach published by 
Arkun and Downs7.  Alternatively it can 
be approximated as done by Mc Avoy and 
Miller8.  The model for yI has the form: 
 
 ,I I j Iy K u d= +   (3) 
 
where dj,I is the effect of the disturbance 
on the rate of change of the integrating 
measurements.   
 
In order to use Eqns. 1 to 3 to analyze for 
snowball effects, the plant under 
consideration is assumed to have only 
integrating poles, and no right half plane 
poles.  If the plant has right half plane 
poles then it must be stabilized to use the 
approach given below.  The problem that 
is solved involves controlling at least all of 
the integrating variables in the plant.  The 
approach taken is similar to that presented 
by Mc Avoy3 for synthesizing plantwide 
control systems.  Control of yI requires 
that: 
 
 , 0I I j Iy K u d= + =    (4) 
 
Equation 4 assumes steady state control in 
which 0Iy = , and in the optimization 
approach discussed below u is assumed to 
be a valve movement.   In analyzing for 
potential snowball effects all potential 
disturbances need to be considered, one at 
a time. 
 

Optimization-Based Analysis of the 
Snowball Effect 

 
The optimization problem solved to detect 
the snowball effect involves determining 
which manipulated u's should be used to 
control the yI's for a given disturbance, and 
whether any product measurements exceed 
reasonable bounds due to the control effort 
applied.  One measure of how good a 
particular level control architecture is can 



be taken to be how much the manipulated 
valves it uses have to move from their 
original steady state positions when dj 
occurs.  A system that requires large 
changes in valve positions is deemed 
inferior to one requiring smaller changes.  
In formulating an objective function for 
detecting the snowball effect, both positive 
and negative changes in valve movement 
are penalized.  To account for both 
changes, u is re-written in terms of ν+ and 
ν- as: 
 
 u = v+ − v−    (5) 
 
where the elements of ν+ and ν- are all 
positive.  To emphasize that valve 
movements are being considered, the 
symbol ν is used in place of u.  It is 
assumed that the ν‘s all have the same 
units, e.g. between 0 and 100%.  Then, an 
optimization problem to detect the 
snowball effect can be formulated as 
shown in Eqn. 6.  In Eqn. 6 vk, max

+  and 
vk, max
−  are the maximum changes permitted 

for the valve movements away from their 
steady state values, ∆ymin  and ∆ymax  are the 
minimum and maximum allowable 
changes in the product measurements, κ is 
equal to the number of valves in the plant, 
and M is equal to the number of 
integrating measurements.  The objective 
function is the sum of the absolute values 
of the movements of all of the valves used 
for controlling the integrating variables.  
The first equality constraint involves 
control of the integrating variables, Eqn. 4.  
The second equality constraint enforces 
steady state.  The first inequality 
constraints involve product measurements.  
These constraints enforce reasonable limits 
on the excursions of these measurements 
after an upset.  How to choose these limits 
is discussed below. The next 2 constraints 
deal with saturation of the manipulated 
variables.  If a valve is selected 
( zk

+ ,zk
− ≠ 0), then it is constrained not to 

saturate either open or closed.   
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It can be noted that in Eqn. 6 the integer 
variables appear in a linear manner.  The 
solution of Eqn. 6 gives the M 
manipulated variables that have to move 
the least in order to keep the yI 
measurements at their setpoints.  If Eqn. 6 
has a feasible solution then one can 
conclude that there is a control structure 
for the integrating variables that does not 
have a snowball problem for the plant 
under consideration.  Integer cuts can be 
used to generate additional feasible control 
architectures for the integrating variables 
by ruling out earlier solutions.  The 
application of Eqn. 6 to a plant shown in 
Fig. 1 is discussed next. 
 

Application of Optimization 
Methodology 

 
For the process shown in Fig. 1, there are 9 
integrating liquid level measurements, 3 
each for the reactors, reflux accumulators, 
and reboilers.  The steady state considered 
here is similar to that given by Luyben and 
Luyben6 in their Table 12.  However, their 
flows do not material balance exactly, and 
their plant model is not exactly at steady 
state.  Flows were changed slightly from 
their results so that the plant started at 
steady state.  Since stream densities are 



independent of composition, it is 
straightforward to develop Eqn. 3 for the 
nine integrating levels in this process.  For 
example for reactor 1 the following model 
can be used: 
 

1 1 1 3 1OAA cl F D D F= + + −  (7) 
 
where A1 is the cross sectional area, c is 
the molal density and the right hand side 
consists of the various flows into and out 
of the reactor.  Since  Ýl 1  is set to 0, one can 
use ±1 for the gains in the first row of Eqn. 
3, i.e. the 1/A1c in each gain can be 
factored out.  Then these gains can be 
scaled in terms of % flow.  The product 
measurements consist of the mole fraction 
of C in the distillate from tower 2, y2C,  
and the mole fraction of F in the bottoms 
from tower 3, x3F.  There are potentially 19 
manipulated flows in the plant, but 
depending on the disturbance not all can 
be used.  Changes in the fresh feed of A 
were used as a disturbance by Luyben and 
Luyben6, and its elimination results in 18 
manipulated variables.  Three 
disturbances, given in reference6, are 
considered here, and they are: 1. a 20% 
step change in feed composition of A; 2. a 
50% step change in the specific reaction 
rate in the first reactor; and 3. a 20% step 
change in the feed flow of A.  Since 
disturbances 1 and 2 do not involve flow 
changes, they are simpler to analyze than 
disturbance 3.  For disturbances 1 and 2 
control of yI does not require any changes 
in u.  All the manipulated variables, except 
the makeup of B and D (fod and fob), are 
constrained to be within 0 and twice their 
steady state values.  The two makeup 
streams are constrained to be within ±50.  
Product mole fractions are constrained to 
be within ±.02.  The reason for the 
somewhat loose specification on these 
bounds is that level control only cannot be 
expected to yield tight control of product 
composition.  Rather what one is looking 
for is very large excursions in these 
variables which in turn will cause a 

snowball effect when one attempts to 
tightly control them.  Note that one could 
add other variables to be constrained in the 
formulation such as reactor compositions.  
The second optimization problem 
discussed below does consider tighter 
control of the product variables.   
 
For disturbances 1 and 3 no feasible 
solution to Eqn. 6 is found.  Table 1 gives 
results for all three disturbances where it 
can be seen that extremely large changes 
in both the distillate composition in tower 
2 and the bottoms composition in tower 
3occur for disturbances 1 and 3.  The 
results for disturbance 3 are for a particular 
level configuration, but they are typical of 
what is calculated for other level schemes.  
By contrast disturbance 2 yields a feasible 
solution to Eqn. 6.  The compositions of A 
and B in reactor 1 change significantly for 
disturbance 2 since it involves a 50% 
increase in the kinetic constant for reactor 
1, but the product compositions are hardly 
affected.  Actually it is not necessary to 
analyze all disturbances, since lack of 
feasibility for any disturbance indicates a 
potential snowball effect.  For the Luyben 
and Luyben plant one can conclude that a 
snowball problem is likely.  The 
optimization results indicate that one could 
not operate the plant by controlling only 
the 9 liquid levels when disturbance 1 or 3 
occurs.  If the plant can be operated in 
these cases, additional variables need to be 
controlled.  To determine whether the 
snowball problem can be avoided a second 
optimization problem, discussed next, can 
be solved. 
 

Additional Optimization Problem 
 
To determine if the snowball problem can 
be avoided, additional integer variables, ζ, 
can be added to Eqn. 6 as follows: 
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     (8) 
 
Eqn. 8 allows for additional non-
integrating measurements, y*, to be 
controlled in order to achieve feasibility.  
The y* measurements include product 
measurements as well as other key 
measurements such as reactor 
compositions.  If an additional 
measurement is chosen, then its ζj is 1.  If 
v+ and v- are scaled in the range 0-100, 
then choosing m to be large, e.g. 1000, 
forces the optimization to limit the number 
of additional measurements that are 
controlled for feasibility.  For 
measurements of product variables very 
tight constraints can be used for ∆ymin

* and 
∆ymax

* since these constraints reflect how 
one would like the plant to operate.  One 
could even specify that certain 
measurements need to be controlled 
exactly to steady state.  Some engineering 
judgement is involved in the specification 
of bounds on the process measurements. 
Eqn. 8 is a difficult MINLP problem 
whose solution is currently under 
investigation.  Since Eqn. 8 involves a 
larger number of integer variables than 
Eqn. 6 and some of these integer variables 
appear in the objective function its is more 
difficult to solve than Eqn. 6 is.  The 

solution of Eqn. 8 yields plantwide 
architectures that avoid snowball 
problems.   
 
Some preliminary results on the solution 
of Eqn. 8 have been calculated.  If the 
fresh feed of A, FOA, is a disturbance then 
it appears that no feasible solution of Eqn. 
8 can be found.  When FOA changes too 
many light components escape in the 
bottom of tower 1 and these components 
exit in the distillate from tower 2, lowering 
the composition of C in this stream.  Two 
feasible solutions of Eqn. 8 have been 
found and one is the same as scheme 1c 
presented by Luyben and Luyben.  The 
second solution is similar, but it does not 
adhere to the rule of fixing a flow in every 
recycle loop. Results for the application of 
Eqn. 8 to the Luyben and Luyben process 
will be presented at the conference. 

 
Conclusions 

 
An optimization-based approach to 
detecting the snowball effect in plantwide 
control designs has been presented.  The 
approach makes use of a steady state 
model and it involves solving a MINLP 
problem.  The results of this problem 
indicated whether snowball effects are 
likely to occur in a particular plant.  If 
such problems are likely, then one can 
solve a second problem to determine 
which additional variables need to be 
controlled to avoid the snowball effect.  
Preliminary results on a three-
reactor/three-distillation tower process 
have been presented.  The optimization-
based approach holds promise as a 
systematic method for determining 
plantwide control architectures that avoid 
snowball problems. 
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Table 1 Results for Solving Equation 6 
Case Mol. Fract. 

C Tower-2 
Mol. Fract. F 

Tower-3 
Base 0.9713 0.9980 

disturbance 1 0.7762 0.8115 
disturbance 2 0.9716 0.9980 
disturbance 3 0.2398 0.3798 
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          Figure 1  Luyben and Luyben Plant 


