
Globally Convergent Method for Optimal
Control of Hybrid Dynamical Systems

Saif R. Kazi ∗ Mandar Thombre ∗∗ Lorenz Biegler ∗∗∗

∗ T-5 Applied Mathematics and Plasma Physics, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA (e-mail: skazi@lanl.gov)
∗∗ Technological, Digital and Innovation, Equinor, Oslo, Norway

(e-mail: mnth@equinor.com)
∗∗∗Department of Chemical Engineering, Carnegie Mellon University,

Pittsburgh, PA 15213, USA (e-mail: lb01@andrew.cmu.edu)

Abstract: Optimal control of a Hybrid Dynamical System is a difficult problem because of
unknown non-differentiable points or switches in the solution of discontinuous ODEs. The
optimal control problem for such hybrid dynamical system can be reformulated into a dynamic
complementarity system (DCS) problem. In this paper, a moving finite element with switch
detection method is implemented to ensure higher order accuracy for numerical discretization
schemes such as Implicit Runge Kutta (IRK) or Orthogonal Collocation method. The DCS
problem is solved using a globally convergent nonlinear complementarity solver based on active
set strategy to avoid spurious stationary solutions.

Keywords: Differential Complementarity System, Hybrid Dynamical Systems,
Complementarity Constraints

1. INTRODUCTION

Hybrid Dynamical Systems are systems where the state
dynamics are both continuous and discrete depending on
the value of the state solution. They are commonly found
in robotics engineering applications (Patel et al. (2019);
Raghunathan et al. (2022)) and chemical process control
problems (Baumrucker and Biegler (2009); Raghunathan
et al. (2004); Moudgalya and Jaguste (2001)).

A typical Hybrid Dynamical System can be represented as
ODEs with discontinuous right-hand side as:

ẋ = fi(x(t), u(t)), if x(t) ∈ Ri ⊂ Rnx , i ∈ F = {1, ..., nf}
(1)

where Ri denote the regions (disjoint sets) in the state
space and fi(.) are corresponding smooth functions repre-
senting the state dynamics in them. nf is the number of
piecewise functions and u(t) denotes the external control
input in the system.

Hybrid Dynamical Systems were extensively studied by
Filippov (1960), who proposed a formulation using the
convex combination to transform (1) as

ẋ =
∑
i∈F

νifi(x, u),
∑
i∈F

νi = 1, νi ≥ 0, νi = 0 if x(t) /∈ Ri

(2)
νi are also called convexification variables or Filippov mul-
tipliers. The convexificaton allows to write the piecewise
formulation (1) with disjoint sets into a continuous alge-
braic form (2) where the system dynamics at the boundary
region {x ∈ Ri ∩ Rj} is well defined, i.e. ẋ = νifi + νjfj ,
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νi+νj = 1, which is more suitable for continuous optimiza-
tion solvers. Stewart (1990) presented an extension with
indicator functions (gi(x)) for the disjoint sets (Ri):

Ri = {x ∈ Rnx |gi(x) < min
j∈F, 6=i

gj(x)} (3)

Under mild assumptions such as g(.) and ∇g(.) are Lip-
schitz continuous and sufficiently smooth, the Fillipov
system can be reformulated as:

ẋ =
∑
i∈F

νifi(x, u) (4a)

where the Filippov multipliers are algebraic variables de-
termined by the following parametric linear program (LP)

LP(x) : ν(x) = arg min
ν
g(x)T ν s.t.

∑
i∈F

νi = 1, νi ≥ 0

(4b)

Here, the parametric LP solution (ν(x)) is dependent on
the state variable (x), which itself is a primal variable
in the optimal control problem. The linear program (4b)
needs to be reformulated using its KKT conditions for the
optimal control problem to be represented as a single-
level optimization problem. Thus, the hybrid dynamic
constraints in the problem can be rewritten into a dynamic
complementarity system (DCS) as follows:

ẋ =
∑
i∈F

νifi(x, u), (5a)

g(x)− λ− µe = 0, (5b)∑
i∈F

νi = 1, 0 ≤ ν ⊥ λ ≥ 0 (5c)

where g(x) = [g1(x), ...gnf (x)]T , e = [1, ....1]T denote the
indicator functions and the unit vector, whereas ν, λ ∈

12th IFAC International Symposium on
Advanced Control of Chemical Processes
July 14-17, 2024. Toronto, Canada

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative Commons License CC-
BY-NC-ND.

871



Rnf , µ ∈ R denote the complementing variables and
Lagrange multipliers, respectively.

The complementarity operator (⊥) for two vectors ν and
λ denotes the following relation:

0 ≤ ν ⊥ λ ≥ 0⇐⇒ ν, λ ≥ 0, νTλ = 0 (6)

Since both vectors are non-negative, the relation is equiv-
alent to νiλi = 0 or min(λi, νi) = 0 ∀i ∈ F

2. OPTIMAL CONTROL OF DYNAMIC
COMPLEMENTARITY PROBLEM

The optimal control problem for hybrid dynamic systems
is described as an infinite dimensional optimization prob-
lem with complementarity constraints as shown here:

min
u

Φ(x(tf )) +

∫ tf

0

Ψ(x, u)dt (7a)

s.t. ẋ =
∑
i∈F

νifi(x, u), x(0) = x0 (7b)

g(x)− λ− µe = 0, (7c)∑
i∈F

νi = 1, 0 ≤ ν ⊥ λ ≥ 0, t ∈ [0, tf ] (7d)

The objective function can consist of both terminal cost
function (Φ) and state cost function (Ψ) depending on
the type of application. The above formulation can also
be thought of as a differential-algebraic equation (DAE)
based optimization problem where the complementarity
constraints are reformulated into algebraic inequalities (or
equalities). There are two ways to solve DAE optimization
problem: 1) optimize - then - discretize and 2) discretize
- then - optimize, where the former solves the first order
Euler-Lagrange conditions, which results in a system of
coupled forward backward adjoint boundary value problem
(BVP). This method is difficult to implement for general
optimal control problems and doesn’t provide an optimal-
ity guarantee for the solution. On the other hand, dis-
cretize - then - optimize is a more flexible approach where
the DAE based constraints are discretized to nonlinear
algebraic constraints and solved as a large scale nonlinear
program (NLP) using standard NLP solvers.

2.1 Discretization

Numerical discretization schemes such as Implicit Runge
Kutta (IRK) methods or Orthogonal Collocation on Finite
Elements (OCFE) can be used to discretize differential
equations with high accuracy solutions. These methods
use Taylor series approximation of the solution and in-
ternal stages or collocation points inside each time finite
element [ti, ti+1] to reformulate the differential equations
into discretized equations.

For brevity we define F = [f1, ...fnf ] and rewrite (7b) &

(7d) as ẋ = F (x, u)ν, and eT ν = 1

For i = 0, ..., N − 1, k = 1, ...,K

xi+1,0 = xi,0 + h

K∑
k=1

bkFi,kνi,k, (8a)

xi,k = xi,0 + h

K∑
k=1

ai,kFi,kνi,k, (8b)

g(xi,k)− λi,k − µi,ke = 0, (8c)

eT νi,k = 1, x0,0 = x0, (8d)

0 ≤ νi,k ⊥ λi,k ≥ 0 (8e)

where N is number of finite elements and K is the
number of internal collocation points or stages. ai,k and
bk are constant parameters depending on the discretization
scheme. h refers to the uniform step size equal to

tf
N in this

case.

2.2 Non-uniform Step Size

For standard IRK discretization scheme, the step size h
typically is chosen constant. The standard assumption in
numerical methods such as IRK or OCFE is the smooth-
ness of the solution inside the time interval finite elements.
But, the solution of the hybrid dynamic system is known to
be non-smooth at unknown time points i.e. switch points.
To ensure that the solution xi,k is only non-smooth at
the boundary of the finite element and satisfy smoothness
property required for discretization schemes, Baumrucker
and Biegler (2009) proposed using a non-uniform step
size hi as a free variable in the optimization problem.
Moreover, they also reformulated the complementarity
constraint using cross-complementarity constraints such
that the active-set of the constraint only changes at the
finite element boundary.

For i = 0, ..., N − 1, k = 1, ...,K

xi+1,0 = xi,0 + hi

K∑
k=1

bkFi,kνi,k, (9a)

xi,k = xi,0 + hi

K∑
k=1

ai,kFi,kνi,k, (9b)

N−1∑
i=0

hi = tf , h ≤ hi ≤ h̄, (9c)

g(xi,k)− λi,k − µi,ke = 0, (9d)

eT νi,k = 1, x0,0 = x0, (9e)

0 ≤ νi,k ⊥
K∑
k=1

λi,k ≥ 0 (9f)

The bounds on the step size ensured that the element
boundaries don’t coincide with each other and the problem
is well-conditioned.

2.3 Step Equilibration

Although, the above reformulation ensures that the
switching points in the solution coincide with the ele-
ment boundaries, the number of degrees of freedom is
more than in the original problem. This is because of the
additional variables hi and only one additional equality
constraint (9c) in the formulation. To ensure that the
number of degrees of freedom is consistent and the state
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solution is unique, Nurkanović et al. (2022) proposed a
step-equilibration approach where they added N − 1 con-
straints using an indicator function (η) which is only non-
zero when there is an active-set change in complementarity
constraint.

We define the following auxiliary variables λ̂i and ν̂i as:

λ̂i =

K∑
k=1

λi,k, ν̂i =

K∑
k=1

νi,k (10a)

Then, we use the Hadamard product of the forward
and backward sum of the complementarity variables to
determine if it has switched from positive to zero (or vice-
versa).

πλi = λ̂i−1 � λ̂i, πνi = ν̂i−1 � ν̂i (10b)

where � represents pointwise or element-wise product of
vectors. Here, at least πλi or πνi is zero at each element,
and both are exactly zero at the element corresponding to
the switching point. The sum of the two vectors is a good
candidate for the indicator function

τi = πλi + πνi , ηi =

nτ∏
j=1

τ
(j)
i (10c)

Since the indicator variable ηi is non-negative and only
zero at the switching element, the relation between step
size and indicator variable can be represented by the
following complementarity constraints.

0 ≤ (hi − hi+1)2 ⊥ ηi ≥ 0, i = 0, . . . , N − 2 (10d)

The finite element with switch detection (FESD) al-
gorithm was implemented as a package NOSNOC in
Nurkanović and Diehl (2022).

3. GLOBAL CONVERGENT ALGORITHM

The large NLP with complementarity constraints is called
a mathematical program with equilibrium constraints
(MPEC), which is a non-smooth optimization problem
given by:

min
u

Φ(xN ) +

N−1∑
i=0

K∑
i=1

wi,kΨ(xi,k, ui,k) (11a)

s.t. Eq.(9) − Discretized Equations, (11b)

Eq.(10) − Step Equilibration (11c)

where wi,k are the quadrature weight parameters that
approximate the integration of the state cost function.

For simplicity, we rewrite the large scale MPEC (11) in a
more general form:

min
x

fobj(x) (12a)

s.t. gI(x) ≤ 0, gE(x) = 0, (12b)

0 ≤ G(x) ⊥ H(x) ≥ 0 (12c)

where the complementarity constraints (12d) represent the
cross-complementarity constraints (9f) and step equilibra-
tion constraints (10d).

3.1 Relaxation Approach

Since the MPEC (12) is inherently non-smooth, it is
not possible to solve them in their original form using
standard NLP solvers. Furthermore, any feasible point of

MPEC does not satisfy the basic constraint qualifications
(LICQ and MFCQ) for KKT based solvers. Therefore,
most methods reformulate and relax the complementarity
constraint into an inequality (Reg(ε), Scheel and Scholtes
(2000)) or equality (RegEq(ε)) based constraints as:

G(x), H(x) ≥ 0, G(x)TH(x) ≤ ε or Gi(x)Hi(x) = ε
(13)

Here ε > 0 is a positive relaxation parameter which allows
the MPEC to be solved using NLP solvers. Typically
MPECs are solved by sequentially solving the ε relaxed
NLP problem with decreasing values of ε, by using the
solution of the previous run as the initial guess for the NLP
solver. Ralph and Wright (2004); Hoheisel et al. (2013)
showed that the solutions of the relaxed NLPs in the neigh-
borhood of the solution converges to a strong stationary
point under certain conditions. Although these methods
have local convergence properties near the solution point,
they are not globally convergent and convergence to the
correct solution depends on the starting guess to the NLP
solver. As an example, consider the problem from Leyffer
and Munson (2007):

min (x− 1)2 + (y − 1)2 s.t. 0 ≤ x ⊥ y ≥ 0 (14a)

If the above MPEC is solved using Reg(ε) by relaxing
the complementarity constraint (14b) by the following
inequality:

x, y ≥ 0, xT y ≤ ε (15)

then the KKT solution for the regularized problem is
(
√
ε,
√
ε) which will converge to the spurious solution at

origin as ε→ 0 (see Fig.1). The relaxation only converges
to the right solution (1, 0) or (0, 1) if the initial guess is
close to the solution.

3.2 Penalty Formulation

Other methods to solve MPEC include the penalty
based formulation where the complementarity constraint
is added as a penalty term multiplied by a parameter (ρ)
in the objective function.

min
x

fobj(x) + ρ(G(x)TH(x)) (16a)

s.t. gI(x) ≤ 0, gE(x) = 0, (16b)

G(x) ≥ 0, H(x) ≥ 0 (16c)

Hu and Ralph (2004) showed the convergence of the
penalty methods if the penalty parameter was more than
a critical value (ρ ≥ ρc) which depends on the value of
the MPCC multipliers. Leyffer et al. (2006) proposed an
update rule for the penalty parameter for global conver-
gence of interior point methods for MPECs. Both results
are based on strong assumptions of MPEC-LICQ and
asymptotic weak non-degeneracy which are violated in
most cases. Furthermore, the penalty formulation NLP
(16) becomes ill-conditioned as the value of ρ increases.

3.3 Hybrid Active-Set Strategy

Another method for global convergence of MPECs, pro-
posed by Leyffer and Munson (2007), sequentially solves
a linearized MPEC (LPEC) around a feasible point (xk)
with an additional trust-region constraint.
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min
d
∇fobj(xk)T d (17a)

s.t. ∇gI(xk)T d ≤ 0, ∇gE(xk)T d = 0, (17b)

0 ≤ G(xk) +∇G(xk)T d ⊥ H(xk) +∇H(xk)T d ≥ 0,
(17c)

||d|| ≤ ∆k (17d)

where d represents the descent direction vector. Only the
local optimal solution x∗ satisfies the d = 0 condition of
zero descent direction. The algorithm updates the iterate
xk in the descent direction vector until it reaches some
tolerance value (||d|| ≤ εtol). They also used a filter
based on the complementarity violation to update the
trust region radius (∆k), and showed that their method
is globally convergent to the correct local optimal solution
as the trust region radius decreases to zero asymptotically
(∆k → 0) under milder assumptions such as MPEC-
MFCQ.

Although the method is globally convergent with nice
theoretical properties, it still requires to solve a LPEC
which is an NP-hard problem. The LPEC can also be
formulated into a mixed integer linear program (MILP)
using big-M formulation to transform the complementarity
constraints.

0 ≤ ∇G(xk)T d ≤My, y ∈ {0, 1}|G| (18a)

0 ≤ ∇H(xk)T d ≤M(e− y), (18b)

where e = [1, ..., 1]T , M > 0 is the big-M parameter
and y are the integer variables used to reformulate the
complementarity constraint.

A significant drawback of this formulation is that the
number of integer variables is equal to the number of com-
plementarity constraints (|G| = |H| = q). In the worst case
scenario, this results in solving 2q linear programs (LPs)
which is undesirable for large scale MPECs associated with
hybrid dynamical systems. To overcome this drawback, we
propose a hybrid active-set strategy which combines the
faster convergence rate of the relaxation schemes and the
robustness of the LPEC algorithm.

First, we solve the regularized problem Reg(ε) with an
initial point x0 and positive relaxation parameter ε. Then,
we identify the disjoint active-sets of the complementarity
constraints at the solution (x̂). Unlike the penalty formu-
lation, the error bounds between the regularized solution
and the local optimal solution are bounded (‖x̂ − x∗‖ =
O(εp)) which makes the calculation of active sets using
regularized solution more accurate.

Iα = {i, Gi(x̂) = O(ε), Hi(x̂) > O(ε)}, (19a)

Iβ = {i, Gi(x̂) > O(ε), Hi(x̂) = O(ε)}, (19b)

Iγ = {i, Gi(x̂) = O(ε), Hi(x̂) = O(ε)} (19c)

Second, we formulate the MILP formulation of the MPEC
at the solution (x̂). Instead of defining integer variables
of each complementarity formulation, we reduce the set of
integer variables by only defining them for the bi-active
set (Iγ). The reduced form of the MILP representation is
given as:

∇Gi(xk)T d = 0 i ∈ Iα, ∇Hi(xk)T d = 0 i ∈ Iβ (20a)

0 ≤ ∇Gi(xk)T d ≤Myi, i ∈ Iγ (20b)

0 ≤ ∇Hi(xk)T d ≤M(1− yi), yi ∈ {0, 1}, i ∈ Iγ (20c)

This reduces the number of integer variables from |G| to
Iγ . In most cases, the bi-active set size is much smaller
than the original number of complementarities. Thus, the
reduced MILP reformulation is easier to solve while con-
serving the robustness of the global convergence property.

We also note that if the bi-active set is empty, then the
MILP reduces to a single LP to check for optimality
condition at the solution (x̂). The full hybrid active-set
strategy algorithm is presented here.

Algorithm 1 Hybrid Active-Set Strategy

Given x0, ε and εtol
while ε ≥ εtol do

Solve Reg(εk) with xk as the initial guess
Calculate the active-set at the solution (x̂) using (19)
if Iγ 6= ∅ then

Solve the MILP (17) with the reduced form (20)
xk+1 = xk + αkd

else
xk+1 = x̂

end if
εk = εk/Q
k = k+1

end while

Here αk ∈ (0, 1] is a step-length parameter, determined by
a line search. Q > 1 is the decreasing ratio parameter for
ε, used as a constant hyperparameter.

We revisit the toy example from previous subsection to
present the efficacy of the proposed strategy.

Fig. 1. Iteration trajectory with Algorithm 1

As can be seen in Fig.1, the proposed strategy converges to
the correct solution of (1, 0) even when the initial guess is
at origin. We observe that although the NLP step (Reg(ε)
outputs the (

√
ε,
√
ε) initially, the MILP step pushes it

away from the spurious solution and after three iterations,
the point is close enough for the NLP relaxation problem
to reach the optimal point at (1, 0).

Hybrid active-set strategies have been proposed earlier by
Fukushima and Tseng (2002); Lin and Fukushima (2006)
but they didn’t use a LPEC or MILP formulation to verify
optimality of the solution. Rather, they verify the non-
negativity of the MPEC multipliers for each complemen-
tarity constraint, which can be computationally expensive
for large MPEC problems.
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Fig. 2. Results for Signum Problem

4. RESULTS

In this section, we implement the hybrid active-set strat-
egy to dynamic complementarity problems derived from
hybrid dynamic control problems. We used Julia 1.7 to
model the problems using the Symbolics package library
and used JuMP as the optimization modeling language.
The regularized problems are solved in the nonlinear inte-
rior point solver IPOPT (Wächter and Biegler, 2006) and
the HiGHS solver (Huangfu and Hall, 2018) is used to solve
the MILP formulation.

4.1 Signum Problem

The signum problem is a commonly used example for
hybrid dynamic systems.

min
x

φ(x(tf )), s.t. ẋ = 2− sgn(x), x(0) = −2, t ∈ [0, 2]

(21a)

Although the problem has zero degrees of freedom, the
problem is formulated as an optimization problem for
illustrative purposes. The sgn(x) is a piecewise function
described as:

sgn(x) =


−1 x < 0,

[−1, 1] x = 0,

1 x > 0

(21b)

The piecewise formulation is reformulated as a DCS (5)
using the complementarity constraints as:

ẋ = 3ν1 + ν2, (21c)

x− λ1 − µ = 0, (21d)

− x− λ2 − µ = 0, (21e)

ν1 + ν2 = 1, 0 ≤ νi ⊥ λi ≥ 0, i = 1, 2 (21f)

We can substitute ν2 = 1 − ν1 and subtract (21f) from
(21f) to reduce the system as:

ẋ = 1 + 2ν1, (21g)

2x− λ1 + λ2 = 0, (21h)

0 ≤ ν1 ⊥ λ1 ≥ 0, 0 ≤ 1− ν1 ⊥ λ2 ≥ 0 (21i)

The dynamic constraints are discretized using the 4th
order IRK discretization with N = 10 finite elements. The
plot in Fig.2 shows the profile of the state solution (x) and
the switching variable (ν1). As can be seen in the figure,
the switching time ts = 2/3 is correctly determined by the
solver and ensures that the switch occurs at the element
boundary.

4.2 Ideal Gas-Liquid Closed System

Finally, we consider the ideal-gas liquid tank system from
Moudgalya and Ryali (2001). In this example, there is

a closed tank with one feed inlet and one outlet with a
control valve that regulates the pressure inside the vessel
as shown in Fig.3.

Fig. 3. An ideal gas-liquid system

The feed is a mixture of liquid (FL) and ideal gas (FG)
and the outlet is either liquid (L) or gas (G) depending on
whether the liquid level is above or below the outlet tube
opening (Vs). The modeling assumptions are:

• The gas and the liquid do not react
• The liquid has negligible vapor pressure
• The valve dynamics are ignored
• The flow rate through the valve is proportional to the

difference of tank and outlet pressure
• The temperature, feed flow rates, outlet pressure and

the valve opening are kept constant.

The dynamics of the system are described by the following
set of differential equations.

Liquid model: (ML

ρL
> Vs) Gas model: (ML

ρL
< Vs)

dMG

dt
= FG,

dMG

dt
= FG −G, (22a)

dML

dt
= FL − L,

dML

dt
= FL, (22b)

MG
RT

P
+
ML

ρL
= V, (22c)

L = fL(P − Pout) G = fG(P − Pout) (22d)

The rate of liquid (ML) and vapor holdup (MG) vary
according to the conservation-based differential equations
(22a) and (22b). The total volume (V ) and the tank
pressure (P ) are related to the ideal gas equation and
liquid volume (22c). The liquid and vapor outlet flows are
related as a function of (P −Pout). The system parameter
values in this example are listed in Table 1.

We reformulate the above dynamic system into a DCS
using complementarity constraints as:

dMG

dt
= FGν + (FG −G)(1− ν), (23a)

dML

dt
= (FL − L)ν + FL(1− ν), (23b)

ML

ρL
− Vs = s1 − s2, (23c)

0 ≤ 1− ν ⊥ s1 ≥ 0, 0 ≤ ν ⊥ s2 ≥ 0, (23d)
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Here s1 and s2 are positive slack variables which denote
the positive and negative part of the switching variable
(ML

ρL
− Vs) respectively.

Parameters Value

FL, FG(mol/sec) 2.5, 0.1
V, Vs(litres) 10, 5

T (K) 300
Pout(atm) 1
ρL(mol/l) 50
fL, fG 0.1

Table 1. Parameter values in Ideal Gas-Liquid
Closed System

The initial conditions for the state variables are specified
as: P0 = 35atm, ML0

= 260mol, MG0
= 6.83mol,

L0 = G0 = 0.25mol. Similar to the first example, the
dynamic constraints are discretized with N = 100 finite
elements and 4th order IRK discretization scheme for a
time horizon tf = 20s. The results from the optimization
are plotted in the following figures in Fig.4 and 5. The
switching time or point in this case (ts = 9.37s) can be
clearly seen in both the plots. Initially, the system only
has liquid exit as the liquid holdup is higher than the set
point (Vs), the switch happens when the liquid holdup
(ML = 250,ML/ρL = 5.0) goes below the set volume (Vs)
and gas starts coming out from the outlet reducing the
tank pressure as shown in Figure 5. The plots clearly show
that our method is able to identify the switching point in
the hybrid dynamics and adapt the time step sizes (hi)
such that the switch time ts occurs at the boundary of an
element.

Fig. 4. Liquid holdup in the tank

Fig. 5. Pressure profile inside the tank

5. CONCLUSION

This study presents a framework to solve hybrid dynamics
as a dynamic complementarity system (DCS) problem.

Here complementarity constraints are used to determine
moving finite elements with switch detection based con-
straints. The large scale complementarity constraint prob-
lem is solved using the hybrid active-set strategy to ensure
global convergence to the local optimal solution. Two
examples demonstrate that the proposed method is able
to locate accurately the non-smoothness of the solution.
In future work, we will use our algorithm to solve different
types of hybrid dynamics problem, including state jump
discontinuities and sliding mode control for multiple types
of application problems.
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Wächter, A. and Biegler, L.T. (2006) Mathematical pro-

gramming, 106, 25–57.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

876


