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Abstract:
Alarm systems in industrial process control are critical for ensuring safety and efficiency, alerting
operators to potential process deviations or failures. This paper introduces a novel methodology
for the real-time optimization of alarm systems, particularly for distributional shifts in the process
variables. Our approach is divided into two phases: the design phase, which uses historical data
to establish key performance indices such as missed alarm rate and false alarm rate; and the
application phase, which adapts to real-time data with initially unknown statistical properties.
The case study on the process variable demonstrates the effectiveness of our method in detecting
distributional shifts and enhancing alarm system performance at runtime. This study offers
a significant contribution to the field of industrial alarm management, providing a scalable
framework for dynamic environments.
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1. INTRODUCTION

The landscape of industrial monitoring has significantly
evolved with the advent of sophisticated systems like
Supervisory Control and Data Acquisition (SCADA) and
Centralized Monitoring Systems (CMS). These systems,
equipped with a plethora of sensors, play a pivotal role
in condition monitoring and system state identification
through predefined thresholds Izadi et al. (2009). Alarm
systems, integral to these monitoring frameworks, are
tasked with signaling abnormal states, often resulting
from component malfunctions or faults. The efficacy of
these alarm systems is crucial, not only for operational
performance but also for maintenance cost-effectiveness,
especially in industries with accessibility challenges such
as offshore wind farms May and McMillan (2013). Alarm
management emerges as a complex challenge, particularly
in scenarios where numerous alarms can be activated
concurrently Wang et al. (2016). Historical incidents, such
as the Three Mile Island nuclear accident, underscore the
consequences of alarm system failures, where operators were
overwhelmed with redundant and misleading information
Zang et al. (2015). To enhance safety and efficiency, various
methodologies, tools, and metrics have been developed.
Notably, indices like Averaged Alarm Delay (AAD), Missed
Alarm Rate (MAR), and False Alarm Rate (FAR) are
employed to assess the performance and safety of alarm
systems in abrupt fault scenarios Xu et al. (2011). In the
realm of intermittent faults and mixture processes, a novel

time-variant finite mixture model has been proposed to
statistically model process variables affected by intermittent
faults, offering new insights into FAR and AAD calculations,
and introducing a dynamic MAR metric Asaadi et al.
(2022). Innovations in alarm system design include the
development of generalized delay timers and the use of
Markov models for performance evaluation, comparing
traditional and advanced delay timer systems in terms of
FAR, MAR, and Expected Detection Delay (EDD) Adnan
et al. (2013). Furthermore, the assessment of monitoring
systems with adaptive alarm thresholds has been advanced
through the integration of semi-Markov processes and
temporal logic gates Aslansefat et al. (2020a). Additionally,
new techniques for optimizing alarm filters, which consider
plant and control system information, have been proposed,
allowing for more flexibility in meeting independence
requirements Roohi et al. (2021).

1.1 Alarm System Limitations and the Need for Adaptive
Design

Alarm systems in industrial settings, such as manufacturing
plants and power generation facilities, are essential for
signaling abnormal conditions that necessitate immediate
operator intervention. These systems enhance safety and
operational efficiency EEMUA (Sep. 2019). However, tradi-
tional alarm systems are often plagued by issues like alarm
flooding, where numerous alarms are triggered simulta-
neously, overwhelming operators and hindering effective
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response Yang et al. (2022). Additionally, static alarm
settings may not be optimal across different operational
conditions, leading to false or missed alarms Yang et al.
(2022).The dynamic nature of industrial processes calls for a
more adaptable approach to alarm management. Adaptive
alarm systems, which adjust their settings in response to
the current process state, have shown promise in reducing
false alarms and enhancing system reliability Bauer et al.
(2011). These systems are particularly beneficial in complex
and distributed environments, where fault-tolerance levels
significantly impact the trustworthiness of network-based
monitors Mustafa et al. (2023). Moreover, adaptive systems
can implement sophisticated shutdown procedures, such as
graduated warnings, offering advantages in scenarios where
a simple emergency stop is insufficient Gyasi et al. (2023).

This paper introduces an adaptive alarm system design that
addresses distributional shifts in real-time process variables.
We utilize statistical difference measures to automatically
adjust the alarm system configuration in response to
significant shifts. Our objective is to enhance alarm
management system efficiency and reliability, specifically
mitigating the impact of these shifts during run-time. We
validate our approach through a real-world industrial case
study, demonstrating its practical applicability.

2. PROBLEM FORMULATION

2.1 Detecting Alarm States

Alarm state detection often involves comparing a process
variable, x(t), against set high (xhtp) and low (xltp) trip
points. The alarm variable, xa(t), is defined as:

xa(t) =

{
1 if x(t) > xhtp or x(t) < xltp,

0 if xltp ≤ x(t) ≤ xhtp.
(1)

Fig. 1 illustrates the schematic of the alarm generation
mechanism within an alarm system. It is represented
through two time-series plots: the upper plot displays the
behavior of the process variable, x(t), as a function of time,
t, and the lower plot indicates the corresponding state
of the alarm variable, xa(t).The process variable, x(t), is
shown as a fluctuating continuous function over time. The
predefined alarm threshold level is denoted by a dashed
horizontal line at xtp. When the process variable exceeds
this threshold, that is, x(t) > xtp, the alarm variable,
which is binary in nature, transitions from a value of
0 (representing an inactive alarm state) to a value of 1
(indicating an active alarm state). This change in the alarm
variable’s state occurs at time t0, the instant when x(t)
crosses the threshold xtp. The alarm remains in an active
state, with xa(t) = 1, for the duration that x(t) remains
above xtp. For a comprehensive discussion on alarm state
detection methods, refer to Asaadi et al. (2023).

2.2 Abrupt Faults

Consider a process variable in a normal state with distribu-
tion p(x). An abrupt fault alters its statistical properties,
such as the mean, changing the distribution to q(x) in the
faulty state. The probability density functions (PDFs) for
normal (p(x)) and abnormal (q(x)) states are illustrated
in Fig. 2.

Fig. 1. Samples of a process variable alongside the alarm
trip. Gyasi et al. (2023)

Fig. 2. Normal (p(x)) and abnormal (q(x)) PDFs

Alarm performance indices like False Alarm Rate (FAR)
and Missed Alarm Rate (MAR) are critical. FAR, indi-
cated by p1, represents the likelihood of a false alarm in
normal conditions, while MAR, denoted by q2, signifies the
probability of missing an alarm in abnormal conditions Xu
et al. (2011). These are calculated as:

FAR = p1, MAR = q2. (2)

3. METHODOLOGY FOR A SAFELY DESIGNED
ALARM SYSTEM

The primary objective of this study is to establish a robust
framework for designing alarm systems that can effectively
handle abrupt faults. Illustrated in Fig. 3, our proposed
methodology encompasses two distinct phases: the design
phase and the application phase.

3.1 Design Phase

The design phase is an offline process utilizing historical
data to develop an alarm system. This system is tailored
based on key performance indices such as the missed alarm
rate, false alarm rate, and average alarm delay. This phase
involves employing a change detection method for the
process variable to formulate these performance indices.
Subsequently, the optimal design parameters are archived
for future reference and comparison.

3.2 Application Phase

Conversely, the application phase adopts an adaptive strat-
egy, processing real-time data whose statistical properties
are initially unknown. For instance, in monitoring the
pressure of a thermal power plant’s main steam turbine,
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Fig. 3. Flowchart of the proposed approach

the alarm system is configured to promptly signal abrupt
faults with minimal delay. However, the classification of
incoming data as faulty or non-faulty remains uncertain
in this phase. This uncertainty necessitates the estimation
of the probability density function (PDF) and statistical
parameters for each class as data is acquired. A buffer
of samples might be required for accurate statistical dif-
ferentiation. Utilizing the modified Chernoff error bound,
as detailed in Aslansefat et al. (2020b), we compare the
operational state’s statistical similarity between the design
and application phases. The challenge lies in overlap in the
PDFs of the real-time data within the sliding window and
the historical trusted data. The likelihood of error can be
expressed as:

P(error) =

∫ ∞

−∞
P(error|x)P (x)dx, (3)

where P (error|x) is the minimum probability of run-time
data within the sliding window and the offline faulty
data. The error probability can be further dissected into
two parts, representing FAR and MAR, respectively. The
relationship between error likelihood and the statistical
difference between two states’ cumulative distribution
functions (CDFs) is crucial. This relationship can be used
to predict run-time errors using Empirical Cumulative
Distribution Function (ECDF) based statistical measures
like the Kolmogorov-Smirnov distance (KSD) Deza and
Deza (2014); Raschke (2011).

P(correct) ≈ 1−KSD = 1− sup
x

(Fruntime(x)− FNS(x)) .

(4)
The error probability, P(error), is the complement of
P (correct) which itself is approximately the complement
of the Kolmogorov-Smirnov Distance (KSD), where is
calculated as 4. Here, Frun-time(x) represents the empirical
cumulative distribution function of the run-time data, and
FNS(x) denotes the cumulative distribution function of the
fault-free normal state data used in the system’s design
phase. For more detailed explanations on the above formula
readers are encouraged to study Asaadi et al. (2023). A
minimal statistical discrepancy (low p(error)) indicates a
high degree of reliability in the alarm system’s operation
and precision, as determined during its design phase.
Conversely, a pronounced statistical discrepancy questions
the system’s reliability, suggesting the need for a revised
design strategy or manual re-calibration of the system.
Furthermore, should the divergence between operational
data and validated data exceed a predetermined threshold,
it should not be misconstrued as a shift in distribution but
rather as an indication of a malfunctioning state. In other
words, two predefined thresholds are utilized to classify the
streaming data within the sliding window. mathematical
relation 5 elucidates the aforementioned explanation with
greater clarity.

P(error) =


Similar Data, if 0 ≤ P(error) ≤ Thf

DS Detected, if Thf < P(error) ≤ Ths

Faulty Data, if Ths < P(error)
(5)

The utilization of two predefined thresholds is essential for
distinguishing between types of dissimilarities, as a faulty
situation represents a distinct type of dissimilarity, often
completely different from other variations. Consequently,
these thresholds are instrumental in determining whether
the observed dissimilarity in data is attributable to a fault
or merely represents a minor distributional shift (DS) in
the behavior of the process variable.
The pseudo-code presented provides a structured overview
of the proposed ”Safe Designed Alarm System”. It de-
lineates the systematic process from the initial design
phase, utilizing historical data, to the application phase,
where real-time data classification and continuous evalu-
ation ensure the system’s adaptability and reliability. It
is noteworthy that the adaptive design of alarm systems
can serve as a proactive alert to operators, enhancing their
ability to discern false alarms. Consider a scenario in which
an operator receives an alarm; concurrently, the adaptive
system indicates a necessary adjustment in the threshold,
revealing that the process variable remains within its
normal operational range. Consequently, this allows the
operator to recognize that the triggered alarms are false
and can be disregarded.

3.3 Statistical Difference Measures

This section introduces statistical distance values for the
application phase in the flowchart’s comparison stage,
as shown in the yellow box of Fig. 3. A buffer, sized
by an expert at design time, accumulates samples to
reflect the operation state’s statistical characteristics. The
future data, not assigned to a specific operation state,
is analyzed post-collection using the previously designed
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Algorithm 1 Safe Designed Alarm System

1: procedure Main
2: DesignPhase
3: ApplicationPhase
4: end procedure
5: procedure DesignPhase
6: Design alarm system based on historical data
7: Archive design parameters
8: end procedure
9: procedure ApplicationPhase

10: while true do
11: Classify online data through the designed alarm

system
12: Extract statistical parameters and ECDF of run-

time data
13: Compare statistical differences with historical

data
14: if results are acceptable then
15: Continue operation with current alarm sys-

tem
16: else
17: Notify operator or re-initiate DesignPhase
18: end if
19: end while
20: end procedure

alarm system to identify the operation state based on
generated alarms. Buffered data statistical properties
are compared to the initial dataset using ECDF-based
measures like Kolmogorov Smirnov (KSD), and Wasserstein
(WD)Deza and Deza (2014). The design phase involves
setting expected confidence levels for these measures and
calculate P(error) in 4. Three scenarios are considered
based on confidence comparison: 1) Collect more data
if confidence is slightly below the threshold; 2) Invoke
human intervention if confidence significantly exceeds
the threshold; 3) Accept the alarm system’s findings if
confidence is slightly above the threshold. An example is a
process variable affected by natural noise, leading to varying
alarm counts and necessitating operator assessment or
system redesign. Fig. 4 illustrates these statistical measures,
drawing inspiration from Aslansefat et al. (2021). The KSD
measures the maximum difference between two ECDFs,
while the WD is more sensitive to distribution shape
changes, Aslansefat et al. (2021); Asaadi et al. (2023). These
statistical distances aid in real-time adjustment of the alarm
system’s design parameters, enhancing its performance.

4. CASE STUDY

In this case study, we focus on the analysis of a process
variable named ’HU21212121R101T2U’, which represents
the input flow to a tank. Our objective is to preprocess
this time series data, detect change points, and analyze the
operational zones to improve alarm system performance
at its run-time.While various change point detection
techniques are available, it’s important to note that in
this paper, we do not delve into the details of change
detection methods. Instead, we employ a simple mean
value change detection approach to divide the data into
two distinct operational zones: Faulty and Fault-Free, Fig.
5.The segmented data was then analyzed separately. For
the Fault-Free zone, we characterized the typical behavior

(a) The KSD

(b) The WD

Fig. 4. Statistical Difference Measures
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Fig. 5. Process variable ’HU 2121 2121 R101 T2 U’

of the process variable. In contrast, the Faulty zone data
was found to exhibit a mixture of distributions, indicating
complex underlying dynamics. Histograms of both fault-
free and faulty data sets were generated to visualize the
distribution of data points in each operational state. These
histograms provide insights into the variability and typical
behavior of the process under different conditions Fig. 6,
and Fig. 7. Given the complexity of the Faulty data, we
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Fig. 6. Histogram of fault-free data.

applied the Expectation-Maximization (EM) algorithm
to estimate the parameters of the underlying Gaussian
Mixture Model (GMM). This approach provided a robust
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statistical framework to understand the variability in the
Faulty operation zone.

Expectation-Maximization Algorithm

The Expectation-Maximization (EM) algorithm is a recur-
sive technique used to obtain the maximum likelihood or
maximum a posteriori (MAP) estimates for parameters
within statistical models that include unobserved or hidden
variables. This method involves two main phases in its
iteration: the expectation (E) step and the maximization
(M) step. In the E step, a function is constructed to
represent the expected value of the log-likelihood, which is
calculated using the current parameter estimates. Following
this, the M step involves optimizing the parameters to
maximize this expected log-likelihood as determined in
the E step. The updated estimates of the parameters
are then utilized to infer the distribution of the latent
variables for the subsequent E step. Given a statistical
model with observed data X, unknown parameters θ, and
latent variables Z, the likelihood function is L(θ;X,Z).
The goal is to maximize the marginal likelihood of the
observed data:

L(θ;X) =
∑
Z

L(θ;X,Z)P (Z|X, θ) (6)

Algorithm Pseudocode

Algorithm 2 Expectation-Maximization

1: Initialize the parameters θ(0)

2: repeat
3: E-step: Estimate the latent variables Z given current

parameters θ(i)

4: Q(θ|θ(i)) = EZ|X,θ(i) [logL(θ;X,Z)]

5: M-step: Update the parameters θ
6: θ(i+1) = argmaxθ Q(θ|θ(i))
7: i← i+ 1
8: until convergence

The analysis includes two histograms representing the
distributions of fault-free and faulty data, respectively.
Both histograms include a threshold line at x = 16.74,
facilitating the identification of data points that exceed
this threshold.

4.1 Threshold Adjustment for Alarm System

Utilizing the insights gained from the distribution analysis,
we adjusted the threshold levels for the process variable’s
alarm system.
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Fig. 8. Adjusted threshold at the design phase of the
algorithm.

4.2 Adaptive Design Consideration

Our analysis highlighted the need for an adaptive design
approach in managing this process variable. This involves
continuously monitoring the data, updating the statistical
models, and adjusting the thresholds dynamically to accom-
modate changes in the process behavior.In the proposed
algorithm for the adaptive design of alarm systems, we
analyze the distribution of fault-free (normal) data. A key
step involves defining a sliding window on the run-time.
This approach allows us to dynamically analyze segments of
the data over time.As part of our case study, we focused on
a specific segment of the time series data, which included
4000 samples prior to the transition point, representing the
normal operational zone. We employed a sliding window
technique for real-time data analysis, characterized by a
window length of 200 samples and a shift of 65 samples.
This means that after every 65 samples, the window was
updated to include the latest 200 samples. The KSD was
calculated for the samples within each sliding window and
compared with the KSD values obtained from 10 percent
of the fault-free data.Further, to adjust the threshold
settings of the alarm system, we utilized the Receiver
Operating Characteristic (ROC) method. This approach
was particularly useful given the limited availability of
online faulty data, prompting us to use data within the
sliding window and offline faulty data for our analysis.
This method enhances the adaptability and responsiveness
of the alarm system, enabling it to detect irregularities
more effectively by continuously comparing current data
trends against established normal patterns.The results of
our study are illustrated in the following figures. Fig. 9
shows the KSD calculated for the sliding window compared
to the fault-free data, and Fig. 10 displays the process
variable with the thresholds over the 4000 sample segment.

5. CONCLUSION

This study has successfully demonstrated a comprehensive
approach to alarm management and adaptive design of
alarm systems. Our methodology, which encompasses
both design and application phases, leverages historical
data and real-time processing to optimize alarm system
performance. Key performance indices such as missed
alarm rate, and false alarm rate were central to our
system’s design, ensuring a balance between sensitivity and
specificity.Through the case study of the process variable
’HU212121 21R101T2U’, we illustrated the effectiveness
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Fig. 9. KSD for the samples within the sliding window

0 500 1000 1500 2000 2500 3000 3500 4000
Time (bins)

14.0

14.5

15.0

15.5

16.0

16.5

17.0

Th
re

sh
ol

d 
Va

lu
e,

 a
nd

 P
ro

ce
ss

 V
ar

ia
bl

e Thresholds for Corresponding Intervals

Fig. 10. x(t) (in blue) graph showing the calculated
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of our approach in distributional shift zones. The use of
various statistical distance measures, including the KSD,
has proven instrumental in enhancing the robustness and
efficiency of alarm systems, particularly in environments
with distributional shifts.Our findings underscore the
importance of adaptive alarm systems in industrial process
control. The ability to dynamically adjust to changing
conditions and maintain high levels of accuracy in fault
detection is crucial for process safety and efficiency. Future
work should focus on further refining these methods and
exploring their applicability in a broader range of industrial
scenarios.
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