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Abstract: Cyberattacks on control systems can create unprofitable and unsafe operating
conditions. To enhance safety and attack resiliency of control systems, cyberattack detection
strategies can be developed. Prior work in our group has sought to develop cyberattack detection
strategies that are integrated with an advanced control formulation known as Lyapunov-based
economic model predictive control (LEMPC), in the sense that the controller properties can
be used to analyze closed-loop stability in the presence or absence of undetected attacks.
In this work, we consider neural network-approximated control laws, concepts for mitigating
cyberattacks on such control laws, and how these ideas elucidate concepts in how to fight back
against cyberattacks. We begin by providing sufficient conditions under which a neural network
(NN) that approximates an LEMPC maintains safety for a sampling period after a cyberattack
by inheriting safety properties from the LEMPC formulation. Then, we discuss a second concept
inspired by neural network repair in the presence of adversarial attacks for attempting to ensure
safety of controllers for a time period after undetected attacks, even those not based on a rigorous
control law formulation like LEMPC. We examine the potential conservatism differences between
the LEMPC-based safety strategy and one based on repairing problematic control actions, and

discuss how this concept can inspire ideas for fighting back against attacks.

Keywords: Neural networks in process control, Lyapunov-based economic model predictive

control, reachability analysis, cybersecurity.

1. INTRODUCTION

Cybersecurity considerations are becoming more critical
due to the high exposure of control systems to a range
of threats and security vulnerabilities. One avenue toward
enhancing safety and attack resiliency of control systems is
developing cyberattack detection and handling strategies.
A variety of strategies have been developed for attack de-
tection, which may monitor the state (passive detection) or
disrupt it (active detection) to locate attacks. Our group’s
prior work (e.g., (Oyama and Durand (2020))) has focused
on developing both active and passive detection strategies
in the context of Lyapunov-based economic model predic-
tive control (LEMPC). Some of these strategies have had
the ability to maintain safety for a characterizable period
of time after an undetected attack. Despite this potential
benefit, there are several important questions which re-
main unsolved for these designs, including whether they
are more conservative than alternative methodologies for
attack detection, and also to what extent the restriction of
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considering LEMPC alone is useful. A variety of alterna-
tive means for attempting to promote resilience of a pro-
cess against cyberattacks have been developed. These in-
clude machine learning-based methods (Chen et al. (2020))
and reachability-based techniques (Liu et al. (2021)) for
attack detection. In Wu et al. (2018), for example, a neural
network-based detection methodology was paired with a
Lyapunov-based model predictive controller (LMPC) to
mitigate the impact of detected cyberattacks and stabilize
the nonlinear system at its steady-state. In Narasimhan
et al. (2023), reachable sets are used for linear systems to
detect cyberattacks even when transient operation occurs.

A potential benefit of reachable sets toward addressing the
two challenges raised above with respect to the LEMPC-
based strategies is that reachable sets of states can be com-
puted for any control action (independent of the control
law), suggesting that they may be used in safety assess-
ment under attacks in a variety of scenarios, including for
other forms of economic model predictive control (EMPC)
besides the Lyapunov-based version, or in cases where neu-
ral networks (NN’s) are used to approximate controllers.
NN’s have been used to approximate an advanced con-
troller to reduce its computational intensity (Akesson and
Toivonen (2006); Lucia and Karg (2018)). Furthermore,
NN outputs have been analyzed from a reachability anal-
ysis perspective (e.g., (Yang et al. (2022, 2021); Xiang
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and Johnson (2018))). In Yang et al. (2022), for exam-
ple, reachability analysis was used to compute unsafe NN
output regions which can be backtracked to identify the
corresponding unsafe NN input space and then repair the
NN in the sense that it is re-designed to no longer compute
problematic outputs.

Motivated by these considerations, this work seeks to
provide deeper insight into the LEMPC-based strategies,
and in particular the two questions noted above, with the
goal to better understand various cyberattack detection
techniques and relationships among them, as well as to mo-
tivate directions in steps beyond detection such as fighting
back against attackers. To do this, we begin by addressing
the question of the extent to which focusing on LEMPC in
cyberattack detection design is useful. We do this by first
demonstrating that one of the passive detection LEMPC-
based methods can be extended to a case where a NN ver-
sion of that LEMPC is learned, demonstrating that there
are some cases where the LEMPC-based methods can be
extended beyond the specific implementations described
in Oyama and Durand (2020). Next, we discuss how a
method based on reachability analysis, with inspiration
from the NN repair strategy in Yang et al. (2022), could
enable a wide range of control laws (and their NN ver-
sions) to obtain the same safety guarantees in the presence
of undetected attacks as the passive detection LEMPC-
focused method, but with the need to determine and
analyze additional sets that are developed a priori in the
LEMPC strategy. This facilitates a comparison between
the techniques. In addition, we discuss how the repair
strategy can inspire initial ideas in fighting back against
cyberattackers once they are detected in a process. We
close with an example that illustrates some of the key
features of the reachability and repair procedure.

2. PRELIMINARIES
2.1 Notation

A continuous function « : [0,a) — [0,00) is a class
K function if «(0) = 0 and it is strictly increasing. €,
denotes a level set of a scalar-valued function V (i.e.,
Q,:={z € R" : V(z) <p}). "/ signifies set subtraction.

2.2 Class of Systems

The class of nonlinear systems considered is:

() = fx(t), u(t), w(t)) (1)
where z(t) € X C R*, u(t) e U ¢ R™ (U = {u €
R™ : Ju| < uw™*}), and w(t) € W C R* (W = {w €
R* : |w| < 6,0 > 0}) are the bounded state, input,
and disturbance vectors. The function f(-) in Eq. (1) is
assumed to be locally Lipschitz on X x U x W. w = 0
in the corresponding “nominal” system of Eq. (1). It is
assumed that the origin of Eq. (1) is an equilibrium point

(f(0,0,0) = 0).

It is assumed that a control law u = h(x) € U exists
that renders the origin of the nominal system of Eq.
(1) asymptotically stable, in the sense that there exists
a sufficiently smooth Lyapunov function V', and class KC
functions «;(+),7 = 1,2, 3,4, where:
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o (Je]) < V() < a(la), (20)
P fa (@), 0) < ~osleh). ()
29| < (e, (20)
h(z) € U (2d)

Ve € D C R™ where D is an open neighborhood of the
origin. The stability region of the closed-loop system under
the controller h(x) is defined as €, C D and is chosen
such that x € X,Vx € Q,. The Lipschitz property of
f combined with the bounds on w and w implies that
there exist positive constants My, Ly, Ly, L,,, L}, L}, L!,
such that Vx,z1,22 € Q,,u,u,up € U and w € W, the
following inequalities hold:

‘f(xhuhw) - f(x2au270)| S L1|x1 —{L'2|

+ Ly|uy — ug| + Ly |w] (3a)
oV (x oV (x
\%f@l,uhw)* 8($2)f(x27U270)\
< Lifwy — @o| + Ly, Jw| + Ly, Jug —ug|  (3b)

|f (@, u,w)| < My
2.8 Lyapunov-Based Economic Model Predictive Control

LEMPC (Heidarinejad et al. (2012)) computes control
actions via:

Lmin /t L), u(r)dr (4a)
st #(t) = F(E(), u(?), 0) (4b)
#(ty) = T(ty) (dc)
53(15) e X,Vt e [tk;tk+N) (4(1)
u(t) € U, Vt € [tkatk+N) (46)
VI(Z(1)) < pe,Vt € [tk titn)
if 2(ty) € (4f)
WD f((13), u(ta), 0)
< M) (a1, n(a(t4)), 0
if 2(ty,) € Qp/Qpe (4g)

where N is the prediction horizon and u(t) is a piecewise-
constant input trajectory with N pieces computed using
sample-and-hold where each piece is held constant for a
sampling period A (denoted u(t) € S(A)). At a sampling
time ¢, the LEMPC receives a state measurement Z(tx)
(Eq. (4c)) and evaluates the economics-based stage cost
L. of Eq. (4a) throughout NA using Eq. (4b). The state
predictions and inputs must satisfy the constraints of Egs.
(4d) and (4e). Q,. C Q, makes 2, forward invariant under
the LEMPC of Eq. (4), with the Lyapunov-based stability
constraints in Eqs. 4f-4g.

3. A NN-APPROXIMATED VERSION OF AN LEMPC
INTEGRATED WITH PASSIVE CYBERATTACK
DETECTION

As noted in the Introduction, one goal of this work is
to better understand the extent to which the integrated
cyberattack detection and control strategies from Oyama
and Durand (2020) are limiting due to their focus on
LEMPC. Therefore, in this section, we focus on one of
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the detection strategies and demonstrate that despite its
focus on LEMPC, it can have extensions, such as being
implemented as a NN, that could achieve the same types
of safety guarantees as the original LEMPC (in this case,
the guarantee of safety in the sense of boundedness of
the closed-loop state in €2, for at least one sampling
period after an undetected attack under sufficient condi-
tions). This provides a first indication that the methods
derived in Oyama and Durand (2020) can have applica-
bility in developing further detection strategies beyond
those which require an LEMPC during process operation.
The particular situation which inspires considering the
NN version of the control law is that advanced control
laws such as LEMPC might be computationally expensive.
One approach that has been explored for attempting to
decrease the online computational complexity of advanced
controllers is to approximate them using a NN (Lucia and
Karg (2018)). To develop such a NN, an LEMPC can be
solved a number of times, from various initial conditions,
to generate a dataset with a large number of possible
sensor measurements for various initial conditions g, for
the training and validation of the NN. The NN is then
trained off-line to fit the NN parameters (i.e., NN weights)
where the input layers are the state measurements and
the output layers are the control actions generated by the
controller. Once the NN is well-trained, it can be used
to predict control actions similar to those of the LEMPC
when a new state measurement is received. We refer to
the resulting NN as a NN-approximated LEMPC (which
we will abbreviate as NN-LEMPC in the following).

In Oyama and Durand (2020), a passive cyberattack
detection strategy based on comparing state predictions
(under the control actions computed by an LEMPC)
with state measurements (with bounded sensor noise)
was developed. In this section, we will develop a similar
detection strategy for the process of Eq. (1) under the
NN-LEMPC in the case where the state predictions are
made under the NN-LEMPC control input. For these
developments, we make the following assumption.

Assumption 1. The errors in the sensor measurements and
also in the control actions computed by the LEMPC of
Eq. (4) and the NN-LEMPC are bounded. Specifically, the
sensor measurement error is bounded such that |Z(t;) —
x(tr)| < 0y, 0, > 0, at every sampling time, where Z(tx)
represents the state measurement at ¢, and x(t) repre-
sents the value of the actual state at tz. In addition, the
difference between the input computed from the LEMPC
of Eq. (4) (i-e., u) and that computed by the LEMPC-NN
(i-e., @) is bounded such that |u(ty) — G(tx)| < €, for € > 0.

To derive the detection strategy, we first note that Oyama
and Durand (2020) derived sufficient conditions to enable
an LEMPC to maintain the closed-loop state within €2,
in the absence of attacks, and for at least one sampling
period after an undetected attack (i.e., an attack which
kept a false state measurement within a bound of the
state prediction from the last non-attacked sensor mea-
surement). A NN-LEMPC, however, may not be able to
perfectly represent the LEMPC for which these theoretical
results were derived. Specifically, Assumption 1 allows for
deviations between the values of u(tx) and 4(ty) (where the
magnitude of € may be adjusted by, for example, selecting
different neural network architectures or using different
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amounts of training data). Thus, there may be cases where
u(tr) might cause the closed-loop state to move away
from the boundary of ),, whereas the slightly different
input 4(t;) may not. This indicates that, to obtain safety
for a sampling period after an undetected attack using
the NN-LEMPC, it is not sufficient to design an LEMPC
for the state prediction-based detection strategy according
to Oyama and Durand (2020) and then to train the NN-
LEMPC from the data corresponding to that LEMPC.
Instead, the requirements on the LEMPC from which the
data for training the NN-LEMPC will be derived need
to be made more stringent to enable the NN-LEMPC
developed from that data to then have the desired safety
properties in the presence and absence of attacks. Thus,
we will require that the theoretical requirements in Oyama
and Durand (2020) continue to hold, but that additional
requirements, discussed in this section, are introduced.

LEMPC

3.1 Designing an NN-LEMPC

Attack-Handling

for

In this section, we describe how the theoretical require-
ments imposed on the LEMPC of Eq. (4) for the state
prediction-based detection strategy in Oyama and Du-
rand (2020) can be augmented to enable the NN-LEMPC
trained on the LEMPC data to then inherit similar theo-
retical qualities. We first introduce two propositions that
will be used in the proof of the main result.

Proposition 1. Consider the following systems:
&(t) = f(&(t), u(to),0) ()
&(t) = f(&(1), alto), w(t)) (6)

where ‘i’(to) — JNC(to)| 5 o > 0 to = O and |u(t0)
U(tg)| < e. Then, if Z(t ),ic() for t > 0:
[2(t) —2(t)] < f NN(5 €,1) (7)

for t > tg, where
fW,NN(Svpa T) =

s+ Lup+ L0 eLeT _ Lup+ L0 (8)
L, L,

Proof 1. Integrating Eqgs. (5)-(6) from ¢y, = 0 to ¢, we
obtain:

= F(to) + / F(#(s), ulto), 0)ds (9)

(1) = (to) + / F((s), to), w(s))ds

Subtracting Eq. (10) from Eq. (9), taking the Euclidean
norm of both sides, and applying Eq. (3a) as well as the
bounds on w and |u(tg) — @(to)| gives:

1Z(t) — 2()| < |Z(to) — 2(to)|

" / 1£(E(s), ulto), 0) — F(#(s), alto), w(s))[)ds
0

(10)

(11)
Luylu(to) — (to)|lds
<6+ (Lue+ L)t + Ly /0 [|3(s) — 2(s)[]ds

Applying the Gronwall-Bellman inequality gives Egs. (7)-
(8).
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Proposition 2. (c.f. Heidarinejad et al. (2012)) Consider
the Lyapunov function V'(+) of the system of Eq. (1). There
exists a quadratic function f,(-) such that:

V(@) < V(z) + folle — 2[) (12)

for all z, & € Q,, with f,(s) = as(a; *(p))s + M,s?, where
M, is a positive constant.

Theorem 1 below provides sufficient conditions under
which the NN-LEMPC guarantees that the state of the
closed-loop system of Eq. (1) is always maintained in
1, before an attack occurs, if the LEMPC of Eq. (4) is
also designed according to both these requirements and
the additional requirements for the state prediction-based
attack detection strategy in Oyama and Durand (2020).
Theorem 1. Consider the system of Eq. (1) under the NN-
LEMPC design based on an LEMPC satisfying the state
prediction-based detection LEMPC conditions of Oyama
and Durand (2020), and a controller h(-) that satisfies Eq.
(2). Let Assumption 1 hold, and €, > 0, A >0, N > 1,
and p > psamp, NN > pNN > pe > 0 satisfy:
pe + fo(fw.nn(d,6,A)) < pyN (13)
Ly (MA +68) + Lie+ Li,0 — az(a; ' (pe)) < —ew/A (14)
p>max{V(z(t)) : V(2(tr)) € Lp,uripwns t € [thrthg),
uel, we W}
(15)
Psamp, NN > max{V(ﬁ(t)) : V(Ii(tk)) S pr t e [tk,tk+1)7
uelU, we W}
(16)
If &(to),z(to) € Qp,, then &(t) € Q,, and the state
measurement Z(ti) € Q,, Vt, ¢, > 0, before a sensor attack
occurs.
Proof 2. When &(t;) € ., then if the LEMPC of
Eq. 4 had been used over the subsequent sampling period
(instead of the NN-LEMPC), it would have computed a
control action such that V(Z(t)) < p.. From Proposition
1, Proposition 2, and Eq. (7):
V(&(t) < V(&(t)) + fo(lZ — Z[)
§ Pe + fv(fW,NN((s; € A))
for ¢t € [tk,tk+1). If the conditions of the theorem hold
(with 6 = 6, when designed for a case without attacks),
then V(&(t)) € Q C Q,. If instead &(tx) € Q,/Q,.,

(17)

PNN

then:A )

WEED ar), o) w(r)) = 20

- VRO 30, k). 0) + P 1) ) 0)
|

< Lo|2(t) — &(te)| + L, la(te) — u(te)
+ Ly Jw| — as(|Z(t)])
< L(MA +6) + Lye + Li,0 — az(ay ' (pe)) < —ew/A
(18)
from Eq. (3a) as well as the bounds on w, | f|, and |u(tx) —
(t)|. When Eq. (14) holds, V' is negative along the closed-
loop state trajectory under the NN-LEMPC. Egs. (15)-
(16) ensure that either Z(tx) € Q,, or that Z(tx) € Q,/Q,, .
Specifically, Eq. (16) ensures that if Z(t;) € €, , then
2(t) € Qpppwn C Qp for all t € [ty,tx,1). This ensures
that the furthest that the closed-loop state can move away
from the origin is to a level set of V where V(&) <
Psamp,N N, because subsequently Eq. (18) will apply and V'
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will decrease when the conditions of the theorem are met.
Because the closed-loop state cannot move farther than
Qp.amp.vn from the origin, the condition of Eq. (15), which
ensures that the measurement even when x(t) € Q,, .,
is still within €,, ensures that the state measurement is
always within ,.

To demonstrate that the NN-LEMPC obtains safety prop-
erties after an undetected attack, we first devise the de-
tection strategy. In this case, we will compare the state
prediction under 4(ty) (where a prediction of the state
at tx41 obtained by numerically integrating the equation
INN = f(@nnN,a(ty),0) for the state prediction &y from
a state measurement from t; is denoted Znpn(tx+1|tr))
with the state measurement. Thus, the detection strategy
is as follows:

(1) At tg, operate the process under the NN-LEMPC. Go
to Step 2.

(2) Obtain a state measurement Z(ty41). Compute ¢ =
|ZNN (tkt1lte) — Z(tes1)]- If ¢ > vy, flag an attack
and implement mitigating actions. Otherwise, go to
Step 3.

(3) ti < tg4+1. Return to Step 1.

Under this implementation strategy, the following theorem
provides conditions under which the NN-LEMPC will
achieve safety for a sampling period after an undetected
attack.

Theorem 2. Consider that the conditions of Theorem 1
hold. Then, the closed-loop state of the system of Eq. (4)
under the NN-LEMPC and the implementation strategy
of this section will be maintained within €2, for at least
one sampling period after an undetected attack when
0> fw.nn(0y,0,A) + vy, in Egs. 13 and 14.
Proof 3. To prove this, we note that due to Assumption 1,
|ZNN (te—1lth—1) — T(tx—1)] < 0, (19)

where Zypn(tg—1|tk—1) denotes a state measurement at
tx—1 and Z(tp—_1) signifies the actual state at tx_;. Con-
sidering Proposition 1 with € = 0 (since both the actual
closed-loop state and the predictions of the state will use
the same input @(tp)), we obtain:

|2(tk) — Inn (trlte—1)| < fwnn(0,0,4)  (20)
Then if an attack is not flagged at tj, this, along with the
detection bound threshold 14y, provide the following:

f@@(7),a(to), w(T)) |2(tr) — Znn (trlte)]

< |&(tr) — nn(telte—1) + Tnn (Erlte—1) — Tnn (trltr)]
< fw.nn (00,0, A) + v
(21)
Thus, if 6 > fwnn(0s,0,A) 4+ 14, in Theorem 1, then
from the result of that theorem, the closed-loop state will
be kept within 2, over the following sampling period.

4. REACHABILITY ANALYSIS FOR EMPC AND
NN-EMPC WITH SENSOR ATTACKS

In the previous section, we sought to demonstrate that
the restriction of the cyberattack detection considerations
in (Oyama and Durand (2020)) to LEMPC may not nec-
essarily preclude their utility for other scenarios, includ-
ing extension to NN-LEMPC. In this section, we seek to
further understand the restrictiveness and conservatism
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of the LEMPC-focused method by comparing it with a
reachability-based strategy. As noted in the Introduction,
reachability analysis has played a role in both safety anal-
ysis and detection for control system cyberattacks, and
has also played a role in NN safety verification. Thus, we
consider that a reachability-based method offers a point of
comparison between the state prediction-based detection
framework in (Oyama and Durand (2020)) (which was
demonstrated to extend to a NN case in the prior section),
and other economic model predictive control (EMPC) for-
mulations and their NN approximations.

4.1 Cyberattack Detection and Handling with Reachability
Analysis for EMPC and NN-EMPC

In this section, we propose a method based on reachability
analysis and input repair (inspired by the concept of
repairing a NN in Yang et al. (2022)) for ensuring safety
(in the sense of boundedness of the closed-loop state in
a safe operating region) for a sampling period after an
undetected cyberattack when the detection scheme is the
same as is used for the LEMPC-based strategy (i.e., at
every sampling time tj, we check ¢ = |Zparpo(trlte—1) —
Z(tx)|, where Zgarpe(ti|tk—1) is a prediction of the state
at tx using the input from an EMPC or NN-EMPC from
a state measurement at tx_1). The safe operating region
is considered to be a superset of {1, so that checking
whether the state is in €, suffices to verify safety, as for
the LEMPC-based strategies.

In this strategy, we consider that a measurement of the
state is received at tg. If ¢ > 14y, an attack is detected
and mitigating actions (e.g., emergency shut-down) are
performed, as would also be done for the LEMPC-based
method if an attack was detected. However, when ¢ < vy,
the reachability-based method proceeds as follows. First,
the set of all states consistent with the measurement is
obtained and denoted by S (i.e., the set of all states such
that |i'EMPC(tk‘tk—1) — .i‘(tk)|, where SE’EMpc(tk‘tk,ﬂ
refers to a prediction of the state at t; based on a
measurement at tx—; under an EMPC or NN-EMPC).
Then, u(ty) is computed by the EMPC or NN-EMPC
based on the state measurement (which could be falsified
with an undetected attack). Subsequently, the set of all
state trajectories which would be generated under wu(ty),
w € W, starting from S can be computed. The safety
of these trajectories (i.e., whether they remain within
Q,) can then be assessed. If any is found to leave Q,,
the input determined by the EMPC or NN-EMPC can
be “repaired.” The idea of the repair is that a search is
performed for a different input which can keep the state
trajectories over a sampling period, starting from all states
in S, under the updated input and with w € W, within
,. If such a repaired input can be found, then just as
the LEMPC-based strategies were able to ensure safety
for a sampling period after an undetected attack, EMPC’s
and NN-EMPC’s with the input repair and reachability
analysis approach would then also ensure safety within €2,
for a sampling period after an undetected attack.

We can now utilize this reachability strategy to understand
some of the benefits and limitations of the LEMPC-based
detection strategy. First, we note that both the LEMPC-
based strategy and reachability strategy can be extended
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to controllers learned with a neural network, and both
are able to keep the closed-loop state within €2, for a
sampling period after an undetected sensor attack under
sufficient conditions. Both can do this utilizing the same
detection metric. However, the sufficient conditions for
both are what distinguish the methods. Specifically, for
the LEMPC-based method, the conditions are a variety
of control-theoretic principles from (Oyama and Durand
(2020)), similar to (and augmented by, if a NN-LEMPC
is used) those in Theorems 1-2. The sufficient conditions
for the reachability technique include that inputs must
be determined to exist that can achieve the repair for
every possible undetected attack based on the operating
region within €2, in which the EMPC or NN-EMPC should
keep the process in the absence of attacks. Thus, while
a disadvantage of LEMPC is the need to find a control
strategy for which all of the theoretical conditions can
be met, it also has the benefit of essentially ensuring the
existence of a “repaired” input, at least for the state for
which the repair is most relevant (i.e., the actual state).
It ensures that even with an undetected attack, so that
the state may be in § and different from the value from
the sensor, the input which the LEMPC or NN-LEMPC
would compute would prevent the closed-loop state from
leaving €1, in a sampling period.

There is potential that the LEMPC-based strategy may
be more conservative that the reachability-based method.
Specifically, the LEMPC requires that an input which
would keep the closed-loop state in 2, must be the input
which would have been computed by the LEMPC for
a false state measurement. However, the repair method
adjusts the input away from what an EMPC or NN-EMPC
would have computed if the state cannot be maintained
within €, for all states in S under that input. This may
give flexibility to finding stabilizing inputs throughout
state-space.

A final interesting idea that comes from this analysis is
considering an extension of the repaired input concept
to fighting back against attackers, in the sense of taking
actions that reduce their power after they are detected.
Our prior LEMPC-focused works have not handled safety
after attacks. However, the repaired input option has a
flavor of fighting back against attacks, since the idea is
to override malicious control actions. One might build on
that idea to fight back against attacks by, after detection,
determining in what set the actual closed-loop state is
most likely to lie, and then seeking to apply control actions
that keep all such possible states safe. The goal would be
to buy some time after an attack is detected before the
attacker can compromise system safety.

5. CHEMICAL PROCESS EXAMPLE

In this section, we demonstrate aspects of the reachability
and input repair discussion through a continuous stirred
tank reactor (CSTR) with a second-order A — B
reaction, creating a process that has the dynamics:

. F __E_

CA = V(CAO —CA) —koe RQTO% (22&)

. F AHky —_E_ _, Q

T==(1y—-T)— ——e ®TC%+ 22b
(=T -2 ooy (22)
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where the states C4 and T are the concentration of the
reactant A and the temperature in the reactor, respec-
tively. The manipulated variables in this case are the feed
concentration of the reactant A (i.e., C49) and the heat
rate Q. The values of the parameters in Eq. (22) are taken
from (Alanqgar et al. (2015)). The operating steady state
values are [Cas Ti]T = [1.22 kmol/m?® 438.2 K|T and
[Caos Qs]T = [4.0 kmol/m?® 0 kJ/hr]. The controller
considered for this process is a model predictive controller
(MPC), with the form in Eq. 4, except without the con-
straints of Eqgs. 4f-4g. This MPC used an objective function
of (T — T,)? and was simulated in Matlab using fmincon
with N = 10. The Explicit Euler method was used to
numerically integrate the differential equations of Eq. (22),
with an integration step of 10~* hr in the EMPC (and
10~° hr for the process). The input and state constraints
are: 350 K < T < 500 K; 0.5 kmol/m?® < Cyuo < 7.5
kmol/m3; -5x10% kJ/hr < Q < 5 x 10° kJ/hr. The
CSTR was simulated under disturbances that were added
to the right side of Eq. (22a) and Eq.(22b) with zero
mean and standard deviations of 5 kmol m hr~! and
20 K/hr, and bounds of 20 kmol m *hr~! and 50 K/hr,
respectively. An approximation of the set of points that are
reachable from (0.82 kmol/m®,446.25 K) was determined
by simulating the system 1000 times with different seeds
for the random number generator, from the same state
and different disturbance realizations. A square was then
placed around this region, and discretized to have 50
rows and 5 columns. A state within the resulting set of
(1.06 kmol/m®, 4436.21 K) was then sclected to be a state
measurement, and the corresponding control action from
the MPC was computed. Under this input, an approxima-
tion of the set of states that could be reached under this
input from the points in the discretized rectangle was com-
puted by taking each vertex of the discretized rectangle as
an initial state and, using the input computed by the MPC
and 1000 simulations from each grid point under different
realizations of the disturbances. The resulting set of states
is plotted in blue circles in Fig. 1. A box containing these
states is shown in red, and a green box represents a po-
tential safe set. As shown, the possible states are far from
the boundary of the safe set, indicating that the repair
strategy can be simplified to occur only for states near the
boundary where there would be a possibility of exiting the
safe region.

6. CONCLUSION

In this work, we analyze conditions under which an
LEMPC-based cyberattack detection strategy can be
extended to a NN-approximated version, and compare
LEMPC-based cyberattack detection/handling with a
reachable set and input repair approach.
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