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Abstract: Prior research from our group developed a control-integrated active actuator
cyberattack detection strategy. This strategy continuously probed for cyberattacks by updating
target steady-states at every sampling time and then moving the process state toward these over
the subsequent sampling period. Attacks were flagged if a Lyapunov function around the target
steady-state did not decrease over a sampling period. This strategy had the benefit of ensuring
safety of the process until an attack was detected. However, the continuous probing for attacks
could decrease profit from the process compared to not probing for the attacks, which could limit
the attractiveness of the method in practice. This work marks our first step toward attempting
to develop a framework for modifying this detection strategy to make guarantees that the profit
over a sampling period would be no worse than that of a stabilizing controller. This is achieved
through utilizing two auxiliary controllers, in addition to the one which facilitates the attack-
probing, with constraints on profits in the various controllers to enable the profit proofs over a
sampling period (in the absence of disturbances) to be developed. A process reactor example is

used to demonstrate the implementation of the detection strategy.
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1. INTRODUCTION

An Industry 4.0 setup is designed to increase automation
and improve operational efficiency. However, it can also
lead to more opportunities for cyberattackers to attack a
process. This has led to investigations focused on practical
issues (e.g., classifications and potential attack surfaces
for cyberattacks on networked control systems (Sénchez
et al., 2019)), as well as more theory-focused techniques
for cyberattack-handling (e.g., detection and cyberattack-
handling techniques in the context of distributed model
predictive control (MPC) for linear systems (Velarde et al.,
2017)). On the theoretical side, one of the major direc-
tions for cyberattack detection has been active attack
detection, which refers to the injection of specific input
policies that perturb the optimal operation of a system
to flag cyberattacks (Satchidanandan and Kumar, 2016).
These can be implemented by either continuously per-
turbing the system or switching to perturbing actions
at certain times (Narasimhan et al., 2022). Attacks can
be considered on various control components, including
sensors and actuators. Our prior work has considered
detection and handling strategies for both sensor attacks
(e.g., (Rangan et al., 2021; Oyama et al., 2023)) and
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actuator attacks (Rangan et al., 2022). Our prior strategies
have focused on utilizing an advanced control strategy
called Lyapunov-based economic model predictive control
(LEMPC) to detect these types of attacks due to its closed-
loop stability properties even in the presence of sufficiently
small measurement noise (and thus also sensor attacks)
and disturbances (and thus also actuator attacks). As
an example, the strategy for handling actuator attacks
in (Rangan et al., 2022) involves developing a series of
steady-states over time and then driving the closed-loop
state toward each for a sampling period. This ensures that
the Lyapunov function around each steady-state should
decrease over a sampling period, enabling an attack on
actuators to be detected if it does not, and also ensuring
that any undetected actuator attacks had to cause the
Lyapunov function to decrease and thus could not have
driven the closed-loop state out of a safe operating region.

Despite the safety benefits of the strategy in (Rangan
et al., 2022) when actuators are attacked, the constant
probing required for achieving these safety benefits in the
presence of attacks may prevent the process from operating
in an economically-optimal fashion. As a result, (Rangan
et al., 2022) suggested that a potential idea for overcoming
this issue was to utilize an auxiliary economic model pre-
dictive control (Ellis et al., 2014; Rawlings et al., 2012)
scheme to determine the steady-states that should be
designed at each sampling time, with the hope that guiding
the closed-loop state toward such steady-states might en-



2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

hance economic operation compared to other ideas for gen-
erating the steady-states (e.g., selecting them randomly).
Though this strategy sounds promising, no work was per-
formed in (Rangan et al., 2022) to attempt to theoretically
evaluate the ability of such a methodology to keep profits
above the value they would take with alternative control
laws. The development of theories which indicate how to
prevent profit reduction during active attack detection is
critical to characterizing such methods and articulating
their potential use cases. This work marks our first step
toward addressing the question of ensuring profits for an
active attack strategy like that in (Rangan et al., 2022).

2. PRELIMINARIES
2.1 Notation

2T and |x| signify the transpose and Euclidean norm of
a vector z. A class K function « : [0,a) — [0,00), where
a(0) = 0, is strictly increasing. € A/B signifies the set
{r eR": 2 € A,z ¢ B}. A level set of a positive definite
function V' is denoted by Q, := {x € R" : V(z) < p}. Ry
signifies the set of non-negative real numbers.

2.2 Class of Systems

We consider the following class of nonlinear systems:

(t) = f(x(t), ult)) (1)
where x € X C R™ and u € U C R™ represent the state
and input vectors. f is assumed to be a locally Lipschitz
nonlinear vector function of its arguments (X x U). The
system of Eq. 1 is assumed to be stabilizable such that
there exists a controller h(zx) C R™, a sufficiently smooth
Lyapunov function V' : R® — R, and class K functions,
a;(-), j=1,...,4, such that:

on (o)) < V(z) < as(Ja) (20)
W) fa b)) < —os(la) (20)
2o < aula) (20
hz) €U (2d)

Ve € D C R". Q, € D represents the “stability region”
under the controller h(z). D is an open neighborhood of
the origin. Using the assumptions of a smooth Lyapunov
function V', and a locally Lipschitz function f, the follow-
ing equations are obtained:

£~ £ 00)| < Lale — ') + Lufu—u] - (30)
P00 fww) - o < -2 @b)
(@] < My (1

Ve,2' € Q, C X, and u,u’ € U, where Ly, L, L,,, and My

are positive constants.

2.8 Lyapunov-Based Economic Model Predictive Control
(LEMPC)

This work utilizes an optimization-based control design
known as LEMPC (Heidarinejad et al., 2012) written as:
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u(tr)rgggA) /tk L.(z(7),u(r))dr (5a)
st z(t) = f(&(t), u(t)) (5b)

Z(ty) = x(ty) (5¢)
i’(t) S X, Vte [tkatk+N) (5(‘1)
u(t) S U, Vte [tkathrN) (56)
V(2(t)) < pe, VtE [tk thsn),
if #(ty) € Q. (5)
P p(00), uttn)) <
P fa(tn), @),
it #(ty) € Q,/Qp. (58)

where u(t) € S(A) is a piecewise constant input applied
over a sampling period, A. Eq. 5a is the objective to
be minimized over a prediction horizon of length NA.
Eq. 5b represents the process model. At every sampling
time, state prediction Z(t) is reset to the measurement
(Eq. 5¢). Egs. 5d-5e are state and input constraints. Eq. 5f
allows the economic operation of the process within €,,_.
If Z(tx) € Q,/9,, is satisfied, then Eq. 5f is switched
to Eq. 5g. Eq. 5g represents the contractive Lyapunov
constraint that reduces V at least as much as when
h(z) is applied. An optimization formulation that has all
the constraints in Eq. 5 except for Eq. 5f represents a
Lyapunov-based model predictive controller (LMPC) that
drives the state to the steady-state (Mhaskar et al., 2006).

3. ACTIVE CYBERATTACK DETECTION USING
LEMPC WITH PROFIT CONSIDERATIONS

As mentioned in Section 1, active detection strategies are
designed to detect cyberattacks by perturbing the steady-
state optimal operation of a process, potentially reducing
profits. However, it can be challenging to theoretically
compare the profits of a process that does not use a
cyberattack-probing detection strategy with those of one
that uses it to analyze the extent to which the probing
detection strategy reduces profits.

This may make active detection methods undesirable for
enhancing plant security. In this work, we seek to develop a
strategy for analyzing the impact of active attack detection
on process profitability by modifying the active detection
strategy discussed in (Rangan et al., 2022). The strategy
to be presented will ensure that over any sampling period,
the economic performance of an active detection strategy
that can guarantee safety at all times in the absence of
attacks is no worse than that of an LMPC over the same
time period. These proofs are made in the absence of
disturbances to focus on characterizing the effects of ac-
tive cyberattack detection methods on chemical processes
and building toward detection strategies that explicitly
account for profitability while carrying out their detection
goals. A consequence of the proposed formulation is that,
compared to (Rangan et al., 2022), the proposed profit-
focused methods may not be able to detect all actua-
tor attacks that could increase the Lyapunov function
values. However, analyzing the safety implications of an
undetected attack in such a scenario can be a focus of
future work. Profit proofs are of greatest interest in the
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absence of attacks, as the key issue which motivates their
investigation is the disruption of active attack detection to
normal operation.

The active actuator attack detection strategy in (Rangan
et al., 2022) detects actuator attacks by creating a series
of steady-states (i*" steady-states, i = 1,2,..., one for
each sampling period of operation) that the process should
track. This series of steady-states is selected such that
a Lyapunov function designed around each steady-state
should decrease between one sampling period and the next.
If it does not, an attack is flagged. To move the state
toward these steady-states, a new LMPC formulation is
used at every sampling period in Rangan et al. (2022).
It is desirable to carefully choose this series of steady-
states to avoid a significant reduction in profits due to an
active cyberattack detection policy. One method suggested
in Rangan et al. (2022) for selecting these “pseudo” steady-
states with profit considerations in mind is to determine
them using an auxiliary LEMPC (an A-LEMPC). Since
the LEMPC optimizes profits, the state that it predicts at
the end of each sampling period can be considered to be an
economically-optimal “pseudo” steady-state to reach over
a sampling period. Thus, the state at the end of one sam-
pling period in the A-LEMPC is used as the next steady-
state which should be tracked in the cyberattack-probing
strategy. The LMPC designed to move the closed-loop
state of the process toward the i*" “pseudo” steady-state
is referred to as the i** LMPC. Thus, the implementation
strategy suggested in Rangan et al. (2022) for attempting
to limit losses during active detection was to probe for
cyberattacks by designing a series of steady-states and
new i'" LMPC formulations to track these states at each
sampling period. In Rangan et al. (2022), this strategy
was presented without an attempt to theoretically analyze
the impact on profits during the active attack detection
compared to not probing for attacks.

In this work, we seek to develop theoretical guarantees
on the profit obtained over a single sampling period while
performing active attack detection. Though we are moti-
vated by the active attack detection methodology in Ran-
gan et al. (2022), that methodology is not formulated in
a manner that enables explicit guarantees on profits to
be made, because no constraints on profits tie the it"
LMPC formulations to those of the A-LEMPC. Thus,
we formulate a new methodology inspired by the active
attack detection strategy in Rangan et al. (2022) but
evaluated in the absence of disturbances to determine the
effects (on profitability) of probing for attacks by using
an optimization-based controller that tracks a series of
steady-states. However, we pair it with both: 1. an auxil-
iary LMPC (A-LMPC) against which we wish to compare
the profits over a sampling period (i.e., we wish to demon-
strate that the cyberattack-probing strategy can, over one
sampling period, produce an economic performance at
least as good as that of the auxiliary LMPC), and 2. an
auxiliary LEMPC (A-LEMPC) that is used to produce
steady-states for the series of it" LMPC’s to track, conse-
quently enabling them to have the potential to outperform
the auxiliary LMPC. The concept of using a cascade of
controllers in economic performance analysis for model
predictive control, with constraints in the A-LEMPC and
it LMPC’s designed to attempt to promote profitability
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of operation under the active cyberattack probing strategy,
is inspired by strategies in (Heidarinejad et al., 2013),
which were developed without considering active attack
probing. Our profitability analysis in this work provides a
step toward elucidating the conditions under which active
detection policies may not create severe profit loss.

3.1 Formulation of Detection Strategy

As mentioned above, our proposed strategy for ensuring
profitability during cyberattack probing over any sampling
period uses three optimization-based controllers: an A-
LMPC that is solved first at every sampling period to
determine a minimum profit that should be achieved
during cyberattack probing over the following sampling
period, an A-LEMPC that finds a steady-state for the
it LMPC to track over each sampling period, and the
it" LMPC, which computes stabilizing control actions for
the process that drive it toward the “pseudo” steady-state
computed by the A-LEMPC, which is similar in concept to
the active attack detection policy in Rangan et al. (2022).
Because the A-LMPC is meant be the profit benchmark
as a control strategy that is unaffected by the cyberattack
probing method, it is formulated according to the standard
LMPC formulation (Eq. 5 without Eq. 5f, and with Eq. 5g
applied at every sampling time).

The predictions of the closed-loop state under the A-
LMPC (denoted by the state trajectory Zq(t), t €
[tk,tk+n)) and the input policy computed by the A-
LMPC over the prediction horizon (denoted by uq(t), t €
[tk,tk+n)) are sent to the A-LEMPC. These are then
used by the A-LEMPC to predict the profit that the A-
LMPC was able to achieve under its optimal control input
trajectory. This is then used in forming a constraint in
the A-LEMPC that requires that the profit of the A-
LEMPC be at least as high as that of the A-LMPC over a
sampling period (corresponding to the relevant time period
for computing a steady-state to send to the " LMPC), as
follows:

.. (Igg)é(A) /tk L. (-i’ae (T)7 Uge (T)) dr (63)
St Zae(t) = f(Fae(t), Uae(t)) (6b)
Zae(tr) = x(ty) (6¢)
i‘ae(t) S X, Vte [tkathrN) (6d)
’U,ae(t) elU, Vte [tk7tk+N) (66)
VA(iﬁae(t)) S Peas Vite [tkatk+N)7
if Fe(t) € Q. (6f)
O] (01, e 10
- 8VAéia6(tk)) f(jae(tk)’ hA(iae(tk)))»
if jae(tk) € QPA/QlJeA (Gg)
/t " L (Fae(7), wae (7)) dr

tht1
> / Le(Zqi(7), uqi (7)) dr (6h)
tr

where the notation in Egs. 6a-6g follows that in Eq. 5, ex-
cept that the state predictions under the input trajectory

Uqe computed by the A-LEMPC are denoted by Z,e, and
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the stability region and its subset are written as ps and
pe, to distinguish them from the values used in the i‘"
LMPC. Eq. 6h provides the bound on the profits noted
above.

Eq. 6 provides process states, Zqe(tr+1) at every sampling
time ¢ to be used as “pseudo” steady-states by the i
LMPC. This is called the ith LMPC formulation since a
new formulation is determined at every sampling time,
i = 1,2,.... Bach i*" LMPC formulation is designed
around a new it “pseudo” steady-state. To connect the
profitability of this strategy with that of the A-LEMPC,
an explicit requirement is made that the profits over a
sampling period be lower bounded by those of the A-
LMPC and upper bounded by those of the A-LEMPC.
This creates the following i*"* LMPC formulation:

max / " L) () dr

w®es@)  Jy,

L (1) = fi@(t), wi(t)) (7b)
1(tk) = Iz(tk) ( )
l(t € XZ, Vte [tkatk+N) (7d)

(7e)

)
ul(t) S Ul, Vte [tk,tk+1\/)
Wil&ilte)) 1 10), walta)

Vi (zi(tr))
< S 1@t bty

/ " Le(Z41(7), uq (7)) dr

tk

(7a)

Rz Rz

Rz

T
Ox

&
=
~~
Eod
~
=
=
—
=~
—
~

< /t L (Ei(r), () dr (7e)
/tk+l Lo (Zi(7),ui(7)) dr
< /t L (Fae(T)ttae (1) dr (Th)

where Z;(tx) and f; are both written in deviation variable
form with respect to the ‘" steady-state (i = 1,2,...)
which is updated at every sampling time. x;(t;) and Z;(tx)
represent the measured and predicted states in deviation
from the i*" steady-state. Similarly, u;, X;, and U; are
all expressed in deviation variable form with respect to
the corresponding i*" steady-state. The control action
computed by the it" LMPC is the control action that is
actually applied to the process. Eqs. 7g and 7h represent
the profit constraints. In the case that the i** LMPC is
infeasible, the A-LMPC control action is applied to the
process instead. The potential that the it" LMPC maybe
infeasible could mean that the Lyapunov function may
not be guaranteed to decrease under sufficient conditions
like those in Rangan et al. (2022). When it is infeasible,
we will still consider monitoring the Lyapunov function
decease and using it as a flag for cyberattack detection
since the method in Rangan et al. (2022) inspires this
work. However, we also note that when the i** LMPC is
not feasible, an increase in the Lyapunov function value
could create false cyberattack detection alarms in certain
scenarios.

3.2 Implementation of Detection Strategy

The implementation strategy is as follows:
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(1) The A-LMPC (Eq. 5) receives a state measurement
(z(tr)) to evaluate the input and stage cost of the
process over A and N. Go to Step 2.

(2) The A-LEMPC (Eq. 6) receives z(t) along with the
associated economic costs for the A-LMPC applied
over A and N. Go to Step 3.

(3) If z(tx) € Q,,, go to Step 3(i). Else, go to Step
3(ii). (i) The A-LEMPC maximizes the economic cost
function within the region ,,. Go to Step 4. (ii)
The A-LEMPC activates the contractive constraint
of Eq. 6g at tx. Go to Step 4.

(4) The state predicted by the A-LEMPC along with the
economics of both auxiliary formulations are sent to
the it" LMPC. Go to Step 5.

(5) Conditions to be satisfied by Z4e(tx+1) before being
accepted as the i'" steady-state: (1) A region Q,,
must be determined around the i steady-state such
that Q,, C Q,. (i) ;(tk), Zae(tr+1) € Qp,, to ensure
that the actual process state does not leave the
safe region of operation. (iii) The steady-state input
corresponding to Zeq(tx11) must be within U; (iv)
zi(tr) & Q,, ,, for the Lyapunov function to decrease,
if the i'" LMPC is feasible. (v) If the i‘" LMPC is
feasible, replace its input with that of the A-LMPC.
Go to Step 6.

(6) A cyberattack is flagged if V; did not decrease over
the sampling period. Go to Step 7.

(7) (tg < tg41)- Go to Step 1.

8.8 Proofs for the Detection Strategy

This section makes theoretical guarantees related to 1)
recursive feasibility of the A-LMPC and A-LEMPC, 2)
stability of the system of Eq. 1 operated under the imple-
mentation strategy of Section 3.2 in the absence of attacks,
and 3) profitability of operation under the implementation
strategy of Section 3.2. Due to the potential infeasibility
of the i" LMPC, this strategy cannot guarantee that
cyberattacks are detected and that no false alarms are
raised, but this represents a step toward integrating an
active attack-probing strategy with economics, even if
some of the guarantees that the method can detect attacks
using the decrease in the Lyapunov function are lost in the
attempt to integrate with profits. Indeed, in the no-noise
case considered, cyberattack detection would become triv-
ial as any slight deviation of the state measurement from
a perfect prediction of the state would already indicate
the presence of an attack. Furthermore, since actuator
attacks are considered and the profit proofs rely on the
control actions being those computed by the controllers
designed in this manuscript with the various profit-based
constraints, the proofs of profits would not hold in the
presence of attacks on the actuators.

In the following proof, functions such as «;, j = 1,2, 3,4,
and h, or constants like My, L, L, and L, will have an
additional subscript ‘A’ or ‘i’ to indicate if the terms are
associated with an auxiliary controller formulation or the
it" LMPC formulation.

Theorem 1. Consider the closed-loop system of Eq. 1
under the implementation strategy of Section 3.2. The
control actions h4(-) and h;(-) are assumed to satisfy
the inequalities in Eqgs. 2a-2d. If there exist ey, > 0,
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A>0,9, CQ, CX, Q) CQna T, CQ,,
Qp% C Q,,, and:
—asi(ayi(psi)) + Ll My A < =€, /A (8)

pi > max{Vi(z;(t)) : zi(ty) € Qp, Yt C [tr, tit1)}  (9)

i(t) s wilty) € Qp, V€ [t ty41)}

(10)
where ¢ = A,1,2,.... If the initial state measurement
satisfies z;(to) € Qp,/Q,, ,, x(t) € Q,, for all t > 0 when
there are no attacks. Also, the profit under the proposed
implementation strategy is no worse than that of the A-
LMPC over a given sampling period.

Proof 1. The first part of the proof addresses feasibility of
the A-LMPC and A-LEMPC, and whether a characteriz-
able control action exists to be applied to the process at
every sampling time despite that the i** LMPC may be
infeasible. The second part demonstrates that the closed-
loop state remains within €,,Vt > 0 when no attacks
occur. The third part demonstrates that, in the absence
of cyberattacks, the profit over a given sampling period
under the implementation strategy of Section 3.2 is no
worse than under the A-LMPC over the same sampling
period.

Pmin,i Z maX{V;‘ (l‘

Part 1. To guarantee that a characterizable control action
exists at each sampling time that can be applied to
the process, we note that the i LMPC calculates the
control action to be applied to the process, but it relies
on the A-LMPC and A-LEMPC having been solved (to
formulate the constraints of Egs. 7g-7h). Thus, we first
demonstrate that the A-LMPC and A-LEMPC are feasible
at every sampling time so that the i LMPC can be
formulated. To demonstrate feasibility of the A-LMPC, we
note that under the conditions of the theorem, h4 applied
in a sample-and-hold fashion throughout the prediction
horizon is a feasible control action (ha(x(t; )) for t €
[tj,tj+1) where j = k,...,k+ N — 1). Thlb is because
ha trivially satisfies Eq. 5g, and satisfies Eq. 5d when

Z(t) € Q,, C X, which is ensured under ha(z(t;)), t €
tistiv1), J = Fk,....,k+ N —1, if 2(tx) € Q, and the
conditions of the theorem hold (x(t) € Qp,, ¥ t >0, will
be proven in Part 2). h, satisfies Eq. 5e by Eq. 2d and
trivially satisfies Eq. 5g (implemented at each sampling
period in the prediction horizon) when Egs. 8 and 10 hold.

Since the A-LMPC has a feasible solution, it will be able to
generate the profit-related constraints of the A-LEMPC.
Specifically, it will be used to generate the constraint of
Eq. 6h. In that case, u¥; (i.e., the optimal solution to the
A-LMPC) is a feamble solution. This is because it satisfies
the constraints of Egs. 6b-6h (since Eqs. 6b-6e and 6g are
also constraints of the A-LMPC and it satisfied them there,
Eq. 6f will be satisfied by uy, if z(tx) € €2, , for A-LMPC),
and Egs. 8 and 10 hold.

The i*" LMPC is not guaranteed to be feasible; however,
the implementation strategy, in step 5, directs the use of
the A-LMPC control action if the i* LMPC is not feasible.
Thus, the implementation strategy ensures that the A-
LMPC and A-LEMPC have feasible solutions so that the
i*" LMPC can be attempted to be solved, and if it is not
feasible a characterizable control action will still be applied

to the process that is guaranteed to be a feasible solution
to the A-LMPC.
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Part 2. To prove that z(t) € Q,, for all t > 0 when
zi(to) € Q,,/Qp, ,, we note that from the implementation
strategy of Section 3.2, one of two control actions will
be applied: either the solution to the i*» LMPC (if it is
feasible) or the control action computed by the A-LMPC.

If the ¥ LMPC is feasible at t, av OVilwih) (1), us (tr))

is given by:
%mz(t))fz(xz(t), u;(to)) — %ﬁft’(xi(to%ui(to))
+ %;fto))fi(a:i(to),ui(to))

< —asi(ag (psi)) + Ly My A
(11)
from Eqgs. 7f, 2a, 2b, 3b, and 4. Thus, if Eq. 8 holds, V;
will decrease over a sampling period, keeping x(t) € ,,
for t € [to,t1). A similar proof holds if instead z(ty) €
Q. /9., and the i LMPC is not feasible at to. If the

i LMPC is not feasible at to but z(to) € ©,, , Eq. 10
guarantees that x(t) € Q,,, t € [to,t1). Applying these
results recursively (with Eq. 10 also guaranteeing that
z(t) € Qp,, t € [ty,tg4+1) in sampling periods where the
i LMPC is feasible but z;(tx) € Q,, ), z(t) € Q,, at all
times under the proposed implementation strategy.

Part 3. The economic performance under the implemen-
tation strategy with probing is at least as good as that of
the stabilizing A-LMPC over any given sampling period.
To show this, we note that the A-LEMPC enforces the
constraint of Eq. 6h which forces the economically optimal
A-LEMPC to perform as well as or better than its stabi-
lizing counterpart (A-LMPC) over one sampling period.
If the 3*» LMPC is feasible, it computes a control action
that provides a profit between that of the A-LMPC and
the A-LEMPC through Egs. 7g-7h. If it is not feasible, the
control action computed by the A-LMPC is applied. Thus,
in any given sampling period, the control action applied
to the process will perform no worse than that of the A-
LMPC, whether or not the it* LMPC is feasible.

4. PROCESS EXAMPLE

In this section, we demonstrate the concept of finding
a steady-state for the " LMPC from the A-LEMPC
through a chemical process example involving a con-
tinuous stirred tank reactor (CSTR) from (Heidarine-
jad et al., 2012). The states of the system are the re-
actant concentration of species A, C4, and the tem-
perature in the reactor, T. The manipulated variables
are the inlet concentration of reactant A (Cag) and the
rate of heat transferred to the system (Q). The state
and input vectors are written in deviation variable form
with respect to the process steady-state [Cas Ti]T =
[1.22 kmol/m? 438.25 K]T (the steady-state process in-
put is [Cags Qs]7 = [4.0 kmol/m® 0 kJ/h]T). The Ex-
plicit Euler method is used to numerically integrate the
process model by using an integration step of 10™% h.
The economic cost function to be maximized is L, =
koe=B/(ET)C2% (rate of conversion of A). We design first
an A-LMPC for the system with a prediction horizon
of N = 10 and simulate the closed-loop state over one
sampling period. For the design of the stability region and
Lyapunov-based stability constraints, V = z” Pz, where
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P =[12005; 50.1], and h(x) = [h1(z) ha(x)]T has hy(z) =
0 kmol/m?® and ho(z) is governed by Sontag’s control
law (Lin and Sontag, 1991). p4 = 300 and p. 4 = 225. The
LEMPC optimization problems were solved in MATLAB
R2023a using fmincon. The process was initialized at the
state Zing = [0.21 kmol/m® 28.92 K]” (in deviation vari-
able form from the process steady-state). The constraint
of Eq. bg was only applied for the first sampling time in
the prediction horizon (instead of at each sampling period
in the prediction horizon). After one sampling period of
operation under the A-LMPC, the process profit is 0.3858.

Next, the A-LEMPC is solved (though in this case, we do
not impose a constraint on the profits as in Eq. 6h, but
instead below will discuss the likelihood that such a con-
straint is feasible based on the profit results without this
constraint). Unlike the A-LMPC, which computes control
actions that decrease the value of the Lyapunov function
over the sampling period, the A-LEMPC computes a value
of the process input that increases the Lyapunov function
value over the sampling period. This demonstrates that in
general, the i» LMPC attempting to track the trajectory
of the A-LEMPC over a sampling period may take a very
different trajectory from what would be taken by the A-
LMPC. After one sampling period of operation under the
A-LEMPC, the process profit is 0.4943. This is higher
than the profit of the A-LMPC, indicating that we would
expect the constraint of Eq. 6h to be feasible, despite that
the parameters of this simulation example have not been
rigorously selected to meet all theoretical requirements
according to Theorem 1, suggesting that even heuristic im-
plementations of the methodology presented in this work
may still have opportunity to be solvable.

The state at the end of one sampling period under the A-
LEMPC is at C4 = 1.251 kmol/m?® and T = 484.212 K.
This corresponds to steady-state inputs where the value
of Cap would be outside of the input bound for Cjyg
(the input bounds are 0.5 < Cao < 7.5 kmol/m3 and
—5 x 10° < Q < 5 x 10° kJ/h). One way of handling
this would be to attempt to formulate the i** LMPC
with a different steady-state than Z(ty41) computed by
the A-LEMPC. For example, since the i LMPC of Eq. 7
is already not guaranteed to be feasible, another steady-
state could be selected for which the corresponding steady-
state input is within the input bounds, and the stability
region for the new steady-state contains both the new
steady-state and z(tj ). The constraints of Eqgs. 7g-7Th could
then still be applied. If they are infeasible, as in the case
where the i*" steady-state came from the A-LEMPC, then
the A-LMPC control action could be used instead. Thus,
a benefit of the formulation of Egs. 7g-7h (despite the
potential infeasibility) is that the constraints which are
not guaranteed to be feasible under h; implemented in
sample-and-hold (which are the profit constraints) serve
as a sort of safe-guard for handling the issue from a profit
perspective that the value of Z(tj+1) from the A-LEMPC
was not guaranteed above to have the qualities required
by step 5 of the implementation strategy in Section 3.2.
Though one option if it does not would be to use the A-
LMPC control action instead to ensure that the profit
over the subsequent sampling period is at least as high
as that of the A-LMPC, the two profit constraint in Eq. 7
also enable heuristic searching/guess-and-check for other
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potential steady-states that might improve profits over a
sampling period compared to using the A-LMPC.

5. CONCLUSION

We demonstrated that three controllers can work together
to, in the absence of disturbances, avoid profit loss due to
active cyberattack probing over a sampling period.
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