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Abstract: This paper examines the suitability of unsupervised machine learning methods
for image analysis, within the innovative visual analytics framework for process monitoring,
and proposes a set of performance metrics that evaluate accuracy for visual analytics. The
effectiveness of the proposed method is demonstrated via a case study using real industrial data
from a steam boiler.
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1. INTRODUCTION

Systems & Control (S&C) challenges offer numerous op-
portunities for multidisciplinary research and develop-
ment, driven by technologies such as Artificial Intelli-
gence (AI), including machine learning and Big-Data (An-
naswamy et al., 2023; Daoutidis et al., 2024). Recent stud-
ies highlight the potential of machine learning methods
in providing S&C data-driven solutions through hybrid
modeling, integrating mathematical programming or rein-
forcement learning, for tasks such as monitoring, control,
and estimation of critical variables (Lawrence et al., 2024).
At the core of data-driven solutions is the massive amount
of sensor data from the process, which is increasingly
available due to improved instrumentation technologies.
However, the mere availability of sensor data does not
guarantee improved process knowledge or optimal perfor-
mance of S&C data-driven solutions (Melo et al., 2022).

Taking into account the availability of advanced computa-
tional resources for data processing, their visual analysis
has emerged as a powerful tool for extracting useful in-
sights and uncovering meaningful patterns that cannot be
revealed by traditional techniques, enhancing tasks such as
the estimation of critical variables, and operational process
monitoring. In this sense, visual analytics is an efficient
tool for analyzing massive and complex data to extract
relevant information for effective process monitoring (Hu
et al., 2018; Yousef et al., 2023). Nonetheless, challenges
persist regarding the complexity of industrial sensor data
(e.g., non-linearity, autocorrelation, and multimodality). It

is crucial to improve the interpretability, visualization, and
efficiency of S&C data-driven solutions while emphasizing
the need to balance complexity in the machine learning
techniques, and domain knowledge from process system
engineering (Daoutidis et al., 2024; Yu and Zhang, 2023).

Data-driven process monitoring is a widely adopted solu-
tion in S&C (Ji and Sun, 2022; Qin et al., 2020; Ji et al.,
2021; Chen and Jiang, 2022). It is often performed with
principal components analysis (PCA) (Apsemidis et al.,
2020; Nawaz et al., 2022). In general, data-driven process
monitoring involves the application of statistical or ma-
chine learning methods to analyze sensor data and identify
any pattern or trend indicating a potential abnormal op-
eration that can cause serious damage to operators and/or
equipment, increase downtime for maintenance, or quality
reduction of final products (Qin et al., 2020). PCA is
popular due to its dimensionality reduction capability and
representing sensor data in the form of time-series data,
by projecting it into a lower-dimensional feature space.
Subsequently, a monitoring statistic variable, devoid of
physical meaning, is calculated and then compared with
a predefined threshold. However, sensor data could be
collinear, necessitating a large amount of data, unusual
conditions are misclassified as failures, or results are poorly
interpreted (Ji and Sun, 2022). Visual analytics appears as
a good alternative to PCA-based process monitoring be-
cause it transforms sensor data into visual representations,
thereby converting process monitoring into image classi-
fication, and simultaneously enabling human supervision
(Yousef et al., 2023).
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Recent studies highlight the potential of visualization as
a tool to assist decision-makers in comprehending data
and identifying patterns (Ltifi et al., 2020). Additionally,
intuitive graphical tools are designed for classifying smart
factory operations (Wu et al., 2018), and time-series im-
ages are interpreted and analyzed using computer-vision
techniques (Yousef et al., 2023). Advanced visualization
plots were utilized to compare operating conditions using
binary alarm data and sensor data (Hu et al., 2018). How-
ever, these methods often require a substantial amount of
unlabeled, representative process information in terms of
volume and variability, with non-trivial patterns.

The main contribution of this work is to examine the suit-
ability of unsupervised machine learning (ML) methods
for image analysis within an innovative visual analytics
framework. This is done by developing a set of performance
metrics that evaluate the reconstruction image capability
and information content of the image analysis stage for
visual analytics. These metrics are used to assess the per-
formance of unsupervised ML methods in an operational
regime, emphasizing the interpretability of the results. The
operational regime in which the work is being performed
is a real-world setting where the ML methods are used to
analyze images in real-time.

The remainder of the paper is organized as follows. Sec-
tion 2 presents some relevant preliminary concepts. The
detailed methodology for visual analytics for process mon-
itoring is presented in Section 3. The effectiveness of the
proposed method is demonstrated using a case study in
Section 4, followed by concluding remarks in Section 5.

2. BACKGROUND

For better understanding, relevant preliminary concepts
are presented in this section. First, a brief description of
time-series imaging is provided, followed by a discussion
on the unsupervised ML methods for images and their
performance metrics.

2.1 Time-series imaging

Time-series imaging involves converting a series of pro-
cess variable measurements collected over time (1D data)
into a visual representation suitable for analysis by ML
methods (Yousef et al., 2023). This process provides in-
formation for any time-series (x1, x2, . . . , xn), retaining
the relationship between the original time-series and its
visually transformed representation (Wang and Oates,
2015). These methods rely on encoding mappings with
a unique inverse function, ensuring the preservation of
temporal dependency. Various encoding frameworks, such
as Gramian Angular Field, and Markov Transition Field,
enable the visualization of time-series-based images by
capturing temporal correlations, transition probabilities,
and distances between trajectories, respectively (Wang
and Oates, 2015; Jiang et al., 2022).

Gramian Angular Field (GAF): The fundamental prin-
ciple of GAF involves representing a time-series, denoted
as X, as a quasi-Gram Matrix, G, where each element cor-
responds to the trigonometric sum between different time
intervals (xi, xj) (Wang and Oates, 2015). To calculate

Fig. 1. An example of the time-series imaging of boiler
energy efficiency for a rolling time window of 128
minutes.

either the Gramian Angular Summation Field (GASF) or
the Gramian Angular Difference Field (GADF), the re-
scaled time-series X∗ (normalized to the interval [−1, 1])
is transformed into the polar coordinates. Subsequently,
GAF leverages the angular perspective by calculating the
trigonometric sum or difference between each point in
X to identify the temporal correlation within distinct
time intervals (xi, xj). GASF and GADF are defined as
follows (Wang and Oates, 2015):

GASF (xi, xj) = cos(θi + θj);

GADF (xi, xj) = sin(θi − θj),
(1)

where θi = arccos(x∗
i ) is the arc-cosine function over

normalized vector X∗.

Markov Transition Field (MTF): Markov Transition
Field (MTF) encodes dynamical transition statistics,
based on Q quantiles. Thus, a Q×Q weighted adjacency
matrix (MTF) is obtained by counting transitions among
quantile bins in the manner of a first-order Markov chain
along the time axis, as follows (Wang and Oates, 2015):

MTF(i, j) = wi,j |xi ∈ qi, xj ∈ qj (2)

The quantile bins that contain the data at time stamp i
and j (temporal axes) are qi and qj (q ∈ [1, Q]). MTF(i, j)
in the MTF denotes the transition probability of qi → qj .

Fig. 1 illustrates a representative outcome (referential re-
sults) of time-series imaging for a rolling time window of
128 minutes; computing each image channel using GASF,
GADF, and MTF methods. These results showcase no-
ticeable color variations for each channel which represent
a different method of time-series imaging.

2.2 Unsupervised ML methods for image analysis

We discuss two commonly used unsupervised ML methods
for images dimensionality reduction, namely, autoencoders
(AEs) and principal component analysis (PCA).

Principal Component Analysis: PCA is one of the most
widely adopted methods for feature extraction in time-
series data. By reducing the dimensionality of the original
data space, PCA effectively preserves relationships among
original variables through a set of latent variables in a
feature space. This preservation of information is achieved
through an eigenvector decomposition of either the covari-
ance matrix or correlation matrix corresponding to a given
dataset (Quiñones-Grueiro et al., 2019). Mathematically,
PCA involves the eigenvector decomposition of the covari-
ance matrix or correlation matrix for a given dataset D
(size n× p, where n is the number of observations and p is

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

851



the number of variables). PCA transforms D into a set of
uncorrelated variables, namely, the principal components,
represented by Z. This transformation is given by,

D = Z ·PT +E, (3)

where PT is the transpose of the eigenvector matrix
(loadings) and E is the residual matrix of uncorrelated
noise, which captures the information not accounted for
by the retained principal components. Nonetheless, PCA is
limited by the linear correlation structure of the variables
in the feature space.

Auto-encoders: AEs are a type of unsupervised ML
structures to encode input data into a lower-dimensional
representation and subsequently decode it to the origi-
nal input. They are particularly useful in handling high-
dimensional data, like images. AEs serve various purposes,
including dimensionality reduction, feature learning, de-
noising, data compression, and anomaly detection (Jaiswal
et al., 2023; Li et al., 2023). AEs could be defined as
follows:

hi = g(Wi),

Ŵi = f(hi),
(4)

where g : RL1×L2 → Rq is the encoder function to project
the input image Wi of dimensions L1 × L2 into a lower-
dimensional feature space of dimension q. hi represents
the projection of image Wi in the features space, and
f : Rq → RL1×L2 is the decoder function reconstructing
an estimated image Ŵi, expecting Ŵi ≈ Wi. Equation 4
represents the structure of the autoencoder, utilizing a
feedforward neural network for encoding and decoding,
commonly referred to as a vanilla autoencoder. An ad-
ditional variant, the convolution autoencoder, combines
the local convolution connections with the autoencoder,
introducing a reconstruction input for the convolution
operation.

3. METHODOLOGY

This section presents the detailed methodology for the
application of visual analytics in process monitoring.

3.1 Visual analytics for process monitoring of a steam
boiler

Chemical processes often deal with many process variables
and visualization of process data in 2D plots is a com-
monly adopted approach by process operators/engineers
to detect patterns and anomalies. Commonly, data-driven
process monitoring is performed by calculating Hotelling’s
T 2 statistic over the result of multivariable dimensional-
ity reduction with PCA/PLS, where T 2 statistic is com-
pared with a threshold value (Ji and Sun, 2022). Such
an approach requires having a large amount of process
data. However, these methods have limitations, including
their linear internal estimation structures, reliance on large
datasets with high sample sizes, computational cost, the
need to select the optimal number of latent variables, and
the lack of a clear physical interpretation of latent variables
in the feature space.

Through time-series imaging methods, visual analytics
offer pixel-based representations of data, providing valu-
able information and insights into process conditions. This

approach allows for generating images from a single rep-
resentative time-series variable, enabling the analysis of
patterns and textures that are interpretable by both op-
erators and artificial intelligence compared to time-series
signals. Human operators can easily comprehend how dif-
ferent patterns in the images correspond to specific op-
erational conditions, improving the interpretability of the
model. Additionally, visual analytics produce 2D images
that retain temporal dependencies from the original time-
series data, making them suitable for subsequent analysis
using computer vision tools. Therefore, such a framework
is adopted in this work for the monitoring of steam boilers.

Fig. 2 illustrates the application of visual analytics in
the process monitoring of a steam boiler using the time
series data for energy efficiency in three stages, namely,
visual representation of time-series, image analysis, and
monitoring. First, the raw time-series data for relevant
process variables are converted into images. Then, the
images are analyzed to detect anomalies using unsuper-
vised ML methods. Finally, the results of the analysis are
utilized by human operators for process monitoring and
fault diagnostics.

3.2 Performance metrics

The commonly adopted key performance metrics to quan-
tify the effectiveness of image reconstruction methods
in visual analytics are the Mean Squared Error (MSE),
Mean Absolute Error (MAE), Structural Similarity Index
(SSIM), and Peak Signal-to-Noise Ratio (PSNR). Abnor-
mal variations in two or more key performance metrics
indicate potential failure states in the steam boiler.

Mean Squared Error (MSE): It quantifies the average
of the squared differences between corresponding pixels
in the original image and the reconstructed image and is
determined as:

MSE =
1

N

N∑
i=1

(Ii − I ′i)
2, (5)

where I denotes the original image, I ′i is the image cal-
culated by the reconstruction method, and N is the total
number of pixels in the image.

Mean Absolute Error (MAE): This metric calculates the
average of the absolute differences between corresponding
pixels as follows:

MAE =
1

N

N∑
i=1

|Ii − I ′i|. (6)

Structural Similarity Index (SSIM): This metric mea-
sures the structural similarity between the original and
the reconstructed image and is expressed as:

SSIM(I, I ′) =
(2µIµI′ + c1)(2σI,I′ + c2)

(µ2
I + µ2

I′ + c1)(σ2
I + σ2

I′ + c2)
, (7)

where µI and µI′ represent the mean intensities, σ2
I and

σ2
I′ are the standard deviations, and c1 and c2 are small

constants introduced to avoid division by zero.

Peak Signal-to-Noise Ratio (PSNR): This metric quan-
tifies the ratio of the peak possible signal power to the
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Fig. 2. Overview of the application of visual analytics for process monitoring and diagnostics.

power of the noise in the image. It is often expressed in
decibels (dB) and is calculated as:

PSNR(I, I ′) = 10 · log10
(

R2

MSE

)
. (8)

Here, R denotes the maximum pixel value (e.g., 255 for
8-bit images) and MSE is the Mean Squared Error in (5).

Shannon Entropy: This metric, represented by E, is a
measure of the information content within a given source,
particularly an image (Liu et al., 2015). Consequently,
when evaluating a time-series imaging task, maximizing
entropy is desirable. This maximization ensures the max-
imum amount of information is passed on to the image
analysis stage in the visual analytics path. In this work,
the Shannon entropy (of a single-channel) Il is calculated
as (Wu et al., 2013):

E(Il) = −
L∑

k=1

p(xk) · log2(p(xk)), (9)

where L is the number of possible intensity levels in
the image; xk represents each possible intensity level in
the image; p(xk) gives the probability of occurrence of
the intensity level xk in the image (obtained from the
normalized image histogram). In the case of images with
an arbitrary number of channels, denoted by Nch, (here,
Nch = 3), the entropy is determined as the average value,
denoted by, Ē(Il), for each channel as:

Ē(Il) =
1

Nch

Nch∑
k=1

E(Il). (10)

These metrics provide diverse insights into the quality of
the reconstructed images. Lower MSE and MAE values
indicate superior reconstruction, while higher SSIM and
PSNR values suggest higher image fidelity. Additionally,
anomalous behavior in the process is indicated by unusual
variability of these computed performance indices, includ-
ing MSE, MAE, SSIM, PSNR, and Entropy. Next, the
above-mentioned unsupervised ML methods are utilized
in the process monitoring based on image analysis. Also,
the entropy of the image is used to assess the quality of
the feature extraction.

4. CASE STUDY

The applicability and effectiveness of the proposed visual
analytics framework are demonstrated through a case
study using data from a real industrial steam boiler.

4.1 Process monitoring of boilers

The case studies are performed on a time-series dataset ob-
tained from an industrial steam boiler. The data comprise
37440 measurements with a sampling period of Ts = 1
minute. To evaluate the performance of the proposed ap-
proach with distorted data, synthetic distortion was ap-
plied to the original time-series data for energy efficiency in
the form of (1) additive Gaussian noise and (2) a constant
abnormal value of −1. Time series imaging methods are
then applied in a rolling time window of 60 minutes on the
energy efficiency time-series. This creates a GASF, GADF,
and MTF matrices of dimension 32 × 32 for each time
window, resulting in an image channel per each imaging
method.

In a steam boiler, process variables are related to factors,
such as fuel and airflow, water level within the dome,
internal pressure, outlet steam temperature, pressure, and
mass flow. However, the most critical variable for process
monitoring of boiler operation is the energy efficiency
of the boiler. It is determined as the ratio between the
energy output in steam and the energy input from fuel
and blended gas flow, as follows (Baukal Jr, 2010):

η(k) =
q(k)

moil(k) ·HHVoil + fgm(k) ·HHVgm · dgm
, (11)

where q(k) is the heat transfer rate to the steam, which
depends on the steam mass flow ms and steam enthalpy;
HHVoil and HHVgm are the high heating value of oil
and blend gas fuels, respectively, while dgm stands for
the blended gas density. Please note that the values of
HHVgm and dgm are obtained from laboratory analysis.
Steam enthalpy is calculated as a function of the steam
pressure ps and temperature Ts. Results of the exploratory
data analysis are provided in Table 1, where it is observed
that maximum values are reached in the training dataset.

4.2 Results of process monitoring by visual analytics

Unsupervised machine learning methods, namely, PCA
and AE (vanilla and convolutional), were employed for
image projection into feature space and subsequent visual
analytics. Both methods were evaluated using the perfor-
mance metrics discussed in Section 3.2.
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For PCA, the optimal number of components or latent
variables was determined offline with a threshold of 95%
of total information retained, giving a result of 222 com-
ponents. The image entropy was calculated to quantify the
information derived from the time-series imaging process.
Please note that the abnormal behavior in the process
would be detected by an abnormal variability in the cal-
culated performance indices.

Now, the results from the visual analytics framework are
presented. Firstly, Fig. 3 illustrates the visual analytics
results of the performance indices for unsupervised learn-
ing methods (Convolutional AE, Vanilla AE, and PCA),
from the original energy efficiency time-series data from
the boiler. Last row of Fig. 3 shows the Hotelling’s T 2

statistics and its threshold value, as a benchmark result
of process monitoring based on multivariate analysis with
PCA and the full information from the process through
sensors data. Secondly, Figs. 4 and 5 present the visual
analytics result, now incorporating the synthetic distortion
of additive Gaussian noise in the testing data with differ-
ent values of variance: high and low, and large distance
between distorted measurements. Additive Gaussian noise
in the energy efficiency time-series could be related to a
distortion in the communications channel or the sensor’s
physical connection. Finally, Fig. 6 shows the visual ana-
lytics results with missing values, that are considered con-
stant values in the original boiler energy efficiency time-
series. Missing values in the boiler energy efficiency time-
series are related to a constant abnormal value without
physical significance (in this case, the abnormal value is
−1). In these figures, light blue, light green, and orange
windows represent training, validation, and testing data,
respectively.

4.3 Discussion

The results from visual analytics of the steam boiler are
discussed, providing some process knowledge to explain
the behavior. From Fig. 3, it is observed that MSE and
MAE increase with a sudden change in the test dataset
for all unsupervised methods. This sudden change is also
evident in the performance indices, namely, SSIM, PSNR,
and entropy, possibly explained by an abnormal calcula-
tion of the energy transferred to the steam, which dis-
torts energy efficiency calculation. According to the nor-
mal variations in the steam pressure, temperature and
combustion, the normal variations in energy efficiency are
slow and smoothed. PCA exhibits improved accuracy in
image reconstruction with small MSE and MAE, showcas-
ing its strong generalization capabilities. However, caution
must be exercised when detecting small variations and the
number of principal components chosen. Hotelling’s T 2

statistics indicate that the threshold for abnormal steam
boiler behavior is being surpassed, suggesting that there
may be false positive detections of anomalies.

Table 1. Summary statistics for the steam
boiler energy efficiency

Set N Mean Std Min 25% 50% 75% Max

Train 18,720 0.741 0.069 0.565 0.686 0.750 0.795 0.942

Validation 9,360 0.676 0.093 0.532 0.556 0.709 0.746 0.846

Test 9,360 0.589 0.046 0.519 0.574 0.586 0.600 0.828

In the cases of synthetic distortion by additive Gaussian
noise in the energy efficiency (Figs. 4 and 5), a high abnor-
mal value of MSE and MAE is observed, accompanied by
decreased values of SSIM and PSNR. This behavior can
be explained by the corruption of the normal time-series
captured by visual analytics with AE. Convolutional AE
is more sensitive to the Gaussian noise since exhibits a
slightly high value of MAE and MSE during the distortion,
compared to vanilla AE. Conversely, PCA is less affected,
where high noise did not distort MSE and MAE. Addi-
tionally, SSIM and PSNR exhibit non-drastic variations
with PCA. Note that, entropy remained unaffected by the
synthetic additive Gaussian noise with AEs.

For the synthetic distortion of the constant abnormal value
of −1 related to missing data, results in Fig. 6 show that
performance indices, namely, MAE and MSE remain con-
stant with sudden peak values highlighting the abnormal
behavior in the original time-series. Besides, SSIM and
PSNR decreases for both AE and PCA. Regarding entropy,
as shown in Fig. 6, distorted behavior is observed because
a constant value remains in an image without variability,
resulting in null entropy.

In summary, autoencoders (AE) in the visual analytics
framework prove capable of learning the expected behavior
of energy efficiency of the boiler, demonstrating its appli-
cability in the process monitoring of boilers. The abnormal
energy efficiency values are revealed as abnormal values of
the performance indices (MSE, MAE, SSIM, PSNR, or
entropy), mainly with visual analytics considering AE.

5. CONCLUSIONS

This study examined the applicability and effectiveness of
unsupervised machine learning methods, namely, principal
component analysis (PCA) and autoencoders (AEs), in
process monitoring through visual analytics. Promising
results from an industrial case study demonstrate the
capability of visual analytics to detect abnormal variations
in the energy efficiency dataset of an industrial steam
boiler. The implementation of unsupervised training in an
autoencoder designed for boiler diagnostics enables this
detection, utilizing a limited dataset. As an exploratory
work, future research may delve into a comprehensive eval-
uation of process monitoring methods and visual analytics
employing more complex ML structures for fault detection
in industrial processes, including transformers.
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