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Abstract: Control-theoretic cyberattack detection strategies are control strategies where
control theory can be used in the design of the detection policies and analysis of stability
properties with and without cyberattacks. This work provides a step toward understanding how
to diagnose cyberattacks using control-theroetic cyberattack detection mechanisms. Specifically,
we analyze the conditions under which a control-theoretic cyberattack detection strategy
developed in our prior work to handle detection of simultaneous actuator and sensor attacks can
be extended to distinguish between whether attacks are occurring on sensors or actuators. We
present and evaluate heuristic concepts for attempting to diagnose sensor attacks; these again
demonstrate the utility of control-theoretic diagnosis policies and lead to further suggestions for
such control-theoretic policies.
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1. INTRODUCTION

Cyber-physical systems (CPSs), characterized by the inte-
gration of physical process components with computer and
communication networks, can enhance the ability to mon-
itor and control industrial processes, while adding vulner-
abilities to cyberattacks on the cyber components. Detec-
tion mechanisms Narasimhan et al. (2023) Wu et al. (2018)
and resilient control Sundberg and Pourkargar (2023) have
been investigated for attempting to improve safety when
the possibility of cyberattacks on control systems exists.
The goals for securing control systems are similar to fault-
tolerant control concepts of detection, diagnosis, isolation,
and recovery (Isermann (1997); Patton and Chen (1997);
Zhang et al. (2004). However, though abnormal dynamics
due to improper functioning of a CPS may be observed in
the presence of both cyberattacks and faults, cyberattacks
are distinct from faults due to their intentionally malicious
and coordinated nature. Due to this, there is a need for
cyberattack-specific strategies for detection and diagnosis.

In our prior work Oyama et al. (2022), we investigated
detection of attacks when they could occur on both sensors
and actuators at the same time. We developed process
operation and detection strategies that, when at least
one set of sensors used by one of several redundant
state estimators is not attacked, could guarantee that
the closed-loop state is always maintained within a safe
operating region before detection (regardless of whether
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sensor and actuator attacks are occurring individually or
at once). However, despite the benefits of this strategy
in maintaining safety before detection and facilitating
detection of complex attacks, we did not provide guidance
on how it could be used to diagnose which type of attack
was occurring. As a result, we assumed that some type
of emergency procedure (e.g., plant shut-down) would be
required after the attack detection, since the location of the
attack in the system was not known. To reduce the impact
of an attack on a cyberphysical system, it may be desirable
to consider whether the part of the plant under attack
could be diagnosed, so that each piece could be dealt with
individually. In Oyama et al. (2023), we discussed ideas
for attempting to use a version of the detection strategies
implemented with distributed control toward diagnosing
attacks; however, we did not locate a clear path in moving
toward diagnosis without significant redundancy.

Motivated by these considerations, in this work, we provide
a new type of analysis of the detection strategies from our
prior work, seeking to understand whether the detection
policies themselves may carry certain diagnosis capabili-
ties. We demonstrate that under certain conditions, the
strategy from Oyama et al. (2022) can also be used in
diagnosing cyberattacks. This suggests that cyberattack
detection policies may be designed to facilitate not only
the detection of attacks, but also their diagnosis. However,
because the technique from Oyama et al. (2022) allows
diagnosis only in several restrictive scenarios, this suggests
that a further understanding of what it takes to develop
control/detection strategies that facilitate attack diagnosis
is needed. In moving toward this goal, we test a heuristic
strategy for diagnosis of attacks in simulation to seek to
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better understand principles behind diagnosis to inspire
future work on the development of detection strategies
that have both diagnosis and detection capabilities.

2. PRELIMINARIES

2.1 Notation

|x| and xT denote the Euclidean norm and transpose of
a vector x. A class K function α : [0, a) → [0,∞) is
strictly increasing with α(0) = 0. x ∈ A/B signifies the set
{x ∈ Rn : x ∈ A, x /∈ B}. A level set of a positive definite
function V is denoted by Ωρ := {x ∈ Rn : V (x) ≤ ρ}.

2.2 Class of Systems

The following class of nonlinear systems is considered:

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm (U := {u ∈ Rm : |u| ≤
umax, umax > 0}, and w ∈ W ⊂ Rz (W := {w ∈ Rz :
|w| ≤ θw, θw > 0}) are the state, input, and disturbance
vectors. f is locally Lipschitz on X×U×W , and the origin
is assumed to be an equilibrium point of the unforced
nominal system of Eq. 1 (f(0, 0, 0) = 0). We assume that a
sufficiently smooth Lyapunov function V exists, as well as
class K functions αj(·), j = 1, . . . , 4, and an asymptotically
stabilizing feedback controller h(x) for the system of Eq. 1
such that:

α1(|x|) ≤ V (x) ≤ α2(|x|) (2a)

∂V (x)

∂x
f(x, h(x), 0) ≤ −α3(|x|) (2b)∣∣∣∣∂V (x)

∂x

∣∣∣∣≤ α4(|x|) (2c)

h(x) ∈ U (2d)

∀x ∈ D ⊂ Rn where D is an open neighborhood of the
origin. Ωρ ⊂ D is called the “stability region” and is chosen
such that x ∈ X, ∀x ∈ Ωρ.

The smoothness of V , boundedness of u and w, and local
Lipschitz property of f give:

|f(x1, u1, w)− f(x2, u2, 0)|
≤ Lx|x1 − x2|+ Lu|u1 − u2|+ Lw|w| (3a)∣∣∣∣∂V (x1)

∂x
f(x1, u, w)−

∂V (x2)

∂x
f(x2, u, 0)

∣∣∣∣
≤ L′

x|x1 − x2|+ L′
w|w| (3b)

|f(x, u, w)| ≤Mf (4)

∀x1, x2 ∈ Ωρ, u, u1, u2 ∈ U and w ∈ W , where
Lx, L

′
x, Lu, Lw, L

′
w, and Mf are positive constants.

In addition, we assume that there are M sets of measure-
ments yi ∈ Rqi , i = 1, ...,M , available at tk:

yi(t) = ki(x(t)) + vi(t) (5)

where ki is a vector-valued function and vi represents
measurement noise associated with the i-th measurement
vector yi. We assume that the measurement noise is
bounded such that vi ∈ Vi := {vi ∈ Rqi : |vi| ≤ θv,i, θv,i ≥
0}, and measurements of yi are continuously available. For
each of the M sets of measurements, we assume that there

exists a deterministic observer described by the following
dynamic equation:

żi = Fi(ϵi, zi, yi) (6)

where zi is the estimate of the process state from the i−th
observer, i = 1, ..,M , Fi is a vector-valued function, and
ϵi > 0. When a controller h(zi) is used with Eq. 6 to
control the closed-loop system of Eq. 1, we assume that
Assumption 1 and Assumption 2 below hold.

Assumption 1. There exist positive constants θ∗w,θ
∗
v,i, such

that for each pair {θw, θv,i} with θw ≤ θ∗w, θv,i ≤ θ∗v,i, there
exist 0 < ρ1,i < ρ, em0i > 0, and ϵ∗L,i > 0, ϵ∗U,i > 0

such that if x(0) ∈ Ωρ1,i
, |zi(0) − x(0)| ≤ em0i, and

ϵi ∈ (ϵ∗L,i, ϵ
∗
U,i), the trajectories of the closed-loop system

are bounded in Ωρ, ∀t ≥ 0.

Assumption 2. There exists e∗mi > 0 such that for each
emi ≥ e∗mi, there exists tbi(ϵi) such that |zi(t)−x(t)| ≤ emi,
∀t ≥ tbi(ϵi).

2.3 Lyapunov-Based Economic Model Predictive Control
(LEMPC)

This work utilizes a control design known as LEMPC Hei-
darinejad et al. (2012), which is formulated as follows:

min
u(t)∈S(∆)

∫ tk+N

tk

Le(xb(τ), u(τ)) dτ (7a)

s.t. ẋb(t) = f(xb(t), u(t), 0) (7b)

xb(tk) = xa(tk) (7c)

xb(t) ∈ X, ∀ t ∈ [tk, tk+N ) (7d)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (7e)

V (xb(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ),

if xb(tk) ∈ Ωρe (7f)

∂V (xb(tk))

∂x
f(xb(tk), u(tk), 0)

≤ ∂V (xb(tk))

∂x
f(xb(tk), h(x(tk)), 0),

if xb(tk) ∈ Ωρ/Ωρe
(7g)

where u(t) ∈ S(∆) signifies that the optimal solution
is a piecewise-constant input vector with N pieces. The
prediction horizon consists of N sampling periods, where
each sampling period has a duration of ∆. The objective
function is the time-integral of the economic stage cost Le

of Eq. 7a, evaluated throughout the prediction horizon.
The state predictions xb(t) of Eq. 7b are obtained using
the nominal model of Eq. 1 where w ≡ 0 (xa is considered
to be x for the actual process from Eq. 1). The constraints
of Eqs. 7d-7e are state and input constraints, respectively.
The two Lyapunov-based stability constraints are given by
Eqs. 7f and 7g where Ωρe

⊂ Ωρ. LEMPC is implemented
in a receding horizon fashion, where the optimal input for
[tk, tk+1) (denoted u∗(tk|tk)) is applied to the process in
sample-and-hold at the beginning of each sampling period.

3. EXTENDING LEMPC-BASED CYBERATTACK
DETECTION POLICIES TO DIAGNOSIS TASKS

In Oyama et al. (2022), we developed strategies for de-
tecting attacks on sensors, actuators or both, under the
condition that not all sensors were under attack. These
strategies were investigated by building from three detec-
tion strategies originally proposed in Oyama and Durand
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(2020) for detecting sensor attacks only (the three policies
in Oyama and Durand (2020) were referred to in Oyama
et al. (2022) as Detection Strategies 1-S, 2-S, and 3-S,
where the number was used to signify one of the three
strategies from Oyama and Durand (2020) and the “S”
was used to signify that the strategies in Oyama and
Durand (2020) were developed for the detection of sensor
attacks only). In Oyama et al. (2022), we demonstrated
that a similar set of three strategies could be developed for
detecting actuator attacks, with different levels of success,
when only the actuators were attacked (this set of three
actuator attack-focused detection strategies was referred
to as Detection Strategies 1-A, 2-A, and 3-A). Some of the
sensor attack detection strategies were good at detecting
sensor attacks but their corollaries for the actuator attack
detection policies worked poorly for detecting the actuator
attacks, or vice versa. As a result, our strategy for de-
tecting attacks on sensors and actuators at once involved
combining policies that worked well for sensors with those
that worked well for actuators. The strategy of combining
Detection Strategies 3-S and 2-A will receive focus in this
work.

The Detection Strategy 3-S/2-A checks: 1) whether a set
of redundant state estimators produced estimates that
were consistent with one another (where at least one of
these estimators was assumed to not be impacted by an
attack); and 2) whether a state prediction at a time tk
(initialized from an estimate at time tk−1) was within a
bound of the state estimate received at tk. If the norm
of the difference between two redundant state estimates
was greater than a bound, or if the norm of the difference
between the prediction and the estimate was greater than
a bound, an attack was flagged. When no attacks were
flagged, under sufficient conditions (including that not all
estimators could be impacted by an attack), we guaranteed
that safety was maintained (in the sense of keeping the
closed-loop state within Ωρ at all times) until an attack
was detected.

However, this methodology was limited after the detection
of an attack. Specifically, though we assumed that complex
attacks could be occurring and provided a means for de-
tecting them before they would create safety issues at a
plant, we provided no framework for figuring out which
type was occurring (i.e., if only sensors were impacted, or
only actuators, or both, and which ones). This limits the
responses that a plant can take when an attack is flagged,
because it would not be known how to isolate the attack
under this strategy. It would be desirable for a strategy
that facilitates complex attack detection to also enable
understanding of what types of attacks have occurred, and
on what components. However, some strategies that are
capable of detecting attacks may not be able to reveal the
source of the attack with certainty. Thus, there is a need
to understand what types of characteristics of an attack
detection strategy lend themselves to also diagnosing the
attack, to inspire further research on how to design de-
tection strategies for complex attacks that have the prop-
erties of guaranteeing safety before detection, detection
when safety could be compromised, and diagnosis of the
attack to facilitate isolation of attacked equipment after
the attack is detected.

An important first step toward understanding how to de-
velop control-theoretic attack detection methods that also
permit diagnosis is to probe the extent to which Detection
Strategy 3-S/2-A permits diagnosis. This can then be used
to help indicate properties of a control-theoretic attack
detection method that make it strong or weak with respect
to diagnosis, aiding with the development of strategies
which overcome weaknesses in future detection strategy
developments. The studies indicate that under specific
circumstances, Detection Strategy 3-S/2-A can diagnose
whether an attack is occurring on the sensors or the
actuators, but cannot diagnose all attacks.

To further build understanding toward how to create cy-
berattack diagnosis characteristics in cyberattack detec-
tion policies, we use simulations to evaluate a heuristic
concept for diagnosing attacks (one that has no theoretical
backing). Despite its heuristic nature (which causes it to
not perform well at the diagnosis task), this simulation
inspires additional concepts regarding how the control-
theoretic detection bounds in Oyama et al. (2022) might
be utilized toward diagnosis.

3.1 Evaluating Detection Strategy 3-S/2-A for Diagnosis
Properties

In this section, we analyze the ability of Detection Strategy
3-S/2-A to aid with diagnosing cyberattacks. We do not
consider any means for diagnosis of undetected attacks
(since abnormal behavior is not flagged when an attack is
undetected, there is nothing known to diagnose).

Detection Strategy 3-S/2-A requires an output-feedback
LEMPC of the form of Eq. 7, with x(tk) replaced with
z1(tk). Concurrently, it considers that there exist con-
verged redundant state estimators which are able to es-
timate the full state of the system within a bound of
the actual process state (denoted xa) through the use
of a subset of the state measurements, in the absence of
cyberattacks. In addition to the redundant estimators, a
state estimate z1(tk) is used as an initial condition for
numerically integrating the nominal model of Eq. 7b under
an input similar to that calculated by the LEMPC to
compute a state prediction xb at tk+1. At each sampling
time tk, state estimates from the redundant estimators,
zi(tk) and zj(tk), i = 1, ...,M, j = 1, ...,M , are compared
with each other to determine whether a bound indicating
a sensor attack is violated. Also, the estimate z1(tk) is
compared with the state prediction xb(tk|tk−1) (indicating
a prediction of the value of the state at tk based on
an estimate from tk−1) to indicate whether an attack is
present.

The diagnosis properties of Detection Strategy 3-S/2-A are
strongly tied to a number of theoretical results regarding
how bounds are set on the two detection metrics (the
metrics focused on a comparison between state estimates
and on a comparison between a state prediction and
state estimate). Therefore, we review a number of these
theoretical results that will be used in presenting the
diagnosis properties.

Proposition 3. (c.f. Oyama and Durand (2020)) The fol-
lowing derivation of a bound on the difference between two
redundant estimates in the absence of an attack holds:
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|zi(t)− zj(t)| = |zi(t)− xa(t) + xa(t)− zj(t)|
≤ |zi(t)− xa(t)|+ |xa(t)− zj(t)|

≤ ϵij := (e∗mi + e∗mj) ≤ ϵmax := max{ϵij}
(8)

Proposition 4. (c.f. Oyama and Durand (2020)) Consider
the system of Eq. 1 under the output feedback LEMPC
of Eq. 7 (with xb(tk) replaced with z1(tk)). M > 1 state
estimators independently estimate the state of the system,
and at least one estimator is not impacted by false state
measurements. Assuming attacks do not occur until after
the state estimators are converged (denoted by time tq,
when |zi(t)− x(t)| ≤ e∗mi∀i = 1, ...,M), if a cyberattack is
not flagged at tk, then the worst-case difference between
zi, i ≥ 1 and the actual state of the system xa(tk) is given
by

|zi(tk)− xa(tk)| ≤ ϵ∗M := ϵmax +max{e∗mj}, j = 1, ...,M
(9)

Definition 5. (c.f. Oyama et al. (2022)) Consider the state
trajectories for the actual process xa and for the predicted
state xb from t ∈ [tk, tk+1), which are the solutions of the
systems:

ẋa = f(xa(t), ū(t), w(t))

ẋb = f(xb(t), û(t), 0)
(10)

where |xa(tk) − z1(tk)| ≤ γ. ū is the optimal input for
t ∈ [tk, tk+1) computed from the output-feedback LEMPC
of Eq. 7 based on the estimate z1(tk) of the actual state
at tk, where xb(tk) = z1(tk). û is an input used to
calculate a state prediction that results in the trajectory
xb corresponding to the predicted value of the closed-loop
state. The following bound between the optimal input and
the input used for state prediction is assumed to hold:

|ū(t)− û(t)| ≤ ϵu (11)

Proposition 6. (c.f. Oyama et al. (2022)) Consider the
systems defined in Definition 5 operated under the output-
feedback LEMPC of Eq. 7 (where xb(tk) is replaced
with z1(tk)) and designed based on the controller h(·),
(assumed to satisfy Eq. 2 and Lipschitz continuity of each
component). The following bound holds:

|xa(t)− xb(t)| ≤ fu(γ, t) (12)

and initial states |xa(t0) − xb(t0)| ≤ γ, where xb(t0) =
z1(t0) and t0 = 0:

fu(s, τ) := seLxt + (eLxt − 1)(
Luϵu + Lwθ

Lx
) (13)

Proposition 7. (c.f. Oyama et al. (2022)) Consider the
systems xa and xb defined in Definition 5 operated under
the output-feedback LEMPC of Eq. 7 (where xb(tk) is
replaced with z1(tk)). If |zi(tk) − zj(tk)| < ϵmax and
|zi(tk+1) − zj(tk+1)| < ϵmax, i = 1, ..,M , j = 1, ...,M ,
and Eq. 11 holds in the absence of an attack, then the
following bound on the error between the state estimate
z1(tk+1) and the state prediction xb(tk+1|tk) based on an
estimate obtained at time tk in the absence of cyberattacks
holds:

|z1(tk+1)− xb(tk+1|tk)| ≤ ϵ∗M + fu(ϵ
∗
M ,∆) (14)

In Oyama et al. (2022), it was suggested that a thresh-
old could be placed on |z1(tk+1) − xb(tk+1|tk)| to aid
with attack detection. Specifically, in the absence of at-
tacks, |z1(tk+1) − xb(tk+1|tk)| should never exceed ϵ∗M +
fu(ϵ

∗
M ,∆). Thus, if νu represents a threshold on |z1(tk+1)−

xb(tk+1|tk)| above which attacks are flagged, setting the

threshold to ϵ∗M+fu(ϵ
∗
M ,∆) would prevent false detections.

The two major components of the Detection Strategy
3-S/2-A are therefore: 1) checking whether |z1(tk+1) −
xb(tk+1|tk)| > νu and 2) checking whether |zi(tk) −
zj(tk)| > ϵmax, i = 1, ..,M , j = 1, ...,M .

We can now begin to analyze the conditions under which
those two detection bounds are violated, and assess
whether these have implications for diagnosing attacks.
For example, consider the detection metric |zi(t)−zj(t)| ≤
ϵmax, i, j = 1, . . . ,M . If we consider that an attack can
only occur after the state estimate is converged (and
that the state estimates remain converged regardless of
which control action is applied, including if rogue control
actions are applied in an actuator attack), then violation
of this bound can happen only if sensors are attacked. The
conclusion is that violation of this metric signifies that at
least a sensor attack is occurring (however, violation of this
bound does not provide sufficient data to indicate that an
actuator attack is occurring or is not occurring).

In addition, we can analyze the conditions under which
|z1(tk+1) − xb(tk+1|tk)| > νu ≥ ϵ∗M + fu(ϵ

∗
M ,∆)). When

|zi(t) − zj(t)| ≤ ϵmax, i, j = 1, . . . ,M , and not all
estimates are impacted by a sensor attack, ϵ∗M is an upper
bound on terms related to estimate and state measurement
deviations used in deriving this expression, indicating that
the cause of the violation of the bound is that |xa(tk+1)−
xb(tk+1|tk)| > fu(ϵ

∗
M ,∆), which would be occurring due

to the value of ϵu not being respected in fu. This would
suggest that at least an actuator attack is present on the
system if this detection metric is violated (and if the other
detection bound is not violated). This does not guarantee
that there is not an undetected sensor attack. Overall, this
indicates that extreme attacks on sensors (enough to cause
the first detection bound to be violated) can reveal that
at least sensors are attacked (but do not show if actuators
are attacked), that extreme attacks on actuators (enough
to cause the second detection bound to be violated) can
reveal that at least actuators are attacked (but that would
not show if there is an undetected sensor attack), but
that if both detection bounds are violated, it would be
known that at least a sensor attack is occurring but that
it could not be clarified whether the sensors are causing the
second detection bound to be violated or if there is also an
actuator attack. Based on this analysis, an implementation
strategy and a theorem that highlights this result are
presented below.

An implementation strategy for this sensor and actuator
attack distinguishing concept follows, where we consider
the set of redundant estimators to be z1 and z2 and assume
that the process has been run in the absence of attacks for
some time tq, so that |zi(t)− x(t)| ≤ e∗mi∀i = 1, 2:

(1) At a sampling time tk, the output-feedback controller
receives the state estimate z1(tk) and computes in-
puts for each sampling period from tk to tk+N . The
input u∗(tk) is applied to the process.

(2) Evaluate |z1(tk)− z2(tk)|. If |z1(tk)− z2(tk)| > ϵmax,
go to Step 4a. Else, solve the LEMPC optimization
problem and send the first input to the process.
Calculate xb(tk+1|tk) based on z1(tk). Proceed to
Step 3.
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(3) Evaluate |z1(tk+1) − z2(tk+1)|. If it is greater than
ϵmax, go to Step 4a. Else, go to Step 4.

(4) Evaluate |z1(tk+1)− xb(tk+1|tk)|. If it is greater than
νu, go to Step 4b. Else, no attacks are detected on
the system, proceed to Step 5.
(a) Detect that at least a sensor is being attacked

and apply mitigating actions.
(b) Detect that an actuator is being attacked and

apply mitigating actions.
(5) Set tk ← tk+1. Go to Step 1.

The following theorem characterizes the conditions under
which the strategy above guarantees detection of a sensor
attack or the detection of an actuator attack in the case
that M = 2 and one of the estimates is not impacted by
an attack.

Theorem 8. Consider xa and xb defined in Definition 5,
where xb(tk) = z1(tk), and one of the two estimates
z1 or z2 is not impacted by an attack. Assuming the
bound of Eq. 11 and bounded measurement noise and
disturbances, if |z1(tk) − z2(tk)| > ϵmax, or if |z1(tk+1) −
z2(tk+1)| > ϵmax but |z1(tk+1) − xb(tk+1|tk)| ≤ νu, a
false sensor measurement attack is present in the system.
If instead |z1(tk+1) − z2(tk+1)| ≤ ϵmax but |z1(tk+1) −
xb(tk+1|tk)| > νu, then an actuator attack is present in
the control system.

Proof. To prove Theorem 8, we first note that |z1(tk) −
z2(tk)| > ϵmax may only occur if either z1(tk) or z2(tk)
violates |zi(t)− x(t)| ≤ e∗mi (i = 1 or 2) since:

|z1(t)− z2(t)| ≤ |z1(t)− xa(t)|+ |xa(t)− z2(t)|
≤ e∗m1 + e∗m2 ≤ ϵmax

(15)

in the absence of attacks. Thus, either |z1(t)−xa(t)| > e∗m1
or |xa(t)− z2(t)| > e∗m2, indicating an attack is occurring
on some sensors. Next, assuming no sensor attack is
detected on the system, since |z1(tk+1) − xb(tk+1|tk)| ≤
|z1(tk+1) − xa(tk+1)| + |xa(tk+1 − xb(tk+1|tk)| ≤ ϵ∗M +
fu(ϵ

∗
M ,∆) ≤ νu when there are no attacks Oyama et al.

(2022), and νu is selected such that νu ≥ ϵ∗M + fu(ϵ
∗
M ,∆),

then if |z1(tk+1) − xb(tk+1|tk)| > νu, this implies that
somehow the reverse of the situation in the no-attack
case occurred. The reason for that reversal could not be
that sensors were attacked, since ϵ∗M is defined as an
upper bound on |zi(tk) − x(tk)| when sensor attacks are
undetected by checking whether |z1(tk) − z2(tk)| ≤ ϵmax.
Thus, the reason for the reversal must lie in an issue
with the term fu(ϵ

∗
M ,∆) not upper bounding |xa(tk+1)−

xb(tk+1|tk)|, which could occur if the bound on |ū(t)−û(t)|
is not respected (indicating an actuator attack).

3.2 Investigations in Cyberattack Diagnosis Through a
Chemical Process Example

While the strategy described in Section 3.1 under certain
conditions may provide more information about which
set components of a system are affected by a cyberat-
tack, to achieve diagnosis, the specific components which
are affected by the attack must be located. Determin-
ing strategies which locate attacked components requires
analyzing potential methods which meet detection and
safety requirements, including under complex attacks, and
also facilitate diagnosis. The design of such a strategy
improving on detection strategies to enable diagnosis ca-

pabilities is not immediately obvious. Therefore, it is
necessary to investigate potential directions to elucidate
what is required for a cyberattack diagnosis strategy. To
inspire concepts for diagnosis, we analyze a simulation of a
naive idea for cyberattack diagnosis. The specific concept
is inspired by an LEMPC-based sensor attack detection
strategy from Oyama and Durand (2020). Specifically,
in Oyama and Durand (2020), a method for attack detec-
tion is presented that operates a process in a manner that
should decrease the Lyapunov function between certain
sampling periods. Specifically, the controller for the system
is randomly switched to an LEMPC designed around a
new steady-state and with the constraint of Eq. 7g always
utilized, so that the value of the Lyapunov function for this
i-th steady-state (Vi) should decrease over the subsequent
sampling period (a lack of decrease would flag an attack).
As a naive concept for diagnosis inspired by this detection
strategy, we will analyze whether analyzing components
of the time derivative of the Lyapunov function (and
whether they are increasing or decreasing) could provide
any guidance toward attack diagnosis.

A Lyapunov function is scalar-valued (and therefore has a
scalar-valued time derivative); however it is constructed

from the dot product of two vectors, ∂Vi(xi(tk))
∂xj,i

and

fj,i(xi(tk), ui(tk), 0), where, fj,i represents the j-th compo-
nent of a vector function fi that represents f in deviation
variable form with respect to the i-th steady-state (xi and
ui represent the state and input vectors in deviation form
from this steady-state, where xj,i is the j-th component of
this deviation form of the state vector). Here, we explore

patterns in the variation of each term in V̇i under normal
operation (to evaluate whether there would be benefits
in exploring the variations when a cyberattack occurs on
the sensors). Specifically, assuming that we wish to see

a decrease in V̇i (inspired by the cyberattack detection
concept mentioned above), we will calculate each term

in V̇i separately to determine if any of these terms are
individually contributing positive values to V̇i that might
make it less likely to decrease, whether this is indicative
of abnormal behavior, and if this may be used as part of
a strategy for diagnosing sensor cyberattacks (e.g., if no
positive terms are observed under normal behavior, then
observing positive terms may be indicative of a cyberat-
tack on the sensor measuring the state contributing the
positive term). In general, V̇i can be a complex function of
interactions of multiple states, so that isolating effects in
individual terms may not be possible; however, exploring
how this diagnosis idea performs can still give insights to
guide further diagnosis ideas.

We analyze this concept with a Lyapunov-based con-
trol law using a continuous stirred tank reactor example
from Alanqar et al. (2015). The parameters and dynamic
model are taken from Alanqar et al. (2015) and the states
are the reactant concentration CA and temperature T .
CA0 (the reactant feed concentration) is set to 4 kmol/m3

and Q (the heat rate) is bounded between −5 × 105 ≤
Q ≤ 5 × 105 kJ/h. The Lyapunov-based controller is
designed using the Lyapunov function V1 = xTPx, where
P = [1200 5; 5 0.1]. The stabilizing controller for Q was
designed via Sontag’s control law Lin and Sontag (1991).
The process was run for 0.15 h, with an integration step

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

610



Fig. 1. Time derivative of V along the state trajectories of
CA (above) and T (below).

in the Explicit Euler numerical integration method of
10−4 h. The initial condition is CA = 0.823 kmol/m3

and T = 446.25 K. The values of ∂V
∂x1

ẋ1 and ∂V
∂x2

ẋ2) are

plotted (with x1 and x2 representing the states CA and
T in deviation form from the steady-state corresponding
to CA = 1.22 kmol/m3, T = 438.2 K, and Q = 0 kJ/h.

Though V decreases, the individual terms comprising V̇
are not necessarily always negative during normal opera-
tion. This is due to a combination of the controller and
the process dynamics. For a strategy like this to be able to
be used in diagnosis, it would need to be possible to find a
process with a compatible control law such that the closed-
loop dynamics cause V̇ to be negative with each term being
negative. This provides insights into how one might begin
to conceive of ways of creating diagnosis methods, and the
specifications of good diagnosis strategies.

Other ideas for incorporating diagnosis in LEMPC-based
methods for cyberattack detection could utilize other de-
tection metrics. For example, if the sensor noise associated
with each sensor in the system can be characterized, it may
be possible to utilize a strategy similar to the detection
strategy from Oyama and Durand (2020) based on detect-
ing attacks when a state prediction and measurement were
not sufficiently close to one another. Instead of a bound
placed on the Euclidean norm of the difference between
the state prediction and state measurement as is done
in Oyama and Durand (2020) for detection, one could
consider placing separate bounds on the Euclidean norm
of the difference of each element in the state prediction
and state measurement vectors. Specifically, instead of the
bound |xb(tk|tk−1 − xb(tk|tk)| > ν, developing bounds
on individual states of the system (e.g. |xbi(tk|tk−1 −
xbi(tk|tk)| > νi, i = 1, ..., n) may be an idea for diagnosing
which sensor in the control system is being attacked. The
fact that the heuristic strategy explored in this section
does not have a clear pathway to being used without
potential false detection indicates that strategies which
integrate detection, control, and diagnosis policies with
control-theoretic guarantees pose significant benefits in
streamlining the attack detection process.

4. CONCLUSIONS

In this work, in moving towards the development of a
control-theoretic cyberattack diagnosis strategy, we pre-
sented an LEMPC-based cyberattack detection method
which provides more information about the location of
a cyberattack on a cyber-physical system relative to our
prior cyberattack detection strategies in terms of distin-
guishing whether an attack is present on the set of actua-
tors or on the set of sensors.
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