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Abstract:
This paper focuses on the optimization of crude oil operations scheduling in a refinery that
is supplied with crude oil by ship. One of the main challenges associated with the crude oil
operations scheduling problem is the management of crude storage in tanks. Since storage
capacity is limited and there are several types of crude oil depending on their composition,
it is necessary to store mixtures of crude oil in tanks. This feature makes necessary the
inclusion of nonlinear, non-convex constraints, which complicates the resolution of mathematical
programming models. To address this problem, we have developed a mathematical programming
model based on a continuous-time formulation using time slots, along with a strategy based on
piecewise McCormick relaxation that allows us to efficiently handle the nonlinear constraints
generated by blending crude oils in tanks.

Keywords: Modelling and decision making in complex systems, Efficient strategies for large
scale complex systems, Production planning and control, Optimization and control of
large-scale network systems, Complex logistic systems.

1. INTRODUCTION

In this paper, we address the problem of optimizing the
scheduling of crude oil operations in a refinery supplied
with crude oil by ship. We analyze a system composed
of a marine terminal and an oil storage and processing
unit connected by a pipeline. The terminal serves as the
location for unloading the crude oil transported by the
ships. We consider a single dock terminal, which allows
the unloading of one ship at a time.

Concerning the storage and processing section, it is di-
vided into two areas: the storage tank area and the crude
distillation unit area. The first is connected to the marine
terminal by a pipeline and, as the name suggests, consists
of tanks for storing crude oil received from the terminal.
Most refineries have two types of tanks: storage tanks,
which receive and store crude oil from ships, and charging
tanks, used for creating blends to feed distillation units,
meeting certain quality specifications. Due to the tradi-
tional operation of refineries utilizing both types of tanks,
a wide variety of articles addressing the optimization of
crude oil operations scheduling in such refineries have been
published in recent decades (Lee et al. (1996), Mouret et al.
(2009), Castro and Grossmann (2014), Yang et al. (2020)).
However, some refineries opt to eliminate charging tanks to
save space and reduce immobilized capital. Instead, they
implement online mixing in the pipelines feeding the crude

distillation units (CDUs) using a suitable control system.
While researchers have studied this case, there is a smaller
number of published works focusing on this type of refinery
(Cerdá et al. (2015), Garćıa-Verdier et al. (2022)).

An important characteristic present in both cases is that
the concentration of crude oil in the outflow of a tank
must be equal to the concentration inside the tank. This
behavior is represented by a set of nonlinear non-convex
constraints that give rise to mixed-integer nonlinear pro-
gramming (MINLP) models that are difficult to solve.
In the literature, we can find works proposing different
strategies to address this problem. For example, in de Assis
et al. (2017), the authors propose a two-step MILP-NLP
decomposition algorithm, where the mixed-integer linear
programming (MILP) model is obtained by replacing each
side of the nonlinear constraint with piecewise McCormick
envelopes. Also, the work presented in Castro and Gross-
mann (2014) introduces a two-step MILP-NLP algorithm,
where the bilinear blending constraints are relaxed using
multiparametric disaggregation. This technique involves
discretizing one of the variables of the bilinear term over
a set of powers. In Garcia-Verdier et al. (2024), the au-
thors propose a two-step MILP-NLP algorithm, where the
approximate MILP formulation is obtained by replacing
the nonlinear constraint with linear constraints, which
determine that a tank maintains the initial crude con-

12th IFAC International Symposium on
Advanced Control of Chemical Processes
July 14-17, 2024. Toronto, Canada

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative Commons License CC-
BY-NC-ND.

68



Terminal

Storage
tanks

Pipeline

CDUs
Mixing
pipelines

.  .  .

O1

O2

O3

O10

O11

O14

O15

O4

O5

O8

O9

.  .  .

O17

O16

Fig. 1. Schematic of refinery

centration until the moment it receives crude oil from a
ship. It is worth noting that in none of the cases is a
procedure proposed in case the nonlinear programming
(NLP) solution is infeasible.

Continuing with the description of the system, the tanks
are connected to the crude distillation unit area through a
piping system (mixing pipelines), where the final mixtures
of crudes take place to achieve the desired flows and
properties required by the different crude distillation units
(CDUs). All operations are subjected to multiple rules and
constraints, among them, the arrival over time of different
types and amounts of crude, and the fulfillment of the
company production plan. Figure 1 shows a schematic of
the refinery under study, which has only storage tanks.

The aim of this work is to develop a novel model consisting
of a network of interconnected resources (ships, tanks, and
units) to solve the crude oil operations scheduling problem
in a refinery that has only storage tanks that store crude
oil blends. In this model, each ship has one associated
outbound operation, each tank has one inbound and
one outbound operation, and each unit has one inbound
operation.

Furthermore, the model is based on a continuous-time
formulation using time slots (Méndez et al. (2006)), and
each operation has its own time grid. Although the set of
postulated slots is unique and equal for each operation,
the optimization process will assign the necessary slots to
each operation to obtain the optimal solution.

To establish the connections between resources, pairs of
operations (o, o′) are defined to indicate that the execution
of operation o can trigger the execution of operation o′.

For example, suppose we have operation O1 representing
the unloading of ship 1, and operation O4 representing the
loading of tank 1, which may receive crude oil from that
ship. In this case, the pair (O1, O4) exists because the
unloading of ship 1 may lead to the loading of tank 1.

To address the nonlinear non-convex constraints, we
present a new approach that consists of expressing these
constraints as functions of a variable that represents the
proportion of each crude oil in the tanks. Then, an approx-
imate MILP model is obtained based on McCormick en-
velopes. From the solution of this MILP, we fix the binary
variables of the original MINLP and solve the resulting

NLP. Finally, if a feasible solution is not obtained, a cut is
added to the MILP model, and the procedure is repeated.

The rest of the paper is structured as follows. The pro-
posed mathematical formulation is described in Section 2.
The solution procedure for the MINLP model is discussed
in Section 3. Next, a problem instance and computational
results are reported in Section 4. Finally, conclusions are
given in Section 5.

2. MODEL FORMULATION

In this section, we present the MINLP model, which is for-
mulated based on a continuous-time approach using time
slots. The following assumptions have been considered in
formulating the mathematical programming model:

• Only one vessel can unload at a time.
• A vessel that starts unloading crude oil can only leave

the terminal when it is completely empty.
• Each ship is dedicated to carrying a single type of

crude, and the volume of the pipeline is considered
negligible compared to the volume being unloaded.

• A tank cannot simultaneously receive crude oil from
a vessel and feed a CDU.

• The simultaneous loading of tanks from each vessel
is limited to a maximum number, and no transfer
between tanks is allowed.

• Each tank can feed only a limited number of CDUs
at any one time.

• There is a maximum number of tanks that can feed
a CDU at one time, with negligible time required for
tank changeovers.

• Perfect mixing of crudes is assumed in the mixing
pipelines.

• Continuous feeding of crude distillation units is
mandatory.

2.1 Notation

Sets

• C = types of crude oils
• K = key properties
• M = mixtures
• N = time slots
• O = operations
• INo = {O4, O5, O6, O7, O8, O9, O16, O17} are the

input operations.
• OUTo = {O1, O2, O3, O10, O11, O12, O13, O14,

O15} are the output operations.
• OPO = pair of operations (o, o′), where operation o

can activate operation o′

• R = resources
• RS = tanks
• RU = crude distillation units
• RV = vessels
• INRr = pair (o, r), o is an input operation of r
• OUTRr = pair (o, r), o is an output operation of r
• V = partitions of piecewise McCormick relaxation

Parameters

• AT r = arrival time of ship r
• CDMGb = demurrage or sea waiting cost
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• CTDN b = departure tardiness cost
• DEMm = total demand of mixture m
• EDr = expected departure time of ship r
• GM c = gross margin
• H = horizon length
• I0r = initial inventory in tank r
• KP c,k = property value k in crude of type c
• KPm,k = lower bound of property k in mixture m

• KPm,k = upper bound of property k in mixture m
• TS = settling time for tanks
• V Cr,c = volume of crude c transported by ship r
• V P o,n,o′,n′ = lower bound of volume transferred by
operation o during slot n to operation o′ assigned to
slot n′

• V P o,n,o′,n′ = upper bound of V P o,n,o′,n′

• V PMC1
o,n,o′,n′,c,v = lower bound of V PMC1

o,n,o′,n′,c,v

in partition v

• V PMC1
o,n,o′,n′,c,v = upper bound of V PMC1

o,n,o′,n′,c,v

in partition v
• V T o,r = minimum rate of operation o in resource r

• V T o,r = maximum rate of operation o in resource r
• αMC1

o,c,n,v = lower bound of αMC1
o,c,n,v in partition v

• αMC1
o,c,n,v = upper bound of αMC1

o,c,n,v in partition v

Continuous variables

• DMGr = demurrage of vessel r
• DOP o,n = duration of operation o in slot n
• FOo,n = end time of operation o in slot n
• Ir,n = inventory level in tank r at the end of slot n
• IINr,n = inventory level in tank r after receiving a
load during slot n

• IINCr,n,c = inventory level of crude c in tank r after
receiving a load during slot n

• IOo,n = start time of operation o in slot n
• TARr = departure tardiness of vessel r
• V P o,n,o′,n′ = volume transferred by operation o dur-

ing slot n to operation o′ assigned to slot n′

• V PCo,n,o′,n′,c = volume transferred of crude c by
operation o during n to operation o′ assigned to n′

• V PMC1
o,n,o′,n′,c,v = value of V P o,n,o′,n′ in v

• V T o,n = total volume transferred by operation o
during slot n

• V TCo,n,c = total volume transferred of crude c by
operation o during slot n

• V TCMo,n,c,m = total volume transferred of crude c
in mixture m by operation o (input to CDU) during
slot n

• V TMo,n,m = total volume transferred of mixture m
by operation o (input to CDU) during slot n

• αo,c,n = auxiliary variable representing ratio of inven-
tory level variables

• αMC1
o,c,n,v = value of αo,c,n in partition v

Binary variables

• Wo,n = indicates assignment of operation o to slot n
• WMo,n,m = indicates if operation o assigned to slot

n transfers mixture m
• Xo,n,o′,n′ = indicates if (o, n) produces (o′, n′)
• Zo,c,n,v = indicates activation of partition v

2.2 Constraints

In order not to exceed the established page limit, certain
constraints have been omitted. The most important con-
straints are listed below.

The pair (o, n) can produce the pair (o′, n′), as long as
operations o and o′ have been assigned to slots n and n′,
respectively.

Xo,n,o′,n′ ≤ Wo,n o, o′ ∈ OPO n, n′ ∈ N (1)

Xo,n,o′,n′ ≤ Wo′,n′ o, o′ ∈ OPO n, n′ ∈ N (2)

The volume transferred by an operation o assigned to slot
n to an operation o′ assigned to slot n′ must be equal to
the sum of the volumes transferred for each crude oil.

V P o,n,o′,n′ =
∑
c∈C

V PCo,n,o′,n′,c

o, o′ ∈ OPO, n, n′ ∈ N

(3)

The lower and upper bound for V P o,n,o′,n′ are set by (4)
and (5), respectively.

V P o,n,o′,n′ ≥ V P o,n,o′,n′ ∗Xo,n,o′,n′

o, o′ ∈ OPO, n, n′ ∈ N
(4)

V P o,n,o′,n′ ≤ V P o,n,o′,n′ ∗Xo,n,o′,n′

o, o′ ∈ OPO, n, n′ ∈ N
(5)

The total volume transferred by operation o must be equal
to the sum of the volumes transferred to each operation
o′.

V T o,n =
∑

o′∈OPO

∑
n′∈N

V P o,n,o′,n′ o ∈ INo, n ∈ N (6)

The total volume of operation o′ must be equal to the sum
of the volumes received from each operation o.

V T o′,n′ =
∑

o∈OPO

∑
n∈N

V P o,n,o′,n′

o′ ∈ OUTo, n′ ∈ N

(7)

The total volume transferred by operation o assigned to
slot n must be equal to the sum of the total volumes of
each crude oil.

V T o,n =
∑
c∈C

V TCo,n,c o ∈ O, n ∈ N (8)

The lower and upper bound for V T o,n are set by (9) and
(10), respectively.

V T o,n ≥ V T o,r ∗DOP o,n

o ∈ INRr ∪OUTRr, n ∈ N, r ∈ R
(9)

V T o,n ≤ V T o,r ∗DOP o,n

o ∈ INRr ∪OUTRr, n ∈ N, r ∈ R
(10)

The start time, end time, and duration of operations are
given by (11), (12), and (13).

IOo,n+1 ≥ FOo,n o ∈ O, n ∈ N \ {n|N |} (11)

FOo,n = IOo,n +DOP o,n o ∈ O, n ∈ N (12)
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DOP o,n ≤ H ∗Wo,n o ∈ O, n ∈ N (13)

Operations cannot finish after the horizon end date.

FOo,n ≤ H o ∈ O, n ∈ N (14)

Constraint (15) states that the start of the unloading of
a tank (i.e., operation o′) must be later than the end of
the loading of the same tank (i.e., operation o), plus the
settling time TS, as long as both operations were assigned
to the same slot n, or if the unloading operation was
assigned to a slot n′ after n.

IOo′,n′ ≥ FOo,n + TS −H ∗ (2−Wo,n −Wo′,n′)

o ∈ INRr, o′ ∈ OUTRr, n, n′ ∈ N, n′ ≥ n, r ∈ RS
(15)

Constraint (16) states that the start of the loading opera-
tion of a tank must be later than the end of the unloading
operation, as long as the unloading operation has been
assigned to a previous slot.

IOo,n ≥ FOo′,n′ −H ∗ (2−Wo,n −Wo′,n′)

o ∈ INRr, o′ ∈ OUTRr, n, n′ ∈ N, n′ < n, r ∈ RS
(16)

The inventory level of tank r at the end of slot n is
equal to the initial inventory, plus the volumes of all
loadings received up to that time, minus the volumes of
all discharges performed up to that time.

Ir,n = I0r +
∑

n′∈N,n′≤n

V To,n′ −
∑

n′∈N,n′≤n

V To′,n′

o ∈ INRr, o′ ∈ OUTRr, n ∈ N, r ∈ RS

(17)

Constraint (18) establishes the inventory level of tank r
during slot n, after receiving a charge and before discharg-
ing. This takes into account the initial inventory, plus the
volumes of all loadings received up to that time, minus the
volumes of all unloadings performed up to the previous
slot.

IINr,n = I0r +
∑

n′∈N,n′≤n

V To,n′ −
∑

n′∈N,n′<n

V To′,n′

o ∈ INRr, o′ ∈ OUTRr, n ∈ N, r ∈ RS
(18)

The CDUs must operate continuously.∑
n

DOP o,n = H o ∈ INRr, r ∈ RU (19)

A CDU is fed with only one type of mixture at a time.∑
m∈M

WMo,n,m = 1 o ∈ INRr, n ∈ N, r ∈ RU (20)

In case mixture m is not selected, then the volumes
transferred must be null. To this purpose, we use the big-
M method, where the value of BIGM is determined based
on physical limits.

V TCMo,n,c,m ≤ BIGM ∗WMo,n,m

o ∈ INRr, n ∈ N, c ∈ C, r ∈ RU
(21)

V TMo,n,m ≤ BIGM ∗WMo,n,m

o ∈ INRr, n ∈ N, r ∈ RU
(22)

Only one term of the sum will be positive and will have
the same value as the aggregate variable.

V TCo,n,c =
∑
m∈M

V TCMo,n,c,m

o ∈ INRr, n ∈ N, c ∈ C, r ∈ RU

(23)

V T o,n =
∑
m∈M

V TMo,n,m o ∈ INRr, n ∈ N, r ∈ RU

(24)

The total demand for each mixture must be met.∑
o∈INRr

∑
n∈N

∑
r∈RU

V TMo,n,m ≥ DEMm m ∈ M (25)

The concentrations of properties in the volumes of mix-
tures transferred to each CDU must be within the estab-
lished range.∑

c∈C

V TCMo,n,c,m ∗KP c.k ≥ KPm,k ∗ V TMo,n,m

o ∈ INRr, n ∈ N, m ∈ M, k ∈ K, r ∈ RU

(26)

∑
c∈C

V TCMo,n,c,m ∗KP c.k ≤ KPm,k ∗ V TMo,n,m

o ∈ INRr, n ∈ N, m ∈ M, k ∈ K, r ∈ RU

(27)

A ship can start unloading only after arrival.

IOo,n ≥ AT r ∗Wo,n o ∈ OUTRr, r ∈ RV, n ∈ N
(28)

The demurrage is calculated as the time elapsed between
the arrival of a ship and the start of its unloading.

DMGr ≥ IOo,n −AT r

− (1−Wo,n +
∑

n′∈N,n′<n

Wo,n′) ∗H

o ∈ OUTRr, r ∈ RV, n ∈ N

(29)

Vessel r will incur tardiness if it leaves the terminal after
its expected departure time.

TARr ≥ FOo,n − EDr − (1−Wo,n) ∗H
o ∈ OUTRr, r ∈ RV, n ∈ N

(30)

Vessels must be completely emptied.∑
n∈N

V TCo,n,c = V Cr,c o ∈ OUTRr, r ∈ RV, c ∈ C

(31)

The start time of operation o′, that is triggered by opera-
tion o, must be greater than or equal to the start time of
this operation o.

IOo′,n′ ≥ IOo,n −H ∗ (1−Xo,n,o′,n′)

o, o′ ∈ OPO, n, n′ ∈ N
(32)

The end time of operation o′, that is triggered by operation
o, must be less than or equal to the end time of this
operation o.

FOo′,n′ ≤ FOo,n +H ∗ (1−Xo,n,o′,n′)

o, o′ ∈ OPO, n, n′ ∈ N
(33)
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If a tank is being discharged, then the crude oil concen-
tration in the outflow must be equal to the concentra-
tion inside the tank. Note that the variables IINr,n and
IINCr,n,c are used because they refer to the total inven-
tory level and the level of each crude oil before unloading.

IINr,n ∗ V PCo,n,o′,n′,c =

IINCr,n,c ∗ V P o,n,o′,n′

o, o′ ∈ OPO, o ∈OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(34)

2.3 Objective function

The objective function is to minimize vessel demurrage
and tardiness costs while maximizing the profit from the
processed crude.

MIN
∑

r∈RV

(CDMGr ∗DMGr + CTARr ∗ TARr)

−
∑

o∈INRr

∑
n∈N

∑
c∈C

∑
r∈RU

GM c ∗ V TCo,n,c

(35)

3. MINLP SOLUTION PROCEDURE

Given the nonconvex nature of the nonlinear constraint
(34), it is essential to explore strategies to effectively
address this challenge. In this paper, we have developed
a strategy that consists of two steps: first solving a MILP
model and then an NLP model. Moreover, we iteratively
add cuts to eliminate infeasible solutions. Initially, we
rearrange the nonlinear equation (34) as follows:

V PCo,n,o′,n′,c = αo,c,n ∗ V P o,n,o′,n′

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(36)

IINCr,n,c = αo,c,n ∗ IINr,n

o ∈ OUTRr, r ∈ RS, n ∈ N, c ∈ C
(37)

Then, we apply piecewise McCormick relaxation to both
equations. Only the set of constraints obtained by relaxing
(36) is shown below; similarly, we can obtain the relaxation
of (37).

V PCo,n,o′,n′,c ≥
∑
v∈V

(V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

+V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

−V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v ∗ Zo,c,n,v)

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(38)

V PCo,n,o′,n′,c ≥
∑
v∈V

(V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

+V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

−V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v ∗ Zo,c,n,v)

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(39)

V PCo,n,o′,n′,c ≤
∑
v∈V

(V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

+V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

−V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v ∗ Zo,c,n,v)

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(40)

V PCo,n,o′,n′,c ≤
∑
v∈V

(V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

+V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v

−V PMC1
o,n,o′,n′,c,v ∗ αMC1

o,c,n,v ∗ Zo,c,n,v)

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(41)

The lower and upper bounds for αMC1
o,c,n,v and

V PMC1
o,n,o′,n′,c,v are given by (42)-(45).

αMC1
o,c,n,v ≥ αMC1

o,c,n,v ∗ Zo,c,n,v

o ∈ OUTRr, r ∈ RS, n ∈ N, c ∈ C, v ∈ V
(42)

αMC1
o,c,n,v ≤ αMC1

o,c,n,v ∗ Zo,c,n,v

o ∈ OUTRr, r ∈ RS, n ∈ N, c ∈ C, v ∈ V
(43)

V PMC1
o,n,o′,n′,c,v ≥ V PMC1

o,n,o′,n′,c,v ∗ Zo,c,n,v

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N,

c ∈ C, v ∈ V

(44)

V PMC1
o,n,o′,n′,c,v ≤ V PMC1

o,n,o′,n′,c,v ∗ Zo,c,n,v

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N,

c ∈ C, v ∈ V

(45)

Only one partition must be selected.∑
v∈V

Zo,c,n,v = 1

o ∈ OUTRr, r ∈ RS, n ∈ N, c ∈ C

(46)

Finally, only one term of the sum will be positive and must
have the same value as the aggregate variable.

V P o,n,o′,n′ =
∑
v∈V

V PMC1
o,n,o′,n′,c,v

o, o′ ∈ OPO, o ∈ OUTRr, r ∈ RS, n, n′ ∈ N, c ∈ C
(47)

αo,c,n =
∑
v∈V

αMC1
o,c,n,v

o ∈ OUTRr, r ∈ RS, n ∈ N, c ∈ C

(48)

By replacing the nonlinear equation with this set of con-
straints, a MILP model is obtained and solved. Subse-
quently, the values of the binary variables in the original
MINLP are set according to the solution found for the
MILP, and the resulting NLP model is solved.
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Fig. 2. Gantt chart of the solution.

If the solution is not feasible, we add the following “no
good” constraint to the MILP model and solve it again,
forcing at least one of the variables to change value.

∑
(o,n,o′,n′): ˆXo,n,o′,n′=0

Xo,n,o′,n′

+
∑

(o,n,o′,n′): ˆXo,n,o′,n′=1

(1−Xo,n,o′,n′) ≥ 1
(49)

This process is repeated until a feasible solution for the
NLP is obtained or a certain number of iterations is
exceeded.

4. RESULTS

To assess the performance of the formulated model and the
proposed strategy, a case study is conducted using the data
from problem 2 presented in Mouret et al. (2009), and a
configuration corresponding to Figure 1. Additionally, the
suggested number of time slots is six.

For this problem (6834 binary variables, 22889 real vari-
ables, and 52471 constraints), a solution with a profit of
$17500000 and a relative gap of less than 2% was obtained
in approximately 50 seconds using GAMS 43.2 software,
Gurobi 9.5.2 for MILPs, and CONOPT 4.29 for NLPs on
a computer equipped with an Intel Core i9-13900K 3.00
GHz processor and 128 GB of RAM.

It should be noted that the same problem was solved using
DICOPT, but no feasible solution was obtained after 50
iterations, while using the presented strategy, a feasible
solution was obtained in the first iteration.

Figure 2 depicts a Gantt chart of the solution. As shown,
the ships start and finish their unloading operations on
schedule. Specifically, the unloading of ship 1 leads to the
loading of tanks 1, 2 and 3 (operations O4, O5, and O6,
respectively). Ship 2 unloads into tanks 1 and 6, while ship
3 unloads into tanks 5 and 6. Finally, it should be noted
that the CDUs operate continuously (operations O16 and
O17).

5. CONCLUSION

A model based on continuous time representation using
time slots was developed, together with an iterative strat-
egy to cope with the nonlinearities caused by the blending
of crude oils in storage tanks. The performance of both,
the model and the strategy, was evaluated by solving a

case study from the literature, obtaining a very good and
feasible solution in a sensible short time. Future work
will focus on extending the scope of the system under
study to include downstream processing units for more
comprehensive solutions.
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