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Abstract: Biological systems play a key role in many advanced manufacturing processes,
of which many have interesting nonlinear dynamics. We investigate a continuous yeast cell
manufacturing process that produces sustained oscillations in outputs under nominal conditions.
Using a population balance model to perform dynamic optimization with multiple objectives
and observability constraints, we quantify tradeoffs on the Pareto surface for varying the extent
of process oscillations that the decision-maker deems tolerable (or desirable). Numerical optimal
control design for oscillatory distributed parameter systems is discussed within the context of
both dynamic optimization and on-line nonlinear model predictive control strategies.
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1. INTRODUCTION

Much of modern-day processing occurs in bioreactors,
including in biofuel production (Aditiya et al. (2016)),
wastewater treatment (Lee et al. (2017)), bulk and spe-
cialty chemicals manufacturing (Tejayadi and Cheryan
(1995); Sharmila et al. (2020)), fermentation (Boulton
and Quain (2001)), and biopharmaceutical production
(Warnock and Al-Rubeai (2006); Tapia et al. (2016)).
These dynamical systems require optimization and control
to achieve stable, robust, and economically viable plant
operation. Many of these systems exhibit nonlinear dy-
namics, complicating process operation with such phenom-
ena as hysteresis, state multiplicity, and Hopf bifurcations
(Lapidus and Amundson (1977); Strogatz (2015)).

This article considers the optimization and control of
continuous yeast manufacturing. Yeast cells are used to
produce a range of industrial products—from fermenta-
tion of small molecules in brewing and baking sectors to
synthesis of complex therapeutics in the healthcare sector.
An interesting aspect of the control of these manufacturing
systems is that continuously cultured budding yeast pro-
duces sustained oscillations in cell densities and product
titers when pushed into certain well-defined metabolic
states (Kaspar von Meyenburg (1969, 1973); Strässle et al.
(1989); Parulekar et al. (1986)). These oscillatory dynam-
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ics do not persist in traditional batch configurations. More-
over, studies have demonstrated that inducing oscillations
in yeast cultures may yield, on average, higher quality
and quantity products if coupled with periodic harvesting
strategies (Hjortso (1996)). Despite these aspects and the
fact that continuous manufacturing can improve costs,
process controllability, and product quality over tradi-
tional batch processing (Sahlodin and Barton (2015)),
batch mode operation has exclusively dominated at scale
(Verbelen et al. (2006)).

To optimize continuous yeast manufacturing operation,
this article considers measures of process oscillation that
may be simultaneously optimized alongside economic ob-
jectives in a multi-objective formulation. In light of a prod-
uct quality and/or quantity benefit from oscillatory oper-
ation, the decision-maker may consider leveraging oscilla-
tions in future continuous yeast manufacturing campaigns.
Off-line computation of optimal control policies then be-
comes the backbone of re-computing oscillatory operating
strategies. Herein, our main technical contribution is to
present the numerical feasibility of model-based optimal
control for an oscillatory distributed parameter system
(DPS). Although others have studied model-based con-
troller performance for this system, e.g., linear model pre-
dictive control (MPC) (Henson (2003)) and input-output
linearization (Zhang and Henson (2001)), an optimal con-
trol study exploring the Pareto surface tradeoffs between
tolerable degrees of process oscillation and economic profit
has not yet been reported in the literature.
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The work is organized as follows. Section 2 formulates
the process and optimal control using a population bal-
ance model (PBM) and multiple competing objectives.
Section 3 details the tools for numerical simulation and
optimization to realize the multi-objective process. Section
4 demonstrates key tradeoffs and discusses the effects that
oscillatory dynamics may have on optimal trajectories. Fi-
nally, Section 5 provides a perspective on how these results
can be applied to on-line model-based control strategies.

2. PROCESS DESCRIPTION

Descriptions that follow are reproduced from other work
by some of the authors (Inguva et al. (2023)) for clarity.

2.1 Model Formulation

Consider a continuously stirred bioreactor in which yeast
is cultured in free suspension on a single substrate S.
The reactor has no cell separation devices and gas phase
dynamics are assumed to negligibly affect cellular growth.
The reactor volume is assumed to be stabilized and kept
approximately constant by a lower level control loop
with dynamics that are faster than cell growth. All of
these assumptions are reasonably accurate in a practical
bioreactor equipment configuration.

Yeast cells in the reactor consume the substrate and
progress through different growth states as quantified
by their wet cell mass m: non-fissioning daughter cell
(m < m∗

t ), non-fissioning mother cell with growing bud
(m∗

t < m < m∗
t + ma), and mother cell with scissioning

daughter cell bud (m > m∗
t ). The partitioning of mass

between a budding daughter cell and a mother cell is asym-
metric. An investigation of this system by Henson (2003)
reported that oscillations are associated with interactions
between the transition state massm∗

t and critical fissioning
mass m∗

d boundary movement as substrate concentrations
change and yeast cell sub-populations synchronize.

The PBM for continuous culturing of yeast cells is given
in (1)–(15). The hyperbolic partial differential equation
(PDE) (1) has source terms for the birth, cleavage, and
reactor outflow of yeast cells, typical of segregated cell,
unstructured kinetics models (Fredrickson et al. (1967);
Tsuchiya et al. (1966)). The yeast cell number distribution
N(m, t) is coupled to a substrate mass balance (7) and a
filtered substrate S′ response (9). The filtered substrate
S′ models a commonly observed delayed change in cell
metabolism due to changes in extracellular substrate con-
centrations S. Movement in cell mass boundaries m∗

t and
m∗

d is modeled as a linear dependence on filtered substrate.

Full specification of the model requires functions for the
single-cell growth rate km(S

′), the fission rate Γm(m,S′),
the partition probability distribution p(m,m′, S′), an ini-
tial yeast seed number distribution in mass N0(m, t), a
boundary condition enforcing non-zero cell mass N(0, t),
and initial substrate concentrations S(0) and S′(0). The
viable cell density (VCD) is equal to the zeroth-order
moment m0(t) of the yeast population, and a differential
equation for m0(t) as in (5) can be derived by integrating
(1) over the cell mass m. Descriptions of model parameters
and initial conditions are given in Table 1. More details are
given by Zhang and Henson (2001) and Zhu et al. (2000).

∂N(m, t)

∂t
+

∂[km(S′)N(m, t)]

∂m
= Ψ(m, t,N, S′), (1)

Ψ(m, t,N, S′) = 2

∫ mmax

0

Γm(m′, S′)p(m,m′,m∗
t )N(m′, t)dm′

− [D + Γm(m,S′)]N(m, t), (2)

N(m, 0) =
N00

σ0

√
2π

exp

(
−(m− µ0)2

2σ2
0

)
∼ N

(
µ0, σ

2
0

)
, (3)

N(0, t) = 0, (4)

dm0

dt
= −Dm0 +

∫ mmax

0

Γm(m,S′)N(m, t)dm, (5)

m0(0) = N00, (6)

dS

dt
= D(Sf − S)−

km(S′)

Y
m0, (7)

S(0) = S0, (8)

dS′

dt
= α(S − S′), (9)

S′(0) = S′
0, (10)

km(S′) =
µmS′

Km + S′ , (11)

Γm(m,S′) =


0 for m ∈

[
0,m∗

t +ma

)
γe−ϵ(m−m∗

d)
2

for m ∈
[
m∗

t +ma,m∗
d

]
γ for m ∈

(
m∗

d,mmax

] (12)

p(m,m′,m∗
t ) =Ae(−β(m−m∗

t )
2) · · ·

+ Ae(−β(m−m′+m∗
t )

2)
for (m < m′) ∧ · · ·
(m′ > m∗

t +ma)

0 otherwise

(13)

m∗
t (S

′) =

mt0 +Kt(Sl − Sh) for S′ < Sl

mt0 +Kt(S′ − Sh) for S′ ∈ [Sl, Sh]

mt0 for S′ > Sh

(14)

m∗
d(S

′) =

md0 +Kd(Sl − Sh) for S′ < Sl

md0 +Kd(S
′ − Sh) for S′ ∈ [Sl, Sh]

md0 for S′ > Sh

(15)

Table 1. Model variables and parameters,
adapted from Zhang and Henson (2001).

Variable/
Parameter

Description
Initial/Nom-
inal Values

N00 Inoculum viable cell density 1×104 L−1

µ0 Inoculum mean cell mass 3×10−11 g
σ2
0 Inoculum cell mass variance 1×10−22 g
S Substrate concentration 25 g/L
S′ Filtered substrate 25 g/L

Dmax Max dilution rate 0.5 hr−1

Sf,max Max feed concentration 100 g/L
Y Yeast to substrate yield 0.4 g
α Metabolism adjustment rate 20 hr−1

µm Single cell growth rate 5×10−10 g/hr
Km Monod growth constant 2×10−11 g/L
γ Maximum cell fission rate 200 hr−1

ϵ Fissioning inverse variance 5×1022 g−2

ma Fissioning bud mass 1×10−11 g

A Partitioning normalization 5√
π
×1011 g−1

β Partitioning inverse variance 100×1022 g−2

mt0 Minimal transition mass 6×10−11 g
Kt Transition sensitivity to S′ 1×10−13 g/g-L
Sl Low substrate response limit 0.1 g/L
Sh High substrate response limit 2 g/L
md0 Minimal critical mass 11×10−11 g
Kd Division sensitivity to S′ 2×10−11 g/g-L
tf Full campaign time horizon 100 hr
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2.2 Multiobjective Optimization Formulation

The nominal campaign manufacturing conditions simu-
lated in this work produce oscillations in the on-line mea-
sured VCD titer m0. These oscillations, which are consid-
ered detrimental to the process and product quality, arise
from supercritical Hopf bifurcations in the PBM dynamics
(Zhang and Henson (2001)). The objective is to design
model-based optimal control policies in the dilution rate D
and substrate feed concentration Sf for the full campaign
manufacturing time horizon tf that minimize oscillations
while simultaneously maximizing economic objectives.

In continuous high cell density (HCD) yeast manufactur-
ing, D and Sf regularly serve as manipulated variables
with bounded actuator constraints Dmax and Sf,max, e.g.,
through a peristaltic pump or valve actuation and through
ratio-controlled dilution of a high concentration feed stock,
respectively (Westman and Franzén (2015); Gomar-Alba
et al. (2015)). Other strategies potentially involving seed
culture injections for direct cell population manipulation
are unrealistic and difficult to control (Henson (2003)).
Moreover, full state observability is often not available due
to the challenge of maintaining sterile and calibrated on-
line collection of cell number distributions through non-
invasive optical imaging and/or biocapacitance sensors
(Pais et al. (2020)).

Assuming that the yeast culture does not experience
strong disturbances to its growth and metabolism during
operation, three relevant performance objectives depen-
dent on terminal time T are

J1(T ) =

∫ T

0

D(t)m0(t)dt, (16)

J2(T ) = −
∫ T

0

D(t)Sf(t)dt, (17)

J3(T ) = −
∫ T

0

(
dm0

dt

)2

dt, (18)

where J1 is the economic gain due to continual cell titer
harvesting, J2 is the economic loss due to feed costs,
and J3 is the controller performance objective providing
a measure of process oscillations. For input vector u(t) =
[D(t), Sf(t)], state vector x(t) = [S(t), S′(t),m0(t)], and
output vector y(t) = [S(t),m0(t)],

1 a multi-objective
optimal control problem (OCP) is

max
u

{J1(tf), J2(tf), J3(tf)}

s. t. model (1)–(15) on D = [0,mmax]× [0, tf],

x(t) ∈ X , x(0) ∈ X0,

u(t) ∈ U , y(t) ∈ Y,

(19)

where X , X0, U , and Y are predefined constraints on x,
x(0), u, and y, respectively. Next, we explore strategies
for numerically solving this multi-objective OCP.

3. THEORY AND METHODS

The bioreactor model equations are non-dimensionalized
to bring each system variable to be O(1) in magnitude.
Importantly, non-dimensionalization improves the solution
time and numerical precision of the simulations and opti-
mal control calculations.
1 The filtered substrate concentration S′ is not observable.

3.1 Numerical Solution of the PBM

The PBM is highly nonlinear and tightly coupled to the
evolution of substrate concentration S(t), and it does not
have an analytical solution. Obtaining reliable numerical
optimal control profiles requires sufficiently accurate nu-
merical resolution of the advection and source/sink term
dynamics in the hyperbolic PDE. One approach is to
use numerical Method of Lines (MOL) (Schiesser (1991)).
MOL reduces the continuous cell mass dimension m,
N(m, t), and linear advection operator ∂/∂m to a finite-
dimensional vector of mesh nodes m = [m1, . . . ,mNm

] ∈
M ⊂ RNm

≥0 , time-varying cell number density statesN(t) =

[N1(t), . . . , NNm
(t)] ∈ N ⊂ RNm

≥0 , and finite advection

operator f(m, t,N, S′) : M × [0, tf] × N × [0, Sf,max] →
RNm . Integral terms are discretized using the trapezoid
rule with uniform mesh spacing ∆m to obtain finite
source/sink term operator g(m, t,N, S′, D) : M× [0, tf]×
N × [0, Sf,max] × [0, Dmax] → RNm . Note the explicit de-
pendence of the source/sink term operator on input D(t).

These manipulations convert the PDE (1) into a sys-
tem of coupled ordinary differential equations (ODEs)
augmented by the S, S′, m0 state equations. That is,
the state vector x is extended with N(t) to form x̃ =

[N(t), S(t), S′(t),m0(t)] ∈ X̃ ⊂ RNm+3
≥0 . Likewise, the

finite advection and source/sink operators are extended

into f̃(m, t, x̃,u) and g̃(m, t, x̃,u). Three advection oper-
ator discretizations are compared for accuracy and speed,
including first-order upwind with finite difference method
(FDM) (“Upwind FDM”); fifth-order weighted essentially
non-oscillatory (WENO) Henrick-mapped scheme with
FDM (“WENO FDM”) (Hermanto et al. (2009); Gunawan
et al. (2004); Jiang and Shu (1996); Henrick et al. (2005));
and eighth-order orthogonal collocation on finite elements
(“OCoFE”) (Finlayson (1980); Rice and Do (1991)). 2

The Courant-Friedrichs-Lewy (CFL) number ν constraint
is a necessary, but not sufficient, condition for numerically
stable solution of the PBM using the MOL approach. For a
discretized, first-order homogeneous hyperbolic PDE with
advection coefficient km(S

′), uniform mesh spacing ∆m,
and constant time step ∆t, the condition is that

ν = max

{
km(S

′)∆t

∆m

}
≤ νmax. (20)

The maximal CFL number depends on the schemes used
to discretize the advection operator and time derivative
(Ketcheson (2009)). We use a restrictive CFL condition
valid for the lowest order upwind scheme, or νmax = 1.
Because S′ is bounded from above by Sf,max, the above
constraint implies an upper bound on the size of the time
step for the MOL system to remain numerically stable,

∆t ≤ ∆m

km(Sf,max)
=: ∆tmax. (21)

Inspection of the system separation of timescales showed
that the resulting MOL ODE system is stiff. A fifth-order
backward differentiation formula (BDF) time integrator
from the CVODE solvers in the Sundials suite is chosen to
2 Previous numerical solutions of (1)–(15) were carried out by Zhu
et al. (2000) using OCoFE, which differs from other schemes in
having a non-uniform grid and spectrally-accurate quadrature for
the integral terms.
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stably solve the stiff MOL system forward in time (Hind-
marsh et al. (2005); Gardner et al. (2022); Hindmarsh et al.
(2023)). For a sufficiently small time step size, this implicit
linear multistep method holds strong stability-preserving
(SSP) properties when used with Upwind FDM or WENO
FDM. 3 Further inspection showed that the SSP time step
size limit is larger than (21) and therefore not constraining.

3.2 Control Vector Parameterization

The OCP (19) is continuous and not analytically tractable.
Control vector parameterization (CVP) (Schlegel et al.
(2005)) is used to discretize the control input trajectories
as piecewise-linear (“pwl”) functions at K-many control
elements uniformly partitioning the full campaign time
horizon. This discretization induces K+1 control element
boundary times tk ∈ [0, tf], where k = 0, . . . ,K. Each con-
trol element boundary has an associated control parameter
pj,k for j = 1, 2, producing C0 smooth input trajectories,

uj(t) =

{
pj,0 for t0 = 0,
pj,k−pj,k−1

tk−tk−1
(t− tk−1) + pj,k−1 for t ∈ (tk−1, tk].

(22)
Time-explicit event functions are then used to step to
and reinitialize the time integrator exactly 4 at {tk}.
Using the Leibnitz integral rule, the stage costs j1(t) =
D(t)m0(t), j2(t) = −D(t)Sf(t), and j3(t) = −(dm0/dt)

2

are integrated together with the advection and source/sink
terms as dJl(t)/dt = jl(t), Jl(0) = 0 for l = 1, 2, 3.
Applying the time integration operator F(·), the OCP at
discrete time points ti for i = 0, . . . , Nt becomes

max
p

{J1,Nt
, J2,Nt

, J3,Nt
}

s. t. x̃i+1 = F
(
−f̃(m, ti, x̃i,ui) + g̃(m, ti, x̃i,ui)

)
,

Ji+1 = F(ji) , x̃0 = x̃(0), J0 = 0,

0 ≤ p ≤ pmax, 0 ≤ x̃i ≤ x̃max, {tk} ⊂ {ti},
(23)

where i subscripts denote evaluation at ti, J(t) and j(t)
concatenate Jl(t) and jl(t), and the optimization algo-
rithm solves for the decision variables p = [p1,p2] ∈ P ⊂
R2(K+1)

≥0 . AsK → ∞, the discrete optimal input trajectory

from the solution to (23) will approach the continuous
optimal trajectory solution to (19).

3.3 Weighting Method, Warming, and Regularization

The (locally) Pareto optimal objective values J∗ =
[J∗

1 , J
∗
2 , J

∗
3 ] live in a set J ∗ that is defined as the subset of

the boundary of the objective value space, ∂J , for which
all objectives cannot be simultaneously improved in any
direction constrained to ∂J (Miettinen (1999)). The biore-
actor dynamics are highly nonlinear so the Pareto surface
for this set is expected to be non-convex and disjoint. A
first pass to numerically compute the Pareto optimal set
is to use the weighting method, which formulates a convex
combination of the objectives. Using standard form and
3 SSP properties ensure monotonic decrease over time of a convex
functional measure of the PDE solution spatial derivative over the
domain D. They are a generalization of the discrete total variation
diminishing (TVD) property that numerically stable MOL solutions
of the PBM necessarily satisfy (Ketcheson (2009); Lenferink (1991)).
4 That is, within double precision.

defining the direction of optimality to be [−1,−1,−1] in
the space J , results in the weighting method formulation

min
p

− w1J1,Nt − w2J2,Nt − w3J3,Nt

s. t. conditions in (23), w1 + w2 + w3 = 1,

w1 ≥ 0, w2 ≥ 0, w3 ≥ 0,

(24)

which is solved at each admissible w = [w1, w2, w3] to
produce a corresponding J∗ Pareto optimal point. The
weighting method only uncovers convex portions of the
Pareto optimal set. A more expensive but higher fidelity
resolution of the Pareto optimal set would require using,
e.g., the ϵ-constraint method (Miettinen (1999)).

A sufficiently high K is desirable to begin to match the
period of the oscillatory response of the system. At higher
control policy resolutions, Hopf bifurcation dynamics in
the yeast system may be persistently excited. However,
for entirely random initial guesses for p, (23) becomes
very difficult to converge at high CVP resolutions, i.e.,
K ∼ O(100). Warm-starting is used, which involves
taking previously converged K-element discrete optimal
trajectories and bisecting them to form initial guesses
for 2K-element discrete optimal trajectories. Warming is
restricted to the same w runs when solving (24).

Finally, it is common in numerical optimal control to
reduce the non-unique family of discrete control policies
solving (23) by penalizing abrupt changes in inputs be-
tween control elements (Schlegel et al. (2005); Nagy et al.
(2005)). This regularization is added to the weighting
method objective in (24) as the δ-weighted L2-norm

δ

∣∣∣∣∣∣∣∣dudt
∣∣∣∣∣∣∣∣2
2

= δ

Nt∑
i=0

2∑
j=1

(
pj,k − pj,k−1

tk − tk−1

)2

, (25)

where the δ hyperparameter that least penalizes the Pareto
optimal objective function set will vary along the Pareto
surface. This motivated us to carry out a validation study
at the nominal weighting w = [1/3, 1/3, 1/3], to find an
optimal δ for regularization over the entire Pareto surface.

4. RESULTS AND DISCUSSION

4.1 Discretization Scheme Selection and Mesh Study

Fast and accurate solution of (1)–(15) is crucial to effi-
ciently solve the high-dimensional OCP (23). As shown in
Fig. 1 by the scaled cell number distribution at t = 5.0 hr,
WENO FDM open-loop simulation is more numerically ro-
bust than both Upwind FDM and OCoFE for similar dis-
cretization resolutions. Although slower to simulate than
Upwind FDM and OCoFE, 5 WENO FDM was selected
as the advection operator discretization for solving (23). 6

Moreover, mesh study results given in Fig. 2 indicate
that Nm = 300 is the lowest resolution at which both
numerical dispersion and state positivity violation are
significantly reduced. All simulations are conducted in the

5 Median wall times for 100 runs using nominal conditions in Table
1: Upwind FDM (Nm = 300), 304 ms; WENO FDM (Nm = 300),
2278 ms; Zhu et al. (2000) OCoFE (Nel = 12 and Ncol = 8), 339
ms; mesh-refined OCoFE (Nel = 32 and Ncol = 8), 1191 ms.
6 The OCoFE scheme at Nel = 12 and Ncol = 8 used in past work
(Zhang and Henson (2001); Zhu et al. (2000)) produced non-physical
results due to Runge’s phenomenon.
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Fig. 1. At t ≈ 5.0 hr, an abrupt substrate concentration
depletion event destabilizesN(m, t). During this tran-
sition, WENO FDM maintains state positivity bet-
ter than OCoFE while mitigating numerical diffusion
(i.e., smearing) better than Upwind FDM.

Fig. 2. Increasing mesh resolution in WENO FDM re-
duces numerical dispersion (i.e., spurious oscillation)
at sharp spatial gradients, which is one of many fea-
tures of WENO schemes (Jiang and Shu (1996)).

Julia programming language using DifferentialEquations.jl
(Rackauckas and Nie (2017)) and Sundials.jl packages, and
benchmarking is done using BenchmarkTools.jl.

4.2 Weighting Method Pareto Optimality

Formulation (19) penalized by (25) is at least once con-
tinuously differentiable with respect to the decision vari-
ables p. This ensures that gradients of the objectives and
constraints with respect to p are continuous, enabling
low operational complexity, first-order optimization algo-
rithms as an option for this system (Walkington (2023)).
Instead, we used a second-order Sequential Least-Squares
Quadratic Programming (SLSQP) method provided in
the NLOPT.jl and Optimization.jl packages (Kraft (1994,
1988); Johnson (2007)) to reliably solve (24)–(25). In com-
parison to first-order methods, the SLSQP method con-
verges in fewer iterations on local minima of (24) through
the use of a Hessian approximation.

Fig. 3. The J -space point cloud obtained from the solution
of (24)–(25) for K = 512 warmed control trajectories
using 228 w vectors. Red points map from w with the
largest w1, or more rewarding economic gains. Green
points map from w with the largest w2, or pricier
feedstock. Blue points map from w with the largest
w3, or heavier penalization of process oscillations.

A δ validation study (results not shown) indicated that
δ = 1.0 adequately penalizes sharply changing input
trajectories for the numerical OCP at w = [1/3, 1/3, 1/3].
This study involved warming to optimal trajectories of
K = 1024 elements. We then generated admissible w with
an arbitrarily chosen resolution of 0.05 in each component
wi.

7 Finally, we solved (24)–(25) for each of the 228
w weighting vectors, aggregating the J results into a
discrete point cloud. We show one perspective of this color-
mapped, not entirely Pareto optimal set J ∗ in Fig. 3. The
point cloud distribution suggests that: 1) control policies
which produce large measures of process oscillations in
continuous yeast manufacturing exist; 2) control policies
producing these large oscillation measures may only be
Pareto optimal when feedstock costs are high (i.e., when
w2 is large relative to w1 and w3); 3) solutions to (24)–
(25) may not be converging to the true Pareto optimal
control trajectories. This last suggestion is signaled by the
mixed-color clustering in Fig. 3, where control trajectories
are non-unique and insensitive to large variations in w.

We emphasize that the convergence of solutions to the
global minimum of (24)–(25) for each w cannot be guar-
anteed in polynomial time due to the non-convexity of
the system. Moreover, solving the DPS (1)–(15) with
numerical approximations to advection and source/sink
operators corrupts the true topology of the objective space
J with many non-physical local minima. For these poorly-
conditioned, high-dimensional nonlinear programs, only
rough heuristics (e.g., high total fractions of locally con-
verged runs per batch, gradual changes in warming param-
eters, large numbers of SLSQP instantiations) are used in
this work to approach globally optimal decision variable
vectors p∗. Specifically, converging to high K trajectories
requires starting from K = 2 and applying the bisection
strategy from Sec. 3. Refining to p∗ at each K-element
stage requires repeatedly applying biased Gaussian noise

7 The map from w to the Pareto optimal set is unknown a priori.
Otherwise, such a map may be inverted, assuming it is one-to-one,
to grid w more efficiently.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

867



of decreasing variance to each element of previous, locally
optimal decision vectors p′. This strategy generates struc-
tured p guesses which are more likely to converge to new,
locally optimal p′. 8

Indeed, inspection of many of the clustered points in Fig.
3 indicated convergence to locally (not globally) optimal
p′ at early K, which resulted in non-unique and non-
Pareto optimal J′. Use of more conservative warming
strategies, as well as multi-objective optimization methods
capable of resolving the concavities of the Pareto front,
would produce higher fidelity discrete representations of
the Pareto front. These modifications would increase the
already high, but off-line, costs of computing optimal
control policies for continuous yeast manufacturing.

4.3 Excitation of Nonlinear Dynamics, and Tradeoffs

Despite these numerical challenges, several trajectories
were sufficiently converged so as to be considered members
of the Pareto surface. Verification of Pareto optimality for
these few points is done using the ϵ-constraint method,
which introduces nonlinear inequality constraints that
can be lifted into the objective function through an L2

penalty (see, e.g., Miettinen (1999) and Nocedal and
Wright (2006)). The implementation will not be discussed
here due to space constraints.

Two such Pareto optimal control policies are plotted in
Fig. 4. These profiles show that the highest K-element
trajectories are able to persistently excite the Hopf bifurca-
tion dynamics of (1)–(15). As expected, oscillatory control
policies are only optimal when the decision-maker deems
process oscillations to be tolerable. This choice is encoded
by decreasing w3, or the weight on the “cost” of process
oscillation. When the decision-maker views process oscil-
lations as detrimental, w3 may be increased and simpler
control policies, such as operation at maximum actuation,
are obtained.

Finally, we approximated total tradeoffs from the J∗ values
in Fig. 4 with

Λn,m(p1,p2) =
J∗
n(tf;p1)− J∗

n(tf;p2)

J∗
m(tf;p1)− J∗

m(tf;p2)
, (26)

which compares Pareto optimal objectives between the
oscillatory and non-oscillatory control policies p1 and p2,
respectively (Miettinen (1999)). Equation (26) gives that

Λ1,2(p1,p2) ≈ +1.278, (27)

Λ1,3(p1,p2) ≈ −1.322, (28)

Λ2,3(p1,p2) ≈ −1.035, (29)

indicating that oscillatory operation becomes more eco-
nomical than non-oscillatory operation by reducing feed
costs more than cell harvest profits are reduced. These
tradeoffs align well with the observation in Fig. 3 that
expensive feedstocks are a necessary condition for the
appearance of large J3 operating strategies. One practi-
cal implication may be that oscillating the dilution rate
D(t) in-phase with the yeast culture VCD oscillations will
produce a less wasteful feeding strategy. More complete

8 With nine stages of K resolution, four levels of Gaussian noise
variance, and 720 instantiations of SLSQP per stage-level, each w
refinement process took 25920 instantiations of SLSQP, or roughly
three hours of multithreaded computation on a 72-core server.

Fig. 4. Pareto optimal control policies and VCD m0

responses for K = 512. (Top) The vector w =
[0.2, 0.7, 0.1] admitted a high tolerance for process
oscillations, while (Bottom) w = [0.45, 0.0, 0.55] ad-
mitted a low tolerance for process oscillations. Note
that regardless of w3, the optimal Sf control policy is
to saturate for the entire campaign.

resolution of the Pareto surface will help ground these
findings.

5. CONCLUSIONS AND FUTURE WORK

All discussions above are predicated upon a near-perfect
model description of the yeast continuous manufacturing
process. For biological systems, this is rarely the case.
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The correction of model-plant mismatch by on-line optimal
control tools, e.g., nonlinear MPC, can enable robust pro-
cess operation and safety/quality constraint satisfaction in
advanced manufacturing (Destro and Barolo (2022)). For
the oscillatory DPS in this work, the implementation of
MPC would be computationally expensive—as judged by
the difficulty in converging the off-line numerical OCP—
and reducing that computational cost is of interest.

Designing a stable economic MPC scheme for nonlinear
and oscillatory systems requires carefully tuning the sam-
pling time and prediction horizon. On one hand, the sam-
pling time should be set small enough to capture model de-
viations and provide closed-loop performance that quickly
attenuates oscillations in the controlled variables. On the
other hand, a longer prediction horizon promotes closed-
loop robustness, e.g., by inducing a larger region of stabil-
ity and improving disturbance rejection. However, long-
horizon MPC schemes have a high on-line computational
cost, and shorter sampling times make it harder to con-
verge the on-line optimization before needing to implement
the next control action.

Some methods exist to alleviate the high on-line costs of
long-horizon MPC schemes. For example, Lee and Lee
(2001) describe the use of neuro-dynamic programming
to approximate the cost-to-go function, which enables
reducing a long-horizon problem to an equivalent short-
horizon problem with a lower on-line computational cost.
Zavala (2016) proposed a hierarchical MPC scheme to
handle long-horizon MPC. Rao et al. (1998) adopted the
discrete-time Riccati recursion in the interior-point frame-
work to obtain a computational cost that scales linearly
in the horizon length (as opposed to the cubic scaling of
a naive approach). The differential dynamic programming
(DDP)-based MPC methods of Tassa et al. (2014) extend
the approach to nonlinear systems, preserving the linear
complexity scaling in the prediction horizon length. Which
method would work best for the yeast manufacturing sys-
tem considered in this article is an open research question.
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