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Abstract: Tuning parameters in model predictive control (MPC) presents significant challenges,
particularly when there is a notable discrepancy between the controller’s predictions and the
actual behavior of the closed-loop plant. This mismatch may stem from factors like substantial
model-plant differences, limited prediction horizons that do not cover the entire time of interest,
or unforeseen system disturbances. Such mismatches can jeopardize both performance and
safety, including constraint satisfaction. Traditional methods address this issue by modifying
the finite horizon cost function to better reflect the overall operational cost, learning parts of
the prediction model from data, or implementing robust MPC strategies, which might be either
computationally intensive or overly cautious. As an alternative, directly optimizing or learning
the controller parameters to enhance closed-loop performance has been proposed. We apply
Bayesian optimization for efficient learning of unknown model parameters and parameterized
constraint backoff terms, aiming to improve closed-loop performance of battery fast charging.
This approach establishes a hierarchical control framework where Bayesian optimization directly
fine-tunes closed-loop behavior towards a global and long-term objective, while MPC handles
lower-level, short-term control tasks. For lithium-ion battery fast charging, we show that the
learning approach not only ensures safe operation but also maximizes closed-loop performance.
This includes maintaining the battery’s operation below its maximum terminal voltage and
reducing charging times, all achieved using a standard nominal MPC model with a short horizon
and notable initial model-plant mismatch.

Keywords: Closed-loop Learning, Policy Optimization, Controller Autotuning, Model
Predictive Control, Bayesian Optimization, Battery Fast Charging

1. INTRODUCTION

Model predictive control (MPC) allows for the optimal
control of linear and nonlinear systems while explicitly
taking constraints on the inputs, states, and outputs of
the system into account. The closed-loop performance,
however, depends on many factors, spanning from the
quality of the prediction model used in the controller, ap-
pearing disturbances, to a suitable formulation of the cost
function and constraints. Selection of these components
and of suitable controller parameters is challenging (Lu
et al., 2021).

Methods have been proposed to enhance the performance
of MPC by exploiting machine learning algorithms (Mes-
bah et al., 2022; Himmel et al., 2024). Usually, this ap-
proach learns a prediction model or parts thereof, e.g.,
using Gaussian processes (Kocijan, 2016) or neural net-
works (Höhl et al., 2023). However, a good prediction
model does not necessarily lead to good closed-loop per-
formance, depending on the global control objective (Kr-
ishnamoorthy, 2023; Sorourifar et al., 2021). Thus, more
recently, direct tuning of parametrized MPC policies has
been considered. Generally, all components of an MPC

formulation can be parametrized, such as the cost function,
the prediction model, and the constraints. Usually, the
parameters are tuned either by exploiting reinforcement
learning strategies (Zanon and Gros, 2021) or Bayesian
optimization (BO) (Paulson et al., 2023; Sorourifar et al.,
2021), to improve the closed-loop performance. Typical
closed-loop objectives include, e.g., fast convergence to
a setpoint or constraint satisfaction. In this work, we
consider BO as it is a sample efficient and gradient-free
method that is suitable for the optimization of black-box
functions and consider it for learning MPC parameters for
fast charging of lithium-ion batteries (LIBs) and optimal
closed-loop performance.

Learning/tuning of MPC parameters in an outer loop
results in a hierarchical framework, where BO offers global
optimization of the closed-loop performance over longer
periods or multiple episodes while the model predictive
controller manages short-term planning. This allows of-
floading computational resources from the MPC to the
BO, where the latter can be run online but does not
need to fulfill strict real-time constraints, compared to the
MPC. Moreover, the MPC acts as a structured safety layer,
ensuring key control theory requirements like closed-loop
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stability, robustness, and constraint satisfaction. In this
setting, it is crucial to carefully define the global (BO) and
local (MPC) cost functions to achieve the desired closed-
loop objective.

We demonstrate the approach to fast charging of LIBs,
which are essential for storing electrical energy and are a
backbone for a carbon-neutral society. Due to high volu-
metric and gravimetric energy density, LIBs are the stor-
age medium of choice for applications such as consumer
electronics, and electric vehicles. However, purchase costs
and range anxiety are hurdles for wider adoption of electric
vehicles (Egbue and Long, 2012). Optimal fast charging,
i.e., charging batteries fast while keeping degradation low
(Attia et al., 2020; Matschek et al., 2023), is therefore
paramount to avoid oversized battery systems which in-
flate electric vehicle prices and to allow long trips without
excessive charging times.

Much attention has been devoted to applying machine
learning to LIBs to address various systems analysis and
design problems, e.g., see (Schaeffer et al., 2024b) and cita-
tions therein. LIBs are nonlinear dynamical systems, and
time-varying due to time- and usage-based degradation,
and are an intriguing application for MPC, e.g., (Xavier
and Trimboli, 2015; Chen et al., 2021; Lucia et al., 2017;
Klein et al., 2011). To keep computational cost reasonable,
battery management systems usually use equivalent circuit
models (ECMs) for control and estimation of the state-of-
charge (SOC) (Plett, 2015).

Here, we apply BO over multiple closed-loop episodes for
optimization of a model predictive controller for battery
charging. We explore the combination of MPC for ensuring
that the battery charging remains within the constraints,
with BO to simultaneously learn constraint backups and
correct for model-plant mismatch.

The remainder of this article is structured as follows.
Section 2 provides an introduction to MPC, BO, and ECM
battery models. Subsequently, we present two different
case studies in Section 3, followed by the conclusion in
Section 4.

2. FUNDAMENTALS

Consider a nonlinear discrete-time dynamical system,

xk+1 = f(xk, uk),

yk = h(xk, uk),
(1)

where xk are the system states, uk are the system inputs,
f(·) are the system dynamics, h(·) is the mapping from
states and inputs to the system outputs yk, and k ∈ N0 is
the discrete time index.

2.1 Parameterized Model Predictive Control

The objective is to steer system (1) to a desired state
(xd, ud) while satisfying constraints. One possible ap-
proach to do so is MPC, which is based on the repeated
solution of a finite-horizon optimal control problem (Rawl-
ings et al., 2017; Findeisen and Allgöwer, 2002). We as-
sume that performance, stability, and repeated feasibility
of MPC depends on np parameters θ ∈ Θ ⊂ Rnp , which
might influence the cost, the model, or the constraints:

min
ûk

{
N−1∑
i=0

lθ(x̂i|k, ûi|k) + Vf ;θ(x̂N |k)

}
(2a)

s.t. ∀i ∈ {0, 1, . . . , N − 1} :

x̂i+1|k = f̂θ(x̂i|k, ûi|k), x̂0|k = xk, (2b)

x̂i|k ∈ Xθ, ŷi|k ∈ Yθ, ûi|k ∈ Uθ, x̂N |k ∈ Eθ, (2c)

ŷi|k = ĥθ(x̂i|k, ûi|k). (2d)

Here, ·̂i|k denotes the model-based i-step ahead prediction

at time index k, f̂θ(·) and ĥθ(·) define the prediction
model, xk is the measurement of the current system state,
N is the length of the prediction horizon, lθ(·) and Vf ;θ(·)
are the stage and terminal cost functions, respectively,
and (2c), are the state, output, input, and terminal con-
straints. Solving (2) yields an optimal input sequence
û∗
k = [û∗

0|k, . . . , û
∗
N−1|k], of which the first element is

applied to the system uk = û∗
0|k. Once new measurements

are available, (2) is solved again at the next time index.
Similar to (Sorourifar et al., 2021; Lu et al., 2021) we
exploit Bayesian optimization to optimize the parameters
θ with respect to a closed-loop performance measure.

2.2 Bayesian Optimization

Bayesian optimization (BO) is a sample efficient, global
optimization scheme for black-box functions,

θ∗ = argmax
θ∈Θ

{G(θ)} , (3)

where θ∗ is the global maximizer of the objective function
G(·) on the set Θ. In this work, G(·) is a predetermined
but analytically unknown performance measure of the
controlled system. The optimization is achieved by sequen-
tially learning a (probabilistic) surrogate model, which is
trained on the observed samples of function G(·). As such,
a dataset is built sequentially according to Dn+1 = Dn ∪
(θn+1, G(θn+1)), n ∈ N0, with D0 = (θ0, G(θ0)) and the
initial parameters θ0.

Gaussian processes (GPs) are commonly employed as
surrogate models for BO as they tend to be sample
efficient (Rasmussen and Williams, 2006). Additionally,
GPs not only provide a best estimate (mean) but also an
uncertainty measure (variance). The GP is fully defined
by its mean function m(·) and covariance function k(·, ·)
(Rasmussen and Williams, 2006),

g(ξ) ∼ GP(m(ξ), k(ξ, ξ′)). (4)

Assuming a prior mean and covariance function and given
the training data Dn, the posterior mean and variance for
the test point θ are given by the inference procedure

m+
n (θ) = m(θ) + k(θ, ϑ)k−1

γ (γ −m(ϑ)),

k+n (θ) = k(θ, θ)− k(θ, ϑ)k−1
γ k(ϑ, θ),

(5)

with ϑ = [θ0, . . . , θn]
⊤ and kγ = k(ϑ, ϑ) + σ2I, where

σ2 is the noise variance on the training targets γ =
[G(θ0), . . . , G(θn)]. The hyperparameters of the GP are
learned by optimizing the logarithmic marginal likelihood
(Rasmussen and Williams, 2006).

Based on the surrogate model, an acquisition function
α(θ) is set up, which exploits the mean and covariance
of the GP in the search for new parameter samples θn.
Consequently, in each BO iteration n, the acquisition
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function is optimized, yielding the new parameters for the
next iteration,

θn+1 = argmax
θ∈Θ

αn(θ). (6)

In this work, we employ the Expected Improvement acqui-
sition function (Garnett, 2023).

2.3 Bayesian Optimization for Learning MPC Parameters

For learning/autotuning the parameters of MPC, Bayesian
optimization is well suited as it is sample efficient, which
reduces the number of necessary closed-loop trials. In this
work, we consider tuning of MPC parameters θ for a
closed-loop performance objective G(θ), e.g., distance to
a desired state, settling time, or constraint satisfaction.
After determining an initial set of parameters θ0, a GP
surrogate model is built in each optimization iteration
n based on the new dataset Dn. Then the acquisition
function is used to specify the next parameter set θn+1,
the closed-loop system is run with parameters θn+1, and
the closed-loop performance G(θn+1) is evaluated (see
Algorithm 1). An advantage of the BO-based MPC tuning
is the high sample efficiency and the capability to run the
BO online, thus allowing for an adaptive behavior of the
MPC to a changing system or environment.

Algorithm 1 MPC Parameter Learning via Bayesian
Optimization

Require: Parametrized MPC policy u∗
0(x; θ), Parameter

domain Θ, initial data D0, prior GP mean and covari-
ance functions m(·) and k(·)
for n = 0, 1, 2, · · · do

Determine posterior GP for Dn

Maximize acquisition function for θn+1

Run closed-loop simulation using u∗
0(x; θn+1)

Determine closed-loop performance G(θn+1)
Update data set

end for

2.4 Battery Model and Fast Charging

Lithium-ion batteries (LIBs) are time-varying nonlinear
dynamical systems that have been modeled by empirical
descriptions (e.g., lookup tables), black-box machine learn-
ing (e.g., neural networks), first-principles (e.g., porous
electrode theory models), and equivalent circuit models
(ECMs) (Schaeffer et al., 2024a). ECMs approximate the
battery behavior by an electric circuit using elements such
as voltage sources, resistors, capacitors, and more (e.g.,
Krewer et al. (2018); Schaeffer et al. (2023) and citations
therein). An advantage of ECMs over first-principle models
is their low computational cost and straightforward imple-
mentation, making them suitable for control applications.

The subsequent fast charging case studies use an ECM
model with a resistor in series with a resistor capacitance
pair (Fig. 1). The voltage source is given by the SOC-
dependent cell characteristic open circuit voltage (OCV),
R0 represents the ohmic resistance of the battery, and the
R1, C1 pair models the polarization of the cell due to the
double layer and approximates diffusion.

OCV(zk)

R0(zk) R1(zk)

C1(zk)

I

VT

Fig. 1. R-RC battery ECM model with parameters de-
pending on the SOC zk.

Consequently, the nonlinear discrete-time dynamics are
given by[

zk+1

U1,k+1

]
=

[
zk + ηTs

Q Ik

(U1,k −R1Ik) exp
(
− Ts

R1C1

)
+R1Ik

]
,

VT,k = OCV − U1,k −R0Ik,

(7)

where the parameters R0(·), R1(·), C1(·), and the OCV(·)
are functions of the SOC, U1 is the voltage over C1, Ts is
the sampling time, η is the Coulombic efficiency, and Q
denotes the battery discharge capacity.

We used cubic splines to interpolate the parameters pub-
lished by Tran et al. (2021), associated with a Samsung
SDI INR18650 − 20S lithium nickel manganese cobalt
oxide (NMC) cell, and assume ideal cell cooling, i.e., con-
stant temperature, and that the model parameters are
independent of the current. As a consequence, the model
parameters, i.e., R0, R1, and C1, are only dependent
on the SOC zk, where k is the time index. Batteries
change their behavior not only with SOC but also with
current and temperature (Hua et al., 2021; Karimi et al.,
2023). Consequently, the error between the ECM and the
battery increases for operational points away from the
parametrization region. In addition, batteries degrade over
time and usage, i.e., the capacity and power capabilities
decrease. Degradation does not only impact the perfor-
mance of the application but also control. It furthermore
changes the system dynamics, thus leading to a mismatch
between model parameters and the cell, introducing a
further source of model error.

Fast charging is important to increase the utility of electric
vehicles. One approach for designing fast charging proto-
cols is to minimize the charging time subject to degrada-
tion constraints, e.g., (Matschek et al., 2023). Commonly,
constraints are set for current, voltage, temperature, and
lithium-plating overpotential to limit degradation. Here we
employ current and voltage constraints given by

∀k ∈ N0 : Ik ≤ Imax = 6A, (8)

∀k ∈ N0 : 2.5V = VT,min ≤ VT,k ≤ VT,max = 4.2V, (9)

with no temperature constraint due to the isothermal
assumption. The plating overpotential constraint cannot
be set because the chosen ECM does not include plating.
Note that we consider current control during the entire
charging process due to the model-based approach and do
not switch to voltage control as implemented in typical
charging circuits, e.g., (Chen and Rincon-Mora, 2006).

Next, we explore how MPC and BO can ensure that the
voltage constraint is not violated during fast charging un-
der model-plant mismatch. This article focuses on method-
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ology and its demonstration, justifying the simplifications
and assumptions mentioned previously.

3. SIMULATION STUDIES

The capabilities of the BO-MPC framework are demon-
strated in two case studies focusing on enhancing the
closed-loop performance during fast charging while satis-
fying terminal voltage constraints. In the first case study,
the BO optimizes the voltage constraint with a constraint
backoff term. In the second case study, the BO optimizes
the parameters of the controller’s prediction model.

For both case studies, the fast charging problem is formu-
lated as a set point change, where the target state is the
fully charged battery, i.e., zk = 1. The MPC is given by

min
Îk

{
N∑
i=0

(
1− zi|k

)2}
(10a)

s.t. ∀i ∈ {0, . . . , N − 1} :

Equation (7)

VT,min ≤ V̂T,i|k ≤ VT,max. (10b)

We implement the state constraints as soft constraints for
numerical reasons. For the sake of simplicity, we employ
the ECMmodel for the controller-intern predictions as well
as for the closed-loop simulations. To realize the model-
plant mismatch, both case studies use randomly disturbed
model parameters in the controller’s prediction model. The
resulting model parameters differ up to 50% from the true
model parameters. The nominal MPC shows a bang-and-
ride behavior, i.e., first the current is equal to its upper
constraint (bang), but once the system hits the upper
voltage constraint, the MPC subsequently continues to
“ride” the upper voltage constraint. To avoid constraint
violations with a mismatch while fast charging, the global
BO objective function is defined as

G(θ) =

M∑
k=0

−c1(1−zk)
2−

(
max{0, VT,k−VT,max}

)2
, (11)

where c1 ≪ 1 balances the trade-off between minimization
of the charging time and constraint satisfaction. Note that
the closed-loop values zk and VT,k in (11) implicitly depend
on the parameters θ of the MPC.

3.1 Learning Constraint Backoff

During battery charging, it is essential not to violate the
terminal voltage constraint associated with the battery
chemistry and given in the battery datasheet. To ensure
that the voltage constraints are not violated, a parametri-
zed constraint backoff term is introduced in the MPC via
(10b). The resulting output constraint is

VT,min ≤ V̂T,i|k ≤ VT,max − bθ(zk), (12)

where bθ(·) is a backoff function that depends on the
current SOC. For efficient implementation, bθ(·) is defined
by a cubic spline interpolation over a predefined grid. The
values at the grid points are stored in θ ∈ R7, where 7
is the chosen number of grid points. The BO adjusts θ to
avoid constraint violation while maximizing the state of
charge, see (11). The objective is to adjust θ such that the
constraint is satisfied after the BO tuning procedure.
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Fig. 2. First case study: Learning constraint backoff. Initial
closed-loop solution in blue, BO trials in gray, and
optimized closed-loop result in orange. a) SOC trajec-
tories, b) Current trajectories, c) Voltage trajectories
with voltage constraint, VT,max, red dashes.

The case study shows that the initial closed-loop solution
violates the voltage constraint due to the model-plant
mismatch (blue line, Fig. 2c). The final voltage trajectory
solution does not violate the voltage constraint because
of the learned constraint backoff (orange line, Fig. 2c).
During the BO procedure, different parameters for the
constraint backoff are sampled in a structured way, where
the acquisition function balances exploration and exploita-
tion (gray lines, Fig. 2abc). The SOC trajectory of the
optimized closed-loop result rises slower than the initial
solution (blue and orange lines in Fig. 2a). While the initial
solution promises a faster charge, this is only due to the
voltage constraint violation, which results in a later switch-
ing time from constant current (CC) to constant voltage
(CV). The learned constraint tightening shows that the
backoff term decreases with increasing SOC (Fig. 3). The
high backoff at the beginning of the charging process
ensures that the voltage constraint is not violated at the
end of the CC phase. For higher SOC values, however, the
constraint backoff is smaller; otherwise, the closed-loop
behavior would be overly conservative, and the battery
could not be fully charged to SOC = 1. Batteries can only
charge if OCV < VT holds, i.e., the maximum achievable
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Fig. 3. Spline interpolation and tuned grid points of the
backed-off constraint (green) and OCV (red).

SOC is defined by the intersection of the green and red
line in Fig. 3.

As this result is still slightly conservative compared to
the initial run, the next case study explores the effect of
learning the prediction model parameters.

3.2 Learning Model Parameters

The second case study takes a different approach by
learning the parameters of the controller’s internal ECM.
The BO tunes the values at the grid points of the R1 spline.
To demonstrate that the prediction model does not have
to match the plant model exactly for a good closed-loop
performance, we only tune the R1 spline while keeping the
mismatch for the other parameters. Note that in general,
all of the ECM parameters can be tuned.

The terminal voltage constraint is fulfilled with the tuned
system (orange line, Fig. 4c). The initial trial here is identi-
cal to the initial trial of the first case study. By tuning the
prediction model directly, this case study yields a better
closed-loop result, i.e., the maximum SOC is achieved
about 10 minutes earlier (Fig. 4a). Additionally, the charg-
ing time of the safe tuned result is only slightly lower
compared to the unsafe initial result. This is also visible in
the tuned current trajectory (orange line, Fig. 4b), which
shows a later switching time from CC to CV compared
to the initial trajectory. However, the trajectories of the
BO trials violate the voltage constraint as there is no
explicit upper bound. In contrast, more BO trials keep the
voltage constraint in the first case study. Thus, we trade
off performance of the final solution with less safe sampled
parameter sets.

In summary, the closed-loop behavior significantly im-
proves, despite the fact that the learned model does not
converge to the true model (Fig. 5). For SOC ≈ 0.5, the
learned grid points for R1 (green) are higher than for the
initial parameter (purple). This is exactly where the con-
straint violation occurs at 12 minutes in the initial simula-
tion (Fig. 4). A local backoff is learned through the model,
making our results interpretable. For different SOC, the
learned grid points might be less intuitive to understand,
as they also might be tuned towards compensating the
mismatch introduced through the other parameters R0

and C1.
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Fig. 4. Second case study: Learning prediction model
parameters. Initial closed-loop solution in blue, BO
trials in gray, and optimized closed-loop result in or-
ange. a) SOC trajectories, b) Current trajectories, c)
Voltage trajectories with voltage constraint, VT,max,
red dashes.
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Fig. 5. Spline interpolation and tuned grid points for R1

in the prediction ECM. Plant parameter (red), initial
prediction parameter (purple), and tuned prediction
parameter (green).

4. CONCLUSION

We exploit a hierarchical control framework based on
Bayesian optimization for global optimization of a para-
metrized MPC formulation. While the former takes care
of global optimization of the long-term closed-loop behav-
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ior, the latter handles lower-level and short-time control
tasks. Two specific formulations are proposed within this
framework, which are demonstrated in case studies for
fast charging of lithium-ion batteries. The first case study
learns a constraint backoff term that was parametrized
over the SOC of the battery. While mostly safe Bayesian
optimization trials were observed, the final result turned
out to be conservative compared to the initial unsafe trial.
The second case study had less conservative results while
showing very similar performance to the initial unsafe trial.
While the final result satisfied the constraint, more trials
with constraint violations were conducted by the Bayesian
optimization in the second case study, indicating more
exploration in the parameter space.
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