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Abstract: Model predictive control (MPC) is one of the most effective technologies for optimal
control of constrained multivariable systems. The closed-loop performance of MPC, however,
can be sensitive to the choice of several tuning parameters that can appear in the prediction
model, constraints, and/or cost function. Due to inherent limitations of manual tuning and
the performance function depends on these parameters in an unknown manner, there has been
increasing interest in “auto-tuning” using derivative-free optimization (DFO) methods. Bayesian
optimization (BO) is a particularly powerful framework for data-efficient DFO of noisy, black-
box functions Several recent works have shown the effectiveness of BO for MPC tuning when
the number of tuning parameters is relatively small; however, MPC problems often involve a
much larger number of parameters for which BO tends to struggle. In this paper, we propose to
exploit a new type of Gaussian process surrogate model defined on sparse axis-aligned subspaces
to mitigate the curse of dimensionality in BO. The approach is effective when closed-loop
performance is sensitive to a small subset of tuning parameters, which is often the case in task-
specific tuning problems. We demonstrate an order-of-magnitude performance improvement
can be obtained with the proposed method compared to standard BO on a benchmark inverted
pendulum on a cart problem controlled by MPC with twenty independent tuning parameters.

Keywords: Controller tuning; High-dimensional Gaussian processes; Bayesian optimization.

1. INTRODUCTION

Model predictive control (MPC) is a powerful technology
for advanced control of constrained multivariable systems
(Rawlings et al., 2017). MPC has been successfully ap-
plied in a wide-variety of complex engineering applications,
including robotic, aerospace, automotive, biomedical, sus-
tainability, and chemical process systems (Schwenzer et al.,
2021). The actual closed-loop performance achieved in
practice by MPC is known to strongly depend on several
factors, including the quality of the dynamic prediction
model, the choice of objective and constraint functions, the
choice of real-time optimization routine, and the selection
of any free “hyperparameters” that may appear in these
functions. For example, it is common to identify a predic-
tion model using limited open-loop data collected around
a single operating condition. The uncertainty in the identi-
fied nominal model, however, can lead to overly aggressive
or conservative responses, resulting in reduced closed-loop
performance. This is because the model that produces the
smallest output prediction errors may not be the one that
provides the best system performance when operated in
a closed-loop fashion (Piga et al., 2019). This argument,
often referred to as identification for control (I4C) (Gevers,
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2005), can be extended to the other components of MPC
such that the goal is to select/design/tune the model, opti-
mization formulation, and solution method simultaneously
to produce the best closed-loop performance while meeting
computation constraints.

The need for sample-efficient MPC tuning has recently
led to the use of Bayesian optimization (BO), which is
a powerful black-box optimization framework designed
for noisy, expensive-to-evaluate functions (Frazier, 2018).
Recent contributions have demonstrated substantial per-
formance gains with BO over alternative black-box op-
timization algorithms (Paulson et al., 2023b). Further-
more, BO can be straightforwardly adapted to handle
many variations of the tuning problem, including those
with mixed continuous-discrete search spaces (Paulson and
Mesbah, 2020), multiple performance objectives (Makry-
giorgos et al., 2022), safety constraints (Sorourifar et al.,
2021; Paulson et al., 2023a), and approximate gradient
information (Makrygiorgos et al., 2023).

While BO has shown great promise on low-dimensional
tuning problems (fewer than ten dimensions), its appli-
cation to high-dimensional problems remains a significant
challenge. Realistic forms of MPC tuning problems often
involve a large number of parameters, as they can appear
in any component of the algorithm. This challenge is cir-
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cumvented in previous work by assuming sufficient prior
knowledge is available to a priori identify a reasonably
small set of key parameters before running the optimiza-
tion procedure. This type of assumption is likely not valid
in the early phases of tuning wherein we can easily have
many tens to hundreds of parameters whose impact on
performance is unknown. The challenge with BO in such
cases can be traced back to the difficulty of building well-
calibrated surrogate models in high dimensions. BO lever-
ages a probabilistic surrogate model to decide the optimal
location of the next sample, meaning it will perform poorly
if the model class is too flexible or too rigid.

Gaussian process (GP) surrogate models defined on sparse
axis-aligned subspaces (SAAS) are an example of such a
model class that strikes a useful balance between flexibility
and parsimony in the low-data regime (Eriksson and
Jankowiak, 2021). In this paper, we propose to use SAAS-
GPs to tackle high-dimensional MPC tuning problems.
The key assumption underpinning SAAS-GP models is
that only a small number of features have a strong impact
on the objective function, which we conjecture holds in
many task-specific MPC tuning problems. We discuss
how inference (i.e., posterior prediction) can be efficiently
carried out using Hamiltonian Monte Carlo (HMC). HMC
enables fast identification of a sparse subspace of tuning
parameters most relevant to modeling the closed-loop
performance function. The proposed approach is validated
on a challenging benchmark problem wherein an inverted
pendulum on a cart is controlled using hierarchical MPC
with more than twenty tuning parameters. Our results
show that BO using SAAS-GP can discover parameters
leading to an order-of-magnitude improvement in cost
compared to BO with standard GP and random search.

The remainder of this paper is organized as follows. The
MPC tuning problem of interest in this work is defined
in Section 2. The SAAS-GP method and its integration
within the BO framework is summarized in Section 3.
Section 4 illustrates the performance of the proposed
method on the benchmark problem. We then conclude
the paper and describe some possible directions for future
work in Section 5.

2. PROBLEM FORMULATION

In this work, we are interested in closed-loop MPC tuning
problems of the form

θ⋆ ∈ argmin
θ∈D

J(θ), (1)

where θ ∈ D ⊂ RD denotes the set of tuning parameters
that are restricted to a space D and J : D → R is
scalar objective function derived from some simulator or
experiment in closed loop with the MPC controller. For
simplicity, we assume that the parameter space has been
scaled to the D-dimensional unit cube D = [0, 1]D. As
discussed in detail in (Paulson et al., 2023b), the closed-
loop performance function is generally defined according
to an expected cost of the form

J(θ) = E{ψ(X(θ),U(θ),W (θ))}, (2)

where X(θ), U(θ), and W (θ) denote the state, con-
trol input, and disturbance trajectories over some finite
horizon (that are completely parametrized by the tuning
parameters), ψ(·) is a function that maps these trajectory

realizations to a performance measure, and E{·} denotes
the expectation over some probability distribution for the
initial state values and disturbance sequence. Typically,
these closed-loop sequences are generated by a stochastic
nonlinear dynamic process such as

xt+1 = f(xt,ut,wt), (3a)

ut = πt(xt;θ), (3b)

wt ∼ p(wt | xt,ut), (3c)

where xt is the system state, ut is the control input, wt is
the disturbance, f(·) is the state transition function, πt is
the MPC policy fully parametrized by tuning parameters
θ, and p(· | xt,ut) denotes the probability distribution
for the disturbance at time t. In general, we cannot
compute the expectation in (2) exactly and must resort to
some approximation procedure such as Monte Carlo (MC)
integration. Although in principle the proposed framework
can handle noisy observations introduced by MC, the
purpose of this paper is investigate the impact of increasing
dimensionality on MPC tuning. As such, we assume that
noise-free evaluations of J can be obtained by running K
independent closed-loop simulations, i.e.,

J(θ) =
1

K

K∑
i=1

ψ(Xi(θ),U i(θ),W i(θ)), (4)

where {Xi,U i,W i}Ki=1 denote the closed-loop trajectories
generated by (3). This is equivalent to assuming that
the probability distribution of the disturbance sequence
is discrete with K unique realizations.

We are interested in the case that evaluations of J are ex-
pensive, meaning we are limited to at most a few hundred
evaluations in total. This situation is quite common in
MPC tuning applications since MPC is a particularly ex-
pensive controller to evaluate as it requires the solution to
an optimization problem at every sampling time instance.
This issue is only further compounded when f is defined in
terms of a high-fidelity simulator or experimental system
and/or the number of disturbance realizations K is large.

3. PERFORMANCE-BASED MPC TUNING USING
SPARSE AXIS-ALIGNED BAYESIAN OPTIMIZATION

In this section, we describe the high-dimensional BO strat-
egy that can be used to solve (1) when D is large. We
start with a brief review of traditional GP models and
then describe a strategy to effectively extend GPs to high-
dimensional problems when the dimensions of θ ∈ D
exhibit a hierarchy of relevance for prediction of J (i.e.,
a subset of dimensions are the most sensitive to the out-
come). We then describe the data acquisition strategy by
which new tuning parameters can be queried sequentially
by averaging posterior samples generated from the high-
dimensional GP.

3.1 Standard Gaussian Processes

Gaussian processes (GPs) are an increasingly popular
method for non-parametric regression where the goal is
to find an approximation to the unknown mapping J that
provides built-in uncertainty quantification for predictions
J(θ⋆) where θ⋆ ∈ D denotes an arbitrary test input. GPs
achieve this goal by assuming that the function values
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at different inputs are random variables, with any finite
subset of these random variables having a joint Gaussian
distribution (Williams and Rasmussen, 2006). As such,
a GP defined over input space D is fully specified by a
prior mean function µγ : D → R and a prior covariance
function (or kernel) kγ : D ×D → R where γ denotes the
collective set of hyperparameters that define the GP prior.
Without loss of generality, we assume the mean function
is uniformly zero, which can be achieved in practice with
appropriate data normalization (Paulson and Lu, 2022).

In this work, we focus exclusively on the squared exponen-
tial kernel of the form

kγ(θ,θ′) = ζ2 exp
(
− 1

2

∑D
i=1 ρi(θi − θ′i)

2
)
, (5)

where θi denotes the ith dimension of θ, {ρi}Di=1 are the
inverse lengthscales, and ζ2 is a scaling factor for the
output variance. The hyperparameters then correspond
to γ = {ρ1, . . . , ρD, ζ2}, which have intuitive interpreta-
tions. The inverse lengthscale ρi specifies how quickly the
covariance changes between neighboring values along the
dimension θi. Small values for ρi imply the covariance de-
cays slowly in θi such that this dimension contributes little
to variation in J (prediction is flat along θi). On the other
hand, a large value for ρi implies the covariance decays
quickly in the direction of θi such that J can strongly vary
along this dimension (prediction can be highly nonlinear
along θi). Lastly, the prior variance ζ2 roughly represents
that expected magnitude of the function value, meaning
|J(θ)| ≤ ζ for θ ∈ D with around 68% probability.

Given N observations of the performance function y ∈ RN

at N specific input values Θ = {θi}Ni=1, we can condition
on these observations, which leads to a posterior normal
distributionN (µN (θ⋆|γ), σ2

N (θ⋆|γ)) at query point θ⋆ ∈ D
with mean and variance functions given by

µN (θ⋆|γ) = kγ⋆,Θ
⊤ (
Kγ

Θ,Θ + σ2IN
)−1

y, (6a)

σ2
N (θ⋆|γ) = kγ⋆,⋆ − kγ⋆,Θ

⊤ (
Kγ

Θ,Θ + σ2IN
)−1

kγ⋆,Θ, (6b)

where kγ⋆,⋆ = kγ(θ⋆,θ⋆), K
γ
Θ,Θ is the N × N kernel

matrix with elements [Kγ
Θ,Θ](i,j) = kγ(θi,θj), k

γ
⋆,Θ =

[kγ(θ,θ1), . . . , k
γ(θ,θN )]⊤ is a column vector of the kernel

evaluated between the query point θ⋆ and the observed
inputs Θ, IN is the N ×N identity matrix, and σ2 is the
variance of a Gaussian noise term. Since we are interested
in noise-free evaluations of J , we set σ2 to a small constant
just to improve the numerical stability.

3.2 Sparse Axis-Aligned Subspace (SAAS) Function Prior

A key challenge one has to deal with in GP modeling is
the choice of hyperparameters γ. Standard GPs are fit
using maximum likelihood estimation (MLE) (Williams
and Rasmussen, 2006, Section 2.7), however, since there is
no mechanism to regularize the lengthscales, this approach
generally produces to non-negligible ρi for all i = 1, . . . , D,
leading to significant overfitting in the high-dimensional
case. One way to overcome this challenge is to take a
fully Bayesian perspective of the hyperparameters such
that γ also has a prior that can also be conditioned on
the available data when performing inference tasks. To be
useful in practice, the prior must have a strong sparsifying
effect so we can hope to identify a reasonable model for

J given limited data. We propose to use the following
SAAS function prior that creates a sparse structure on
the inversed lengthscales (Eriksson and Jankowiak, 2021):

1. Kernel variance: ζ2 ∼ LN (0, 102);
2. Global shrinkage: τ ∼ HC(α);
3. Lengthscales: ρi ∼ HC(τ), ∀i = 1, . . . , D;
4. Function values: J ∼ N (0,Kγ

Θ,Θ);

5. Observations: y = N (J, σ2IN );

where LN denotes the log-normal distribution and HC(s)
is the half-Cauchy distribution with scale parameter s. The
value α > 0 is a hyperparameter that controls the level
of shrinkage in the model – we use the suggested default
value of α = 0.1. The half-Cauchy prior for τ implies
p(τ |α) ∝ (τ2 + α2)−11(τ > 0) where 1(τ > 0) is the
indicator function equal to 1 if τ > 0 and 0 otherwise.
Thus, the prior enforces that the density of τ concentrates
near zero such that, based on {ρi}Di=1 also having half-
Cauchy priors, we expect most dimensions to be “turned
off” (unimportant for prediction) initially. As observations
y are gathered, the posterior for τ can be pushed to higher
values (as long as sufficient evidence is available), which
enables the posterior density of more ρi values to increase.
Therefore, the SAAS prior is sparse by nature (must have
strong evidence to unlock any given dimension θi in the
model) and adaptive in the sense that more dimensions
can be unlocked as enough evidence is gathered to push
the posterior for τ to larger values.

We conjecture that the SAAS prior is particularly useful
in task-specific MPC tuning contexts (1), as it is unlikely
that all considered tuning parameters contribute equally
to closed-loop performance. This conjecture is supported
by the case study results presented in Section 4. Since it is
often non-obvious which parameters are important, SAAS
gracefully addresses this issue by automatically identifying
important parameters from relatively small observation
sets. Even though one could use intuition to select a subset
of θ to consider in (1), unless chosen very precisely, this
approach is subject to significant performance losses due to
neglecting an unknowingly important parameter perceived
to be unimportant by the user. It is worth noting, however,
that in cases that we want the derived tuning parameters
to generalize between different tasks (e.g., results in high-
performance across many different initial state and/or
setpoint values), this conjecture may not be valid and we
may not achieve the same level of performance. We argue
that this is not a fundamental limitation of the method
but more that a tuning problem of this type (one with a
large number of sensitive parameters) is extremely difficult
to solve. Such cases are likely to require large simulation
budgets and potentially new algorithms, which we plan to
explore more in our future work.

3.3 The SAASBO Algorithm

The main challenge with the SAAS-GP model defined in
Section 3.2 is the inference step needed to compute the
predictive posterior distribution p(J(θ⋆)|θ⋆,y,Θ), which
is no longer Gaussian and must be calculated by marginal-
izing over the posterior distribution p(γ, τ |y,Θ). Since
the marginalization cannot be done analytically, we resort
to generating samples from p(γ, τ |y,Θ). The No-U-Turn
sampler (NUTS) (Hoffman et al., 2014) is an efficient
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variant of Hamiltonian Monte Carlo (HMC) that exploits
the fact that the SAAS-GP model has a differentiable joint
density function. NUTS is then capable of targeting the
un-normalized joint density

p(y|Θ, γ)p(γ|τ)p(τ) ∝ p(γ, τ |y,Θ), (7)

where the marginal likelihood of the observed data given
fixed hyperparameters can be computed in closed form,
i.e., p(y|Θ, γ) = N (y,Kγ

Θ,Θ + σ2IN ). By running the
NUTS algorithm, we can obtain approximate posterior
samples for the kernel hyperparameters at a cost of
O(N3D) per sample for N datapoints and D dimensions.

To extend this to the BO setting, suppose that we have
collected a data history of Hn = {θ1:N , y1:N} in the past n
steps. Our goal is then to use Hn to decide the next query
point θn+1 using some acquisition (or expected utility)
function αn : D → R that quantifies the potential benefit
of evaluating J(θ) at any unseen θ ∈ D. BO can then be
interpreted as the sequential learning process defined by

θn+1 ∈ argmax
θ∈D

αn(θ). (8)

Several acquisition functions have been proposed in the
literature including, for example, expected improvement
(EI) and lower confidence bound (LCB), which both have
analytic expressions for fixed hyperparameter values γ. For
example, EI is defined as follows (Jones et al., 1998)

EIn(θ|J⋆
n, γ) = φ(J⋆

n − µn(θ|γ), σn(θ|γ)), (9)

where

φ(y, s) =

{
yΦ(y/s) + sϕ(y/s), s > 0,

max(y, 0), s = 0,

Φ(·) and ϕ(·) denote the standard normal cumulative den-
sity function and probability density function, respectively,
and J⋆

n = minn yn denotes the incumbent solution that
refers to the best function evaluation observed so far.
Since γ is a latent variable in the SAAS-GP context, the
acquisition function is computed by averaging over the

posterior samples {γ(l)n }Ll=1 ∼ p(γ|Hn)

αn(θ) =
1

L

L∑
l=1

EIn(θ|J⋆
n, γ

(l)
n ) (10)

where L is the number of posterior samples obtained with
NUTS. Since the GP prediction model (6) and the EI
function are differentiable with respect to θ, they can
be efficiently optimized using gradient-based methods (see
(Balandat et al., 2020, Appendix F) for further details).

4. CASE STUDY: AUTOMATED MPC TUNING IN A
HIGH-DIMENSIONAL SPACE

4.1 System Description

We are interested in MPC tuning for an inverted pendulum
on a cart problem whose dynamics are governed by the
standard equations of motion. We use the same problem
setup as described in (Piga et al., 2019) (same dynamics,
parameters, and constraints). The key outputs of interest
are the position of the cart p and the pendulum angle
with respect to the upright vertical position ϕ. The force
acting on the cart F is the only manipulatable input in the
problem. The output measurements and the input force
are all assumed to be corrupted with a relatively small
amount of independent Gaussian noise.

Table 1. Overview of tuning parameters and
their corresponding minimum and maximum

values for the hierarchical MPC system.

Min. Max.

PID controller gains
θ1, θ2, θ3 -600 0

MPC state-space parameters, see (13)
θ4, θ5, θ6, θ7, θ8, θ9 -600 600
θ10, θ12 -2 1
θ11, θ13 -2 0
θ14 -1 1
θ15 -2 10

MPC prediction horizon (integer)
θ16 10 20

Initial state values
θ17 = p(0) -0.15 0.5
θ18 = ṗ(0) -0.15 0.5
θ19 = ϕ(0) π

5
− 0.1 π

5
+ 0.3

θ20 = ϕ̇(0) -2 2

4.2 Hierarchical MPC Design

We also use the hierarchical MPC control structure from
(Piga et al., 2019), which consists of two main parts. An
inner controller K is used to control the fast dynamics of
the system (the angle ϕ in this case) while an outer MPC
is used to improve performance and enforce constraints
on the cart position p and the input force F . A complete
list of the 20 tuning parameters for this control system
is given in Table 1. The details of how these parameters
enter the controller are briefly discussed below. Note that,
for implementation purposes, all parameters are scaled by
their bounds to be within the unit cube [0, 1]20.

Here, K takes the form of a discrete-time proportional-
integral-derivative (PID) controller with three parameters
{θ1, θ2, θ3} corresponding to the gains of the P, I, and D
terms. This controller sets the applied force to the cart,
i.e., u = F = K(θ)(g − ϕ). The MPC controller, on the
other hand, has several additional tuning parameters. In
particular, it uses a parametrized continuous-time linear
state-space model to predict the inner loop dynamics

ξ̇M = AM (θ)ξM +BM (θ)g, (11)

where ξM ∈ R2 is the state vector, g ∈ R is the MPC
command that corresponds to the setpoint of the inner
loop, and AM (θ) ∈ R2×2 and BM (θ) ∈ R2 are system
matrices that define the output prediction model. The
state vector is assumed to equal the model outputs yM =
ξM , leading to the following MPC prediction model[

uM
yM

]
=

[
K(θ)(1− [0, 1]My(θ))

My(θ)

]
g, (12)

where My(θ) denotes the prediction model from the MPC
command g to the outputs y = (p, ϕ).

Although AM (θ) and BM (θ) only have six independent
dimensions in total, we double the number of parameters
considered to increase the complexity of the problem

AM (θ) =

[
θ4 θ5
θ6 θ7

]
+

[
0.1θ210 0.01θ211
0.1θ212 0.01θ213

]
, (13)

BM (θ) =

[
θ8
θ9

]
+

[
0.01θ214
0.01θ215

]
. (14)

Notice that θ10, . . . , θ15 are redundant tuning parameters
that cannot be uniquely identified in general – they have
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been intentionally added to understand the impact of
such unimportant variables on the BO search process.
Lastly, we also treat the prediction horizon θ16 and the
initial states as tuning parameters, denoted by θ17, . . . , θ20.
A detailed discussion on the exact form of the MPC
optimization problem and the choice of sampling time and
weight parameters are given in (Piga et al., 2019).

4.3 Closed-loop Performance Cost

The closed-loop performance cost is assumed to be of the
form (2) where the function ψ(·) is defined as follows

ψ(X(θ),U(θ),W (θ)) = log

[
1

T

T∑
t=1

b(p(t)) + 1

]
(15)

+ log

[
1

T

T∑
t=1

(
1

10
|rp − p(t)|

)
+

9

10
|rϕ − ϕ(t)|

]
,

where

b(p) =

{
10(|p| − 1), if |p| > 1,

0, otherwise,

is a barrier function accounting for violation of constraints
on the cart position, T is the final time of the closed-
loop experiment (equal to 10 seconds), t ∈ {1, . . . , T}
denotes the discrete time index taken at 5 millisecond
sampling times, and rp = rϕ = 0 are the reference
values for the outputs of interest (which captures the
engineering objectives of controlling the angle ϕ to 0 so
the pole remains upright while limiting the horizontal
displacement). The cost J is then estimated as an average
over 10 disturbance realizations using (4).

4.4 Results and Discussion

We compare SAASBO to two baseline methods: EI com-
puted using a standard GP prior fit using MLE hyperpa-
rameter estimation and Random Search (RS). All methods
are provided 10 initial random samples and are given an
additional budget of 35 expensive evaluations. The results
of the best observed closed-loop performance over the 45
total iterations for all three methods are shown in Fig. 1.
Since the objective function (15) is defined in terms of log-
arithms, we plot the results in terms of a scaled objective
J̃(θ) = eJ(θ) to better visually show the differences in per-
formance. We see SAASBO finds tuning parameter values
that lead to at least an order of magnitude improvement
in J̃(θ) compared to standard BO and RS. This can also
be seen in the closed-loop system trajectories for the best
found θ values with each method (Fig. 2). The SAASBO
recommended tuning parameters θ⋆

SAASBO were the only
ones that accomplish all the desired control objectives.

To gain insight into why SAASBO outperforms standard
BO in this case, we investigate the quality of the SAAS-GP
model trained on closed-loop performance values obtained
at 90 randomly sampled θ values across D. Specifically, we
look at the magnitude of the lengthscale values identified
using NUTS averaged over a large number of posterior
samples (see Section 3 for details). The results are shown
in Fig. 3 wherein we see that θ4 and θ2 are found to
be the most important parameters that impact closed-
loop performance. θ2, which corresponds to the integral

Fig. 1. Best found (transformed) closed-loop performance

cost J̃(θ) = eJ(θ) using SAASBO, EI, and Random
Search as a function of the number of evaluations. The
first 10 samples represent the initialization points,
which are drawn uniformly at random from D.

gain, would be expected to be very important since poor
selections can destabilize the closed-loop system. θ4 cor-
responds to the (1, 1) element of the AM matrix (part
of the internal MPC model). It is not obvious that θ4
would have such a strong impact on performance, how-
ever, the SAAS prior is surprisingly able to identify the
behavior from a small number of evaluations. Several other
parameters emerge in the next tier of importance, so this
problem does not have obvious unimportant dimensions.
However, by exploiting the clearly dominant dimensions,
we can identify much better θ values with substantially less
resources (expensive closed-loop simulations in this case),
which highlights the value that the SAAS perspective can
provide in MPC tuning contexts.

5. CONCLUSIONS

In this work, we presented a high-dimensional Bayesian op-
timization (BO) framework for practical (sample-efficient)
MPC tuning with tens to hundreds of parameters. The key
observation is that standard BO, which uses Gaussian pro-
cess (GP) surrogate models to plan the next query point, is
prone to over-exploration when a high-dimensional GP is
fit using classical maximum likelihood estimation. As such,
we propose to replace standard GP priors with a sparse
axis-aligned subspace (SAAS) prior. The SAAS prior is
effective when the objective function depends on a subset
of (unknown) dominant dimensions. We argue that task-
specific MPC tuning is a class of real-world problems that
fit this assumption. We investigate this claim empirically
on a challenging benchmark problem related to an inverted
pendulum on a cart system controlled by a hierarchical
MPC strategy with twenty tuning parameters. Not only do
we observe significant performance gains with SAASBO,
we also show how useful insights into the problem structure
can be automatically discovered with SAAS.
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