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Abstract: Fault diagnosis and identi�cation (FDI) is a critical aspect of process performance
monitoring. In this work, statistical properties of decision variables of unconstrained Moving
horizon estimation (MHE) are derived and further used for FDI. Once a fault is isolated, the
fault magnitude re�nement is carried out only for the isolated fault. Further, a hypothesis test is
developed to terminate fault magnitude re�nement when the fault magnitude saturates. When
a sensor fault is isolated, the fault magnitude information is used for on-line compensation of
measurements sent to the controller. The proposed approach is able to isolate and compensate for
multiple single faults occurring sequentially in time and has embedded intelligence to carry out
fault identi�cation only when required. The e¢ cacy of the proposed approach is demonstrated
by simulating a non-isothermal CSTR system. Analysis of the simulation results underscore the
e¤ectiveness of the MHE-FDI scheme in correctly identifying faults in disturbance, actuator,
and concentration measurements.

Keywords: Moving Horizon Estimation, Fault Diagnosis and Identi�cation, Fault Tolerant
Control

1. INTRODUCTION

In today�s fast changing and competitive market environ-
ment, it is important to closely monitor process opera-
tion to maintain the product quality. Fault diagnosis and
isolation (FDI) is a critical aspect of process monitoring.
Identifying faults as and when they occur allows for timely
fault compensation and maintaining the process operation
in the economically pro�table region. Among the vari-
ety of techniques available for FDI, a mechanistic model
based diagnosis has an edge particularly when the root
cause analysis is essential for the fault compensation. FDI
techniques based on Kalman Filtering (KF) and extended
Kalman �ltering (EKF) have been widely used for over the
last �ve decades. Wilsky and Jones [1976] have developed
generalized likelihood ratio (GLR) approach for diagnosing
abrupt changes leading to faults using residuals generated
from the Kalman �lter. Prakash et al. [2002] have used
the GLR approach for developing a fault tolerant control
scheme. Deshpande et al. [2009] and Bagla et al. [2023]
have introduced a non-linear GLR (NLGLR) scheme that
uses EKF for fault diagnosis.

Moving horizon estimation (MHE) has an advantage that
it uses a moving window of past data for state estima-
tion. Thus, it is relatively easy to exploit the temporal
redundancy for fault diagnosis using the data over moving
window. However, modi�cation of MHE for achieving fault
diagnosis has received relatively much attention in the
literature. Tyler et al. [2000] have used a bank of MHE �l-
ters implemented in parallel, which consists of the normal
mode (i.e. no fault) MHE and MHE formulations for each
hypothesized parametric faults. Approach developed by
Izadi et al. [2011] focuses on continuously and simultane-
ously monitoring all fault parameters related to actuators

for their departure from their respective normal values.
Wan and Keviczky [2018] introduced an approach to fault-
tolerant MHE that speci�cally focusing on the diagnosis
and estimation of faults in sensors. Recently Mukai et al.
[2021] employed Mixed-Integer Quadratic Programming
(MIQP) to solve the MHE based fault identi�cation prob-
lem that involved multiple actuator faults. The con�rma-
tion of occurrence of actuator fault(s) is carried out based
on a threshold computed over the MHE window.

Majority of the MHE based FDI literature focuses on
treatment of actuator and/or sensor faults. Also, when
departure from the normal behavior is detected, fault
magnitude estimation is carried out simultaneously for all
hypothesized faults. Thus, the primary emphasis in MHE-
based FDI schemes appear to be on the estimation of fault
magnitudes rather than fault isolation. In practice, how-
ever, in addition to biases in sensors and actuators, faults
can develop as changes in the unmeasured disturbances
and/or model parameters. Estimating all types of faults
simultaneously can pose di¢ culties due to observability
conditions. Also, the predominant approach in MHE based
FDI literature involves residual generation using the pre-
dicted measurement errors. However, when a fault occurs,
the decision variables of the normal model based MHE
carry signatures of faults. This information has not been
systematically used for fault detection.

In this work, statistical properties of decision variables of
unconstrained MHE are derived and further used for fault
detection and for estimating the time of fault occurrence.
Once occurrence of a fault is con�rmed, fault isolation is
carried out by developing MHE for each hypothesized fault
over the MHE window and comparing MHE cost function
values. Once a fault is isolated, the fault magnitude re�ne-
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ment is carried out only for the isolated fault. Further, an
hypothesis test is developed to terminate fault magnitude
re�nement when the fault magnitude saturates. When a
sensor fault is isolated, the fault magnitude information
is employed for real-time compensation of measurements
sent to the controller. Subsequent to termination of the
magnitude re�nement step, the model used in normal
mode MHE is modi�ed so that any fault occurring se-
quentially in time can be isolated. Thus, the proposed
approach is able to isolate and compensate for multiple
single faults occurring sequentially in time. Moreover, the
proposed approach has embedded intelligence to carry out
fault identi�cation only when required. The e¢ cacy of the
proposed approach is demonstrated by simulating a non-
isothermal CSTR system.

This paper is organized in �ve sections. In the second sec-
tion, details of state estimation under fault free condition
is given. Details of proposed FDI scheme appear in section
three. Simulation case study is presented in section four.
Conclusions reached from the analysis are given in the last
section.

2. STATE ESTIMATION UNDER FAULT FREE
CONDITIONS

Dynamics of the system under consideration are repre-
sented by a discrete linear system as follows

xk+1 = �xk + �uuk + �ddk (1)

yk = Cxk + vk (2)
where, xk 2 Rn represents state variables, uk 2 Rm repre-
sents manipulated inputs, dk2 Rd represents unmeasured
disturbances and yk 2 Rr represents the measured out-
puts. Measurements are assumed to be corrupted with zero
mean white noise vk, where vk 2 Rr and vk �N (0r�1;R):
�;�u;�d and C are system matrices of appropriate di-
mension. In absence of any fault, dk = wk where, wk 2
Rd is a zero mean Gaussian white noise process, i.e. wk
�N (0d�1;Qd).

Under the fault free conditions, states estimation is carried
out using the unconstrained Moving Horizon Estimation
(MHE) scheme. Thus, the following optimization problem
is de�ned over the time window [k �N; k] and solved at
every time instant

min
xk�N ;wk�N ::wk�1

J (3)

where,

J = e"Tk�NWxe"k�N+ kX
j=k�N+1

�
vTj R

�1vj +w
T
j�1Q

�1
d wj�1

�
subject to e"k�N = exk�N jk�N � xk�N (4)

xj = �xj�1 + �uuj�1 + �dwj�1 (5)
vj = yj � Cxj for j = k �N + 1; :::; k (6)

Here,N is MHE window length, e"Tk�NWx e"k�N represents
the arrival cost where Wx is a positive de�nite matrix.
The conventional approach for determining the arrival cost
parameterWx involves employing EKF. In this work, we
use KF to calculate the prior estimate exk�N jk�N and

the associated covariance matrix ePx�N jx�N ; and setWx

= eP�1x�N jx�N : The solution of the optimization problem
yields the optimum value of bxk�N jk and bwj�1 (for j = k�
N + 1; :::; k). Smoothed and �ltered estimates of state are
obtained using the model equation as followsbxjjk = �bxj�1jk + �uuj�1 + �d bwj�1 (7)
for j = k �N + 1; :::; k: Since, the model is linear and no
constraint are imposed, the optimization problem can be
solved analytically. To arrive at the analytical solution, we
de�ne stacked vectors

DN =
�
wT
k�N wT

k�N+1 � � � wT
k�1

�T
(8)

YN =
�
yTk�N+1 y

T
k�N+2 � � � yTk

�T
(9)

UN =
�
uTk�N uTk�N+1 � � � uTk�1

�T
(10)

and stacked matrices 	; 
 and � are de�ned as

	 =
�
CT1 CT2 � � � CTN

�T
(11)


 =

264 H0 [0] � � � [0]
H1 H0 � � � [0]
� � � � � � � � � � � �
HN�1 HN�2 � � � H0

375 (12)

� =

264 G0 [0] � � � [0]
G1 G0 � � � [0]
� � � � � � � � � � � �
GN�1 GN�2 � � � G0

375 (13)

where, Hj = C�
j�d; Gj = C�

j�u; Cj+1 = C�j+1
for j = 0; 1:::; N � 1. Further, matrices

WR = BlockDiag
�
R�1 R�1 � � � R�1 �

WD = BlockDiag
�
Q�1
d Q�1

d � � � Q�1
d

�
are de�ned where, BlockDiag [:] represents a block di-
agonal matrix with the matrices in the square brackets
appearing on the main diagonal. The MHE optimization
problem can be reformulated as follows:

min
xk�N ;DN

�
J = e"Tk�NWxe"k�N +VT

NWRVN

+DT
NWDDN

�
(14)

subject to
VN = ZN �	xk�N �
DN (15)

ZN = YN ��UN (16)
Applying the �rst-order necessary condition for optimality,
we arrive at � bxk�N jkbDN

�
= H�1Fk (17)

where, H =

�
	TWR	+Wx 	TWR


TWR	 
TWR
+WD

�
(18)

Fk =
�
	TWRZN +Wxexk�N jk�N


TWRZN

�
(19)

Since the state noise and the measurement noise are
Gaussian white noise processes, the smoothed estimatesbxk�N jk and bDN also have Gaussian distributions with
zero mean. Expressions for Cov

�bxk�N jk� and PbD =

Cov
�bDN

�
are derived in the Appendix A.

3. FAULT DIAGNOSIS AND IDENTIFICATION

3.1 Fault Detection and Con�rmation

Under no fault scenario, bDN is zero mean Gaussian noise
with covariance PbD: If a fault occurs, then bDN does not

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

297



remain zero mean. A fault detection test (FDT) is applied
at every sampling time instant to detect the fault. The test
statistic for FDT is chosen as

� = bDT
NP

�1bD bDN (20)

� follows a chi-square distribution with d � N degrees of
freedom. A chosen level of signi�cance is used to compute
the threshold value. At time instant k = kc, if � exceeds
the threshold value, then it indicates a possible fault.
Further, to carry out FDI, it is important to �nd out time
instant in the MHE window at which the fault has started
developing. To carry out these tasks we propose to apply
a statistical test for each ŵi within the window. Suppose
at i = td the fault occurs where k�N < td < k�1. Then,
we can expect mean of ŵi to be close to zero for i < td
and the mean to become nonzero for i � td. To locate td;
we construct a vector of N � 1 random variables de�ned
as follows
�k�i = ŵ

T
i P

�1
D;iŵi, for i = k � 1; k � 2; :::k �N (21)

where, PD;i = Cov (ŵi) represent d � d matrices that
appear as the main block diagonal of PbD: Since ŵi are
Gaussian random variables, �k�i follows a chi-square dis-
tribution with d degrees of freedom. Thus, for a speci�ed
level of signi�cance, we can �nd a threshold to the locate
sequence of {ŵi : i � td} that have non-zero mean.
The threshold value is calculated based on both the
degrees of freedom and a chosen level of signi�cance. If
�k�i exceeds the threshold value for Nc1 times (Nc1 < N)
consecutively in window [k�N; k], then the �rst time the
threshold is crossed is taken as td. Further, this condition
is checked for Nc2 consecutive time for MHE windows, i.e.
[k � N + 1; k + 1]; [k � N + 2; k + 2]; :::; [k � N + Nc2 �
1; k+Nc2�1]. If the condition of Nc1 consecutive threshold
crossing is observed in all Nc2 consecutive time windows,
then occurrence of a fault is con�rmed and td found in
window [k � N; k] is treated as the time of occurrence of
the fault.

3.2 Fault Isolation and Identi�cation

After the con�rmation of occurrence of a fault in the
system, fault isolation and fault estimation is done using
MHE based FDI method. For this task, we need fault
models for every hypothesized fault. Hypothesized faults
can be categorized as: Unmeasured disturbance, actuator
fault, sensor fault. A fault model is described for each
respective category.

In this work, it is assumed that (i) only a single fault
occurs at a time (ii) there is su¢ cient time gap between
two consecutive faults and (iii) a fault is assumed to
occur as a step jump and its the magnitude remains
constant (Deshpande et al. [2009], Bagla et al. [2022]). In
a generalized form a fault model is represented as follows
xk = �xk�1 + �uuk�1 + �dwk�1 + �(k � td)�fbfi (22)

yk = Cxk + vk + �(k � td)cfbfi (23)
where, bf;i is the fault magnitude and �(k�td) is unit step
function de�ned as follows

�(k � td) =
�
0 if k � td < 0
1 if k � td � 0

�
For each hypothesized fault, a speci�c value is assigned to
matrices �f and cf are as follows

� Disturbance fault: A fault in ith disturbance oc-
curring at instant td:

�f = �d�
(i)
d and cf = 0 (24)

where, �(i)d = [ 0 � � � 0 1 0 � � � 0 ]Td�1 is a fault loca-
tion vector of unit magnitude with ith element equal
to one and all other elements are equal to zero.

� Sensor fault: A measurement fault in ith sensor
occurring at instant td:

�f = 0 and cf = �
(i)
y (25)

where, �(i)y 2 Rr is the associated fault location vector.
� Actuator Fault: A fault in ith actuator occurring
at instant td:

�f = �u�
(i)
u and cf = 0 (26)

where, �(i)u 2 Rm is the associated fault location vec-
tor.

A fault set Fs is de�ned that consists of all the hypothe-
sized faults. The set of anticipated faults can be expressed
as follows

Fs �
�
fbd;i : i = 1; 2; :::dg ; fbu;i : i = 1; 2; :::;mg;

fby;i : i = 1; 2; :::; rg

�
In general, let the set Fs � ffi : i = 1; 2; ::; Nfg consists
of total Nf faults. A separate MHE problem is formulated
for each hypothesized fault set in Fs by treating the fault
magnitude bfi as unknown along with xk�N and DN . It
is proposed to use MHE cost function value as a basis for
fault isolation. Thus, a fault f� 2 Fs is isolated as the fault
that has occurred by �nding the fault for which Jf (fi) is
minimum, i.e.

f� =
min

fi 2 Fs Jf (fi) (27)

For the ith fault fi; the following minimization problem is
solved

Jf (fi) =
min

xk�N ;wk�N ::wk�1; bfi
J (28)

where, J =

e"Tk�NWxe"k�N + kX
j=k�N+1

�
vTj R

�1vj +w
T
j�1Q

�1
d wj�1

�
(29)

subject to model constraint

xj = �xj�1 + �uuj�1 + �dwj�1 + �(j � td)�fbfi (30)

vj = yj�Cxj��(j�td)cfbfi for j = k�N+1; :::; k (31)
The above optimization problem can be reformulated as

Jf (fi) =
min

xk�N ;DN ; bfi

�
J = e"Tk�NWxe"k�N

+VT
NWRVN +D

T
NWDDN

�
(32)

subject to

VN = ZN �	xk�N �
DN �Ef;kbfi (33)

Ef;k =

266666664

0
� � �
0

C�f + cf
C��f +C�f + cf

� � �
C�k�td�f + � � �+C��f +C�f + cf

377777775
(34)
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By applying the �rst order necessary conditions of opti-
mality ( @J

@xk�N
= 0 , @J

@DN
= 0 and @J

@bfi
= 0), the solution

of the optimization problem is given as24 bxk�N jkbDNbbfi
35 = H�1

f;kFf;k (35)

where,

Hf;k =

24	TWR	+Wx 	TWR
 	TWREf;k

TWR	 
TWR
+WD 
TWREf;k
ETf;kWR	 ETf;kWR
 ETf;kWREf;k

35
(36)

Ff;k =

24	TWRZN +Wxexk�N jk�N

TWRZN
ETf;kWRZN

35 (37)

3.3 Fault Magnitude Re�nement

The initial fault magnitude estimate of the isolated fault
computed during the isolation step may not be precise.
Therefore, the fault magnitude estimate is re�ned through
continued application of MHE until it saturates. Thus, the
optimization problem given by Eq. (32) is solved at every
sampling instant after isolation step for the isolated fault
f�. Ef;k de�ned by Eq. (34) will change at every sampling
time and for k > N + td � 1, Ef;k is computed as

Ef;k =

264 C�f + cf
C��f +C�f + cf

� � �
C�N�1�f + � � �+C��f +C�f + cf

375 (38)

To assess whether the fault magnitude estimate has satu-
rated, we apply a approach similar to Bagla et al. [2023]
based on hypothesis testing for termination of the magni-
tude re�nement step. A concise summary of their approach
is presented here. By this approach, we consider two sets
of recent data of estimated fault in the time window
[k � 2Nt + 1; k],i.e. �1 = fb̂fi;k�2Nt+1; :::; b̂fi;k�Ntg and
�2 = fb̂fi;k�Nt+1; :::; b̂fi;kg: Let �̂;j for j = 1; 2 represent
sample mean, respectively for the sets. Further, we carry
out hypothesis tests as

H0 : �1 = �2 or H1 : �1 6= �2
If the null hypothesis is accepted at instant k = kf , then
we stop magnitude re�nement of the fault. The magnitude
of the fault is �xed at mean of the fault magnitude taken
over the window [k �Nt + 1; k] for k > kf and is denoted
as bf;i;kf .

3.4 Resetting Normal Behavior Model

After a persistent fault has been isolated, identi�ed, and its
magnitude re�nement is terminated, it becomes necessary
to modify the normal behavior model used for state esti-
mation so that any fault that develops subsequently and
sequentially in time can be isolated. These modi�cation
are as follows

Sensor Fault: If a fault in a sensor is isolated by FDI
then, for k � kc +Nc2 � 1 measurement are compensated
as follows

yk;c = yk � �(i)y bby;i;k (39)

where, yk;c represents compensated measured output,bby;i;k represents estimated fault. For k > kf , the mea-
surements are compensated as yk;c = yk � �(i)y by;i;kf and
the compensated measurement are used in FDI and state
estimator (Eq. (6)) is modi�ed as:
vj+1 = yj+1;c �Cxj+1 for j = k �N; :::; k � 1 (40)

Actuator Fault: In the case of actuator fault, for k � kc+
Nc2 � 1 corrected input are computed as:

uk;c = uk + �
(i)
u
bbu;i (41)

The corrected input are used for FDI scheme for k > kf
and Eq. (5) in state estimator is modi�ed as:

xj+1 = �xj + �uuj;c + �dwj (42)

where the inputs are corrected using bu;i;kf .

Unmeasured Disturbance Fault: If a fault in a unmea-
sured disturbance is isolated, then for k � kc + Nc2 � 1
compensated unmeasured disturbance (dc) are computed
as

dc = �
(i)
d
bbd;i (43)

For k > kf ; state estimator given by Eq. (5) is modi�ed
as follows

xj+1 = �xj + �uuj + �d (dc +wj) (44)

where the disturbance vector is corrected using bd;i;kf .

Subsequently, the fault compensated model is used for
developing the normal mode MHE. This allows us to
detect and isolate another fault that can occur in same
variable or in any other variable.

In this work, the proposed FDI scheme is integrated with
the existing control scheme as suggested in Prakash et al.
[2002]

4. SIMULATION CASE STUDY

The system under consideration is a linear model of a non-
isothermal CSTR system operated at a stable operating
point (Prakash et al. [2002]). The system consists two
state variables, namely perturbations in concentration of
A (CA) and reactor temperature (T ). Both the states
are assumed to be measured and controlled. Manipulated
inputs are perturbations in coolant �ow rate (FC) and
feed �ow rate (F ). Perturbations in inlet concentration
(CA0) and inlet temperature (Tcin) are unmeasured dis-
turbances. The system matrices at the chosen operating
condition using sampling interval is chosen 0.1 min and
the covariance matrices for state (Qd) and measurement
noise (R) can be found in Prakash et al. [2002]. The
reactor is controlled using two decoupled PID controllers
as described in Prakash et al. [2002].

The e¤ectiveness of the FDI scheme is tested using stochas-
tic simulations. A simulation run is treated as successful if
a fault introduced during the run is isolated correctly. To
analyze the performance of the FDI scheme, we propose to
use percentage of successful trials (PST) as a performance
measure of fault isolation performance. PST is de�ned as

PST =
Total count of successful trials

Ns
� 100 (45)

where, Ns is the total number of simulation trials. We have
hypothesized four di¤erent faults: bias faults in both the

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

299



0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

Fa
ul

t i
n 

C
A

0 5 10 15 20 25 30 35
Time (min)

0.3

0.2

0.1

0

Fa
ul

t i
n 

C
A

0

True
Estimated

Fig. 1. CSTR system: comparison of estimated fault mag-
nitude (CA and CA0) with true value
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Fig. 2. CSTR system: comparison of setpoint with true,
measured and estimated state CA

sensors (CA and T ), bias fault in unmeasured disturbance
(CA0), and bias fault in input coolant �ow rate (FC). Level
of signi�cance for FDT and FCT are chosen 0.1 and 0.03
respectively. The MHE window length (N) is taken 20
sampling instants. Nc1 and Nc2 are both set to a value
of 4. For the termination of fault magnitude re�nement
data set length Nt is chosen as 20.

To begin with, we present two di¤erent scenarios:

Case A: A simulation is carried out to demonstrate ability
of the proposed FDI scheme to handle sequential faults
in two di¤erent variables. For this purpose, a bias of
magnitude 0.05 is introduced in the measurement CA at
time 2.5th min, which is followed by a negative bias of
magnitude 0.25 in unmeasured disturbance CA0 at 20th

min. As shown in Fig. 1, the proposed scheme is able to
detect and isolate both the faults correctly and estimated
fault magnitudes track the respective true values of the
biases introduced. Controller performance is shown in Fig.
2. It is observed that after 2.5th min, true value of the
state CA tracks the setpoint because of the compensation
introduced post fault isolation. Around 20th min, true
value deviated from the setpoint for some time due to the
fault in unmeasured disturbance but quickly returns to the
setpoint.

Case B: This simulation is done to examine the perfor-
mance of the proposed scheme when fault is introduced
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Fig. 3. CSTR system: comparison of estimated fault mag-
nitude (FC) with true value

Table 1. CSTR system: estimated time instant
of occurrence of fault, time instant of isolation

and associated standard deviation

Fault Fault Occurrence Time td(�) Fault Isolation Time (�)
CA0 24.39 (0.606) 30.45 (0.647)
FC 23.52 (0.618) 29.625 (0.531)
CA 27.32 (3.126) 33.36 (3.055)
T 31.96 (7.89) 38.56 (7.73)

in the same variable sequentially in time. Bias faults of
magnitudes 1.875, -3.75 and 1.875 are introduced at time
instants 25, 200 and 400 respectively. Fig. 3 shows that
the proposed FDI scheme is able to isolate faults in the
same variable occurring sequentially in time. Re�nement
scheme improves the �nal estimate of the fault magnitude
and termination scheme stops the magnitude re�nement
after magnitude estimate saturation.

Further to access the diagnostic performance of the pro-
posed scheme, we have carried out 50 simulation (Ns = 50)
trials with di¤erent noise realization so as to make our
results independent of a speci�c noise realization. Each
simulation trial consists of 1000 sampling time instants.
In each simulation trial, a bias fault of magnitudes of
5� (� is standard deviation of random noise in respec-
tive variable ) is introduced at time instant 25. Table 1
presents the estimate of time of occurrence of fault (td)
using the proposed approach along with the associated
standard deviation. It is evident that the proposed MHE-
FDI scheme is able to estimate the time of occurrence of
fault fairly accurately for faults in disturbance, actuator
and concentration measurement. It is worth mentioning
that the standard deviations tends to be noticeably small
for these three faults. As the true value of td is 25, we are
able to isolate these faults after around 6 time instants.
However, the estimation of td for sensor fault (T ) signif-
icantly deviates from the true value and exhibits a high
standard deviation.

Performance of the proposed FDI scheme in terms of
PST value is presented in Table 2. The PST values
indicate that the proposed MHE-FDI scheme is e¤ective
in isolating the bias for disturbance fault, actuator fault,
and concentration measurement most of the time. The
PST value indicates 40% misdiagnosis for the temperature
measurement. However, if we modify our scheme for fault
con�rmation by introducing additional time after the
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Table 2. CSTR system: PSR values

Fault type CA0 FC CA T T (Ni = 15)
PST value 98 96 100 60 94

Table 3. CSTR system: Estimated fault mag-
nitude and associated standard deviation for

successful trials

Fault (True value) bbfi at isolation (�) bbfi re�ned (�)
CA0 (0.25) 0.2324 (0.0275) 0.2506 (0.0101)
FC (3.75) 2.958 (0.626) 3.6606 (0.558)
CA (0.05) 0.0498 (0.0051) 0.0497 (0.0016)
T (2.5) 2.4867 (0.2986) 2.4583 (0.1845)

con�rmation of fault and carry out the isolation at instant
k = td + Ni (Ni < N) instead of instant k = kc + Nc2 �
1; then this modi�cation signi�cantly improves the PST
values for bias in the temperature measurement (ref. Table
2). This improvement happens because more data with
fault is available for the fault isolation.

Table 3 presents the performance overview of fault magni-
tude estimation. At isolation, fault estimates for CA0 and
FC are not very accurate. However, the re�ned estimates
generated by MHE-FDI are remarkably closer to the true
values. For the faults estimate in CA and T , very accurate
estimates were generated at the isolation step. Further-
more, the standard deviation of these re�ned estimates for
all types of faults are notably reduced when compared to
the standard deviation at isolation stage.

5. CONCLUSIONS

In this work, we have proposed a novel MHE-based scheme
that integrates fault diagnosis and identi�cation with the
conventional MHE formulation. Statistical properties of
decision variables of MHE are systematically derived and
further used for fault isolation and magnitude estimation.
The proposed approach is able to isolate and compensate
for multiple single faults occurring sequentially in time and
has embedded intelligence to carry out fault identi�cation
only when required. E¢ cacy of the FDI and fault tolerant
control scheme is demonstrated using a CSTR case study.
Analysis of the simulation results underscore the e¤ec-
tiveness of the MHE-FDI scheme in correctly identifying
faults in unmeasured disturbance, actuator, and concen-
tration measurements. Moreover, the bias compensation
in the case of sensor fault ensures that the true value of
the controlled output tracks the setpoint. The ongoing
work is focussed on extension of the proposed approach
to nonlinear systems and integration with NMPC.
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Appendix A. COVARIANCE OF bDN

From the solution of the MHE problem given by Eq. 17,
matrix H can be expressed as H = [Mx MD ], where

Mx =

�
	TWR	+Wx


TWR	

�
; MD =

�
	TWR



TWR
+WD

�
We can write

Mxbxk�N jk +MD
bDN = Fk (A.1)

Now, substituting ZN = VN +
DN +	xk�N in Fk (Eq.
19), and de�ning e"k�N = exk�N jk�N �xk�N , we can write
Fk =

�
	TWR


TWR

�
VN +

�
	TWR


TWR


�
DN +

�
Wx

[0]

�e"k�N
+Mxxk�N (A.2)

De�ning smoothing error "k�N jk = bxk�N jk � xk�N and
combining Eq. A.2 with Eq. A.1, it follows that

[Mx MD ]

�
"k�N jkbDN

�
=WVVN +WDDN +

�
Wx

[0]

�e"k�N
WV =

�
	TWR


TWR

�
and WD =

�
	TWR


TWR


�
Taking expectation on both the sides, it follows that

E

�
"k�N jkbDN

�
= 0. De�ning covariance matrix�

Pk�N jk PxbD
PT
xbD PbD

�
= E

"�
"k�N jkbDN

� �
"k�N jkbDN

�T#
and using fact that since VN ; DN and e"k�N are indepen-
dent random variables, it follows that�
Pk�N jk PxbD
PT
xbD PbD

�
= H�1

�
	TWR	+Wx 	

TWR


TWR	 
TWR


�
H�1

where WR =WR +WR
W
�1
D 
TWR.
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