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Abstract: Stimulated by the increasing demands for system safety and process reliability in
complex industrial processes, this paper investigates a weighted average consensus algorithm
based distributed fault detection scheme for large-scale interconnected systems, using a sensor
network where each node is equipped with a Kalman filter (KF). To reduce the communication
and computation efforts, the proposed distributed fault detection scheme is splitted into two
phases: distributed offline training and online fault detection. To this end, the Expectation-
Maximization (EM) algorithm is firstly addressed to identify the unknown measurement
matrices and covariance matrices of noise vectors. It is followed by an average consensus
algorithm so that the identical Kalman filters can be designed in parallel at all sensor nodes. On
this basis, distributed residual generators and test statistics are constructed for fault detection
purpose using the average consensus algorithm. Considering that there exist some special
conditions, such as the occurrence of node failures, a variation of the distributed Kalman filter
based fault detection scheme is proposed by dynamically adjusting the consensus weight. Finally,
the feasibility and effectiveness of the proposed scheme are demonstrated through a case study
on the waste water treatment plants (WWTPs).

Keywords: Distributed fault detection, Large-scale systems, Distributed Kalman filter,
Weighted average consensus, Expectation-Maximization algorithm.

1. INTRODUCTION

Over the past few years, fault detection (FD) for large-
scale interconnected systems, is one of the challenging
topics in the field of process monitoring and has gained
widespread attention from both academic and industrial
application areas (Li et al., 2020; Zhu et al., 2023).
Most of the existing FD methods for large-scale systems
follow the centralized strategy, where all the local process
information are collected in a central unit to perform the
corresponding calculation and FD actions (Fanti et al.,
2012). Such centralized methods may lead to significant
requirements on the computational capacity and data
transmitting efforts, and thus result in efficiency and
security worries (Ge and Chen., 2015; Yang et al., 2021).
Thanks to the swift progess in computer science and
communication technology, current technical systems are
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often equipped with excellent infrastructure such as sensor
networks for data acquisition and management. In light of
this, a surge in the research on decentralized FD methods
has been stimulated, in order to reduce the communication
and computation costs (Grbovic et al., 2012). However, it
has been evident that due to neglect of the information ex-
change among different nodes, the detection performance
of decentralized FD is much less than the performance
of centralized FD. Under this circumstance, various dis-
tributed FD methods have been proposed, where infor-
mation exchange and data fusion are conducted between
adjacent nodes through a communication network (Krish-
namachari and Iyengar., 2004). Among the distributed FD
methods, distributed Kalman filter based fault detection
has gained widespread usage. For example, a distributed
extended Kalman filter based FD method is addressed in
(Rigatos et al., 2013) to monitor the condition of electric
systems. A fault detection approach using fusing unscented
Kalman filter is proposed in (Vafamand et al., 2021)
to solve the problem of detecting faults in direct current
microgrids with nonlinear loads. Nevertheless, most of the
existing distributed Kalman filter based fault detection
methods are performed under the assumption that mea-
surement matrices and covariance matrices of noise vectors
are known. However, precise information of these matrices
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of the large-scale interconnected system is often difficult
to be obtained due to its high order and distributed char-
acteristics. Study on this issue is the major objective of
this paper.
Towards information exchange in the distributed fault de-
tection methods, the average consensus algorithm is one of
the most widely-used approaches to deal with distributed
optimization problems (Xiao and Boyd., 2004), where the
value of each node converges to an average value after
consensus interation. However, special situations such as
node failures, can impact the overall information fusion
results. This motivates the second part of our work, in
which a weighted average consensus algorithm is proposed.
Considering the above challenges, the contributions, nov-
elties and advantages of this study lie in the following
aspects:
(1) The distributed Kalman filter based fault detection

scheme, consisting of offline training and online fault
detection, is developed by using the average consensus
algorithm, in order to reduce the computational and
communication load while achieving the identical FD
performance of all nodes.

(2) Considering that the measurement matrices and
covariance matrices of noise vectors are difficult
to be obtained, distributed Kalman filters are de-
signed in parallel at each sensor node based on the
Expectation-Maximization algorithm.

(3) A weighted average consensus algorithm is developed
during online fault detection, where higher weights
are granted to nodes with smaller deviations from the
average value, thus significantly reducing the impact
of node failures on global information fusion and
enhancing the robustness of fault detection.

This paper is organized as follows. In Section 2, the pre-
liminaries and problem formulation are given. Section 3
proposes a distributed Kalman filter based fault detection
scheme incorporating weighted average consensus algo-
rithm. The feasibility of the proposed scheme is validated
through the WWTPs benchmark in Section 4. Finally,
some conclusions and future works are summarized in
Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Graph theory

Consider a large-scale interconnected system with a sensor
network, whose topological structure can be represented
using an undirected graph. The set of the sensors is
denoted by N and the set of connections is denoted by
E, which can also be called the edges. Edge (i, j) means
that sensor i and j are connected. Thus, the graph of the
sensor network M sensors can be formulated as follows:

G = (N , E),N = {1, · · · ,M}
E = {(i, j) | i, j ∈ N , i ̸= j, they are connected} (1)

As a result, the set of neighbors for the i-th sensor,
comprising all sensors connected to it, can be expressed
by Ni. That is

Ni = {j | sensor j is connected to sensor i, j = 1, · · · ,M}
(2)

2.2 Distributed average consensus algorithm

Based on the graph theory, the basic average consensus
algorithm is briefly introduced. Considering a network
with M sensors, the average consensus algorithm is a
method for the iteration of vector xi ∈ R1×m at the i-
th sensor as:

xi,k+1 = wiixi,k +
∑
j∈Ni

wijxj,k, i = 1, · · ·M (3)

Setting

Xk =

 x1,k

...
xM,k

 ,W =

 w11 · · · w1M

... . . . ...
wM1 · · · wMM

 (4)

The iteration of the nodes can be written as
Xk+1 = WXk (5)

It is claimed that the average consensus has been attained
when

lim
k→∞

Xk = lim
k→∞

W kX0 =
llT

M
X0 (6)

where X0 = [x1,0, x2,0, · · ·xM,0]
T is the initial value of

Xk, and the final result of the iteration is that the node
values converge to the average of their initial values.
The determination method of the iteration matrix W is
referenced in (Xiao et al., 2007).

2.3 Model description and problem formulation

The dynamics of the considered large-scale interconnected
system with a sensor network can be described by

x(k + 1) = Ax(k) +Bu(k) + f(k), x(0) = x0,

yi(k) = Cix(k) + vi(k) ∈ Rmi , i = 1, · · · ,M (7)

where x(k) ∈ Rm is the state vector, A,B,C are the
system matrices. f(k) ∈ Rm denotes the fault vector and
vi(k) ∼ N (0,Σvi) denotes the measurement noise. In the
process, M nodes are tasked with monitoring the system
state to ensure the fault detection performance.
In practical industrial applications, the sampling rates may
vary among different sensor nodes. Differences in sam-
pling frequencies will result in asynchronous information,
affecting the efficiency of data fusion. Therefore, the lifting
technique is employed to address this issue.
Define the original sample time of the state to be Ts,
and the sample time of the i-th sensor can be defined
as γiTs(γi = 1, 2, · · · ). Consequently, the lifted state
sample time can be denoted by ξ = ηTs and the new
state transform matrix Al is supposed to be Aη, where
η can be the common multiple of γi(i = 1, 2 · · ·M). For
ease of presentation, it is assumed that the fault vector
f(ξ) remains constant in a lifted sample time ξ. That is
f(ξ) = [ff · · · f ]T . To this end, the lifted interconnected
system can be denoted by

x(ξ + 1) = Alx(ξ) +Bluu+Blff

yli(ξ) = Clix(ξ) +HBiu+Hfif(ξ) + vli(ξ) (8)
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where
Blf = [Aη−1 · · ·A I] Blu = [Aη−1B · · ·AB B] (9)

Hfi =



Ci
γi∑
j=0

CiA
j

...
(ηi−1)γi∑

j=0

CiA
j


(10)

HBi =


0 . . . 0

CiA
γi−1B . . . CiAB CiB 0 · · · 0
...

... . . . . . . . . . ...
CiA

(ηi−1)γi−1B . . . · · · CiAB CiB 0


(11)

Cli =


Ci

CiA
γi

CiA
2γi

...
CiA

(ηi−1)γi

 , vli(ξ) =


vi(ξ)

vi(ξ + γiTs)
vi(ξ + 2γiTs)

...
vi(ξ + (ηi − 1)γiTs)


(12)

For sensor node i = 1, 2, · · ·M , the lifted system can be
summarized as:

yl(ξ) = Clx(ξ) +HBu+Hffl(ξ) + vl(ξ), Cl =


Cl1

Cl2

...
ClM



Hf =


Hf1

Hf2

...
HfM

 , vl(ξ) =


vl1(ξ)
vl2(ξ)

...
vlM (ξ)

 ,HB =


HB1

HB2

...
HBM

 (13)

Utilizing the lifted technique, the problem of this study
can be formulated as follows: develop a distributed fault
detection scheme for the lifted interconnected system (13).

3. A DISTRIBUTED KALMAN FILTER-BASED FD
SCHEME INTEGRATING WEIGHTED AVERAGE

CONSENSUS ALGORITHM

In this section, a distributed KF based fault detection
scheme is addressed for the lifted interconnected system
(13). During both the offline training and online detection
phase, the average consensus algorithm is implemented for
data fusion and simplification of calculations.

3.1 Kalman filter based residual generator for fault
detection

Kalman filter is considered an optimal state estimator for
linear systems, provided that the system and measurement
noises follow Gaussian distributions. For system (13),
Kalman filter is conducted at each node as follows:

x̂(ξ + 1) = Alx̂(ξ) +Bluu(ξ) +K(ξ)rl(ξ)

ŷ(ξ) = Clx̂(ξ), rl(ξ) = yl(ξ)− ŷl(ξ) (14)

where K(ξ) denotes the Kalman gain, and tends to be
constant when the linear system is in a steady state, which
satisfies

K(ξ) = AlΣ(ξ)C
T
l Σ

−1
r

Σ(ξ) = AlΣ(ξ)A
T
l −K(ξ)ΣrK(ξ)T

Σr = E(rl(ξ)rTl (ξ)) = ClΣ(ξ)C
T
l +Σvl

Σvl = diag(Σvl1,,Σvl2,··· ,ΣvlM
),Σvli = diag(Σvi , · · · ,Σvi)

(15)
where Σ(ξ) is the covariance matrix of the state estimation
error, and Σvl denotes the covariance matrix of the noise
vector.
The residual vector rl(ξ) generated by Kalman filter of
(14) can be used for fault detection. Due to the whiteness
property of the residual vectors, the FD problem of a
dynamic process can be approached as fault detection
in a statistical process (Ding., 2021). Consequently, the
residual vector rl(ξ) can be written as

rl(ξ) =

{
εl ∼ N (0,Σr), fault-free
εl +Hffl(ξ), faulty (16)

Similar to the well-known FD methods for a statistical
process, the test statistic and threshold can be constructed
as follows:

J = rl
T (ξ)

(
HT

f Σ
−1
r

)T (
HT

f Σ
−1
r Hf

)−1
HT

f Σ
−1
r r(ξ)

Jth = χ2
α (kf ) , kf = ηm (17)

Hence, the logic of fault detection can be represented by:{
J − Jth > 0 faulty
J − Jth ≤ 0 fault-free (18)

According to (14)-(17), Kalman gain, covariance matrix
of the state estimation error and test statistic need to be
calculated during the FD process. As previously indicated,
centralized strategies demand substantial computational
power and communication bandwidth, particularly when
dealing with high-dimensional residual vectors and fault
state transition matrices. To tackle this challenge, this
study focuses on the distributed FD scheme using the
average consensus algorithm. In the subsequent sections,
a distributed fault detection approach is proposed, which
mainly includes: (i) distributed offline training and (ii)
distributed online fault detection.

3.2 Distributed offline training

During the distributed offline training, Kalman gain, co-
variance matrix and test statistic are calculated at each
sensor to reduce the computational burden and communi-
cation load, where the measurement matrices Ci and co-
variance matrix of process noise Σvi are firstly considered.
Assume that adequate process data yi,k, k = 1, 2, · · ·M ,
has been collected during the fault-free period, and the
mean measurement value ȳi is calculated and saved at
each sensor. Consequently, the following calculation is
performed.
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ỹi,k = yi,k − ȳi (19)
To this end, the expected value of state x̃ = x− x̄ can be
estimated as

E (x̃ | ỹi) = CT
i

(
Σvi + CiC

T
i

)−1
ỹi := Piỹi (20)

where Pi represents the projection coefficient of ỹi. On this
basis, the expected value of x̃x̃T can be written as:

E
(
x̃x̃T | ỹi

)
= I − PiHj + Piyiy

T
i P

T
i (21)

In accordance with (Ghahramani and Hinton., 1997) and
(Rubin and Thayer., 1982), the estimation of Ci and
Σvi can be carried out at each sensor through the imple-
mentation of the Expectation-Maximization algorithm, as
outlined in Algorithm 1.

Algorithm 1 Estimation of Ci,Σvi with EM algorithm

1. Initialize Ci and Σi;
2. Iterate the EM step described below until conver-

gence is achieved:
E step: Compute (20) and (21) at each node;
M step: Update Ci and Σvi by

Cnew
i =

(
N∑

k=1

ỹi,kE (x̃ | ỹi,k)T
)(

N∑
k=1

E
(
x̃x̃T | ỹi,k

))−1

Σnew
vi =

1

N
diag

{
N∑

k=1

(
ỹi,kỹ

T
i,k − Cnew

i E (x̃ | ỹi,k) ỹTi,k
)}

(22)

As a result, Cli in (12) and Σvli in (15) can be calculated
at each sensor.
To calculate Σ(ξ) in a distributed fashion, rewrite the
equation in (15) as
Σ(ξ) = AlΣ(ξ)A

T
l −AlΣ(ξ)C

T
l (ClΣ(ξ)C

T
l )

−1ClΣ(ξ)Al

= Al(Σ(ξ)
−1 +

M∑
i=1

CT
liΣ

−1
vliCli)

−1AT
l

= Al(Σ(ξ)
−1 +

M∑
i=1

Ψi)
−1AT

l , (23)

Ψi = CT
liΣ

−1
vliCli, Ψ̄i =

1

M

M∑
i=1

Ψi,

M∑
i=1

CT
liΣ

−1
vliCli = MΨ̄i

(24)
where Ψ̄i represents the average value of Ψi and is cal-
culated through the average consensus algorithm. For the
computation of Ψ̄i, the average consensus applied with the
interation of Ψi at the i-th sensor as

Ψi,k+1 = wiiΨi,k +
∑
j∈Ni

wijΨj,k, i = 1, · · ·M (25)

is performed started with Ψi,0 = Ψi until convergence. On
this basis, the covariance matrix of the state estimation
error can be calculated through the Riccati equation (23).
Afterwards, Kalman gain K(ξ) and parameters for the
test statistic can be computed in parallel at each node.
According to (15), (17), and (23), the calculation of K(ξ)
and test statistic require the computations of

CT
l Σ

−1
r ,HT

f Σ
−1
r Hf ,H

T
f Σ

−1
r (26)

Based on (15), it is obvious that
Σ−1

r = (ClΣ(ξ)C
T
l +Σvl)

−1

= Σ−1
vl

− Σ−1
vl

Cl(Σ(ξ)
−1 + CT

l Σ
−1
vl

Cl)
−1

CT
l Σ

−1
vl

= Σ−1
vl

− Σ−1
vl

Cl(Σ(ξ)
−1 +MΨ̄i)

−1
CT

l Σ
−1
vl

(27)
CT

l Σ
−1
vl

= [CT
l1Σ

−1
vl1

· · ·CT
lMΣ−1

vlM
] (28)

Combined with (27), the parameters of (26) can be calcu-
lated as

HT
f Σ

−1
r = HT

f Σ
−1
vl −HT

f Σ
−1
vl Cl

· (Σ(ξ)−1 +MΨ̄i)
−1CT

l Σ
−1
vl

HT
f Σ

−1
vl = [HT

l1Σ
−1
vl1

· · ·HT
lMΣ−1

vlM
]

HT
f Σ

−1
vl Cl =

M∑
i=1

HT
fiΣ

−1
vliCli =

M∑
i=1

Θi (29)

HT
fiΣ

−1
vliCli = Θi, Θ̄i =

1

M

M∑
i=1

Θi,

M∑
i=1

HT
fiΣ

−1
vliCli = MΘ̄i

(30)
HT

f Σ
−1
r Hf = HT

f Σ
−1
vl Hf −MΘ̄i

· (Σ(ξ)−1 +MΨ̄i)
−1(MΘ̄i)

T

HT
f Σ

−1
vl Hf =

M∑
i=1

HT
fiΣ

−1
vliHfi =

M∑
i=1

Υi (31)

HT
fiΣ

−1
vliHfi = Υi, Ῡi =

1

M

M∑
i=1

Υi,

M∑
i=1

HT
fiΣ

−1
vliHfi = MῩi

(32)
where Θ̄i and Ῡi are the average values of Θi and Υi re-
spectively and can be calculated with the average consen-
sus algorithm like (25). In summary, Algorithm 2 outlines
the proposed offline training phase.

Algorithm 2 Distributed offline training

1. Compute the following parameters at each node:

CT
liΣ

−1
vliCli, HT

fiΣ
−1
vliCli, HT

fiΣ
−1
vliHfi (33)

2. Derive the average values of (33) through the
utilization of average consensus algorithm.

3. Resolve the Riccati equation as stipulated in (23)
in node 1, 2 . . .M .

4. Calculate the parameters of (26) to obtain Kalman
gain and test statistic in parallel at each node.

3.3 Distributed online fault detection

In the online detection phase, the residuals rj(ξ) are
generated in parallel at all the nodes, and the distributed
realisation of residual generator in (14) is written as
x̂(ξ + 1) = Alx̂(ξ) +Bluu(k) +K(ξ)r(k)

= Alx̂(ξ) +Bluu(k) +AlΦ
−1

M∑
i=1

CT
liΣ

−1
vl ri(ξ)

Φ = Σ(k)−1 + CT
l Σ

−1
vl Cl = Σ(k)−1 +MΨ̄i

(34)
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Fig. 1. The schematic of distributed FD with weighted
average consensus algorthim

ri(ξ) = yli(ξ)− ŷli(ξ), ŷli(ξ) = Clix̂(ξ)

rl(ξ) = [r1(ξ), r2(ξ), · · · , rM (ξ)]T (35)
Combined with (34), the test statistic at each node can be
written as:

Ji = rl
T (ξ)

(
HT

f Σ
−1
r

)T (
HT

f Σ
−1
r Hf

)−1
HT

f Σ
−1
r rl(ξ)

= rTt (ξ)
(
HT

f Σ
−1
r Hf

)−1
rt(ξ)

rt(ξ) = HT
f Σ

−1
r rl(ξ)

=

M∑
i=1

(HT
fi −MΘ̄iΦ

−1CT
li )Σ

−1
vliri(ξ) =

M∑
i=1

rti(ξ)

rti(ξ) = (HT
fi −MΘ̄iΦ

−1CT
li )Σ

−1
vliri(ξ)

r̄ti(ξ) =
1

M

M∑
i=1

rti(ξ), rt(ξ) = Mr̄ti(ξ) (36)

Also, the value of rt(ξ) can be calculated using average
consensus algorithm:

rti,k+1 = wiirti,k +
∑
j∈Ni

wijrtj,k, i = 1, · · ·M (37)

The procedure for online distributed Kalman filter-based
fault detection method is summarized in Algorithm 3.

Algorithm 3 Distributed online fault detection

1. Construct the residual signals ri(ξ) based on the
distributed Kalman filters.

2. Utilize the average consensus algorithm to com-
pute Ji at each node.

3. Run the fault detection logic at all nodes according
to (18).

3.4 The weighted average consensus algorithm

The above distributed fault method is developed on the
assumption that all the sensors operate under normal

Fig. 2. The reaction process of the WWTP
conditions. However, in the event of sensor communica-
tion being normal but some sensors losing their sensing
capabilities, erroneous information may be fused.
In addressing this situation, each sensor will store its initial
normalized residual rti(ξ) and compare it with the average
value r̄ti(ξ). Each node is assigned a weight αi based on its
deviation from the average value, so that the measurement
results of nodes with larger deviations from the average
have less impact on the overall calculation result. That is:

rti(ξ)new = αirti(ξ)

αi =
1

1 + |rti(ξ)− r̄ti(ξ)|
/

M∑
i=1

1

1 + |rti(ξ)− r̄ti(ξ)|
(38)

The new normalized residuals at each node can be rewrit-
ten as r̄ti(ξ) =

M∑
i=1

αirti(ξ). In summary, the schematic of

the proposed distributed fault detection scheme incorpo-
rating a weighted average consensus algorithm is shown in
Fig. 1

4. IMPLEMENTATION RESULT

The effectiveness and performance of the proposed dis-
tributed fault detection scheme are now illustrated by
a case study on the the waste water treatment plants
(WWTPs), whose reaction process is depicted in Fig. 2. A
senor network is equipped in the 5th Bioreactor with the
graph as (39) to measure the the dissolved oxygen SO,5.

Π = [(1, 2), (2, 3), (3, 4), (3, 5), (4, 5), (1, 4)] (39)
Therefore, According to (Xiao et al., 2007), the iteration
matrix W of average consensus algorithm can be formu-
lated as

W =


0.5143 0.2428 0 0.2428 0
0.2428 0.5143 0.2428 0 0
0 0.2428 0.2715 0.2428 0.2428
0.2428 0 0.2428 0.2715 0.2428
0 0 0.2428 0.2428 0.5143

 (40)

For demonstration purpose, two fault scenarios are per-
formed in this study.
In case I, a stepwise fault is inserted from the 400th
timestep, leading to an increase in the SO,5 within the
5th Bioreactor. Fig. 3 shows the results of centralized,
decentralized and distributed Kalman filter based FD
methods. It is clear that the decentralized approach ex-
hibits a relatively higher missed detection rate (MDR),
while the distributed approach demonstrates similar fault
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Fig. 3. Comparison of centralized, decentralized, and dis-
tributed fault detection algorithms
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Fig. 4. Comparison of fault detection results before and
after failure of node 1

detection performance as the centralized method. Mean-
while, the distributed FD method significantly reduces
computational and communication load since it splitts
the centralized high-dimensional matrices for computation
into lower-dimensional matrices.
In case II, failure of node 1 is generated at the 400th
timestep. The second sub-figure in Fig. 4 illustrates the
MDR of the decentralized fault detection method has
reached a significant level due to the failure of node 1.
Meanwhile, the fault detection results for the centralized
FD method and the distributed FD method are depicted
in the first and third sub-figures in Fig. 4, MDR of which
are 35.75% and 37% respectively. After incorporating the
weighted average consensus algorithm, as shown in the last
sub-figure in Fig. 4, the MDR has significantly decreased,
reaching as low as 10.5%.

5. CONCLUSION

In this paper, a distributed Kalman filter based fault
detection scheme for large-scale systems with a sensor
network have been proposed. To this end, the Expectation-
Maximization algorithm has been introduced to identify

the measurement matrices and covariance matrices of pro-
cess noise. On this basis, the distributed Kalman filter
based residual generator and test statistic have been de-
signed using the average consensus algorithm, reducing the
computational load and enhancing the reliability of fault
detection. It is followed by a weighted average consensus
based distributed fault detection scheme to deal with some
special conditions, such as the occurrence of node failures.
Our future work will dedicate to distributed fault detection
for nonlinear large-scale systems.
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