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Abstract: The ability to certify feasibility in process design and process operations is crucial
in many applications. This includes quality-by-design in pharmaceutical manufacturing, where
a key element is the characterization of the design space to better understand the links between
materials, processes and products. Sampling-based approaches are versatile but they are cursed
by dimensionality, which currently limits their application to problems in a few process variables
only. We propose a decomposition approach that enables feasibility characterization for nominal
settings of uncertain parameters in acyclic muti-unit processes by sampling. Our methodology
leverages problem structure to decompose unit-wise, and deploys surrogate models to couple
the resultant subproblems. We demonstrate it on a serial, batch chemical reactor network. In
future research, we will extend this framework to cyclic multi-unit processes and the presence
of parameter uncertainty.

Keywords: Process design, Nested sampling, Quality-by-design, Design space, Network
structure, Machine learning

1. INTRODUCTION

The process systems engineering (PSE) community have
been developing a wide range of computational tools to
aid in the design and operation of (bio)chemical process
systems. The incentives for developing efficient frameworks
for these decision problems have been reinforced by drives
for sustainability and quality by design (QbD), the latter
of which is specific to the pharmaceutical industry. The
QbD principles leverage model-based decision tools to
demonstrate that a drug manufacturing process is capable
of consistently meeting targets on key performance indi-
cators, such as product purity, and provides a framework
for a pharmaceutical company to gain regulatory approval
(Yu et al., 2014). A key part of the QbD philosophy is
quantification of the design space (DS) associated with a
manufacturing process (von Stosch et al., 2020). The DS
describes the set of critical process parameters (CPP) and
material attributes that enable satisfaction of given critical
quality attributes (CQA) imposed on products. Naturally,
the concept of DS extends beyond the pharmaceutical in-
dustry to identify the feasible space (FS) of any production
process.

A popular approach attempts to inscribe a parameterized
shape with maximum volume within the FS, which can be
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mathematically formulated as a flexibility index problem
without recourse (Swaney and Grossmann, 1985; Zhao
et al., 2022b). Common shapes are boxes and ellipsoids,
the former of which is the description required in current
pharmaceutical regulatory approval processes (von Stosch
et al., 2020). A drawback with this approach is that a
simple shape may not provide a good approximation of the
feasible region and thus introduce significant conservatism.
Additionally, the resultant problems formulate as multi-
level or semi-infinite mathematical programs, which are
challenging to solve to global optimality for general process
models (Harwood and Barton, 2017).

As a result, there has been interest in solution methods
that can handle complexity or nonconvexity in the FS,
while retaining computational tractability. This is reflected
by the development of sampling approaches to character-
izing feasibility, which provide a potential solution owing
to their versatility and nonintrusive nature. They dis-
cretize the process variable space and return a set of
samples that satisfy all of the feasibility constraints. For
example, Kucherenko et al. (2020) proposed an adaptive
sampling framework based on surrogate modelling of a
process’s feasible region. The surrogate model provides an
acceptance-rejection mechanism that reduces evaluation
of the underlying process model and enables a two-orders
of magnitude speed up relative to naive sampling in case
study. Zhao et al. (2022a) presented a framework based on
adaptive sampling and use of smooth surrogate models to
approximate the feasible region’s boundary by means of
a Kreisselmeier–Steinhauser (KS) constraint aggregation
function. Within the spirit of adaptive sampling, Kusumo
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et al. (2019) proposed methodology to characterize prob-
abilistic feasibility by taking inspiration from nested sam-
pling, an algorithm typically used within the context of
Bayesian estimation. More recently, sampling strategies
have also been applied to flexibility problems, which are
considered an extension of feasibility that accounts for the
action of recourse in enlargement of the feasible region, as
demonstrated in the contribution of Geremia et al. (2024).
Another example is provided by Kudva et al. (2024), who
proposed a Bayesian optimization algorithm to handle the
case where one does not have a model of the constraints to
satisfy readily available, or the case that model evaluation
is particularly expensive.

It is worth noting that the use of sampling remains
challenged by the curse of dimensionality, which can render
these schemes expensive for FS in few process variables.
This is of relevance to multi-unit operations. In this
problem setting, one is interested in characterizing the
joint FS of multiple units where there exists operational
dependency. Feasibility of processing networks has been
considered previously, but to the authors’ knowledge, these
approaches proceed via solution to mathematical programs
only (Samsatli et al., 1999).

In this paper, we present a sampling-based methodology
to approach multi-unit feasibility, by leveraging process
structure and decomposition, and deploying surrogate
models to couple the resultant subproblems. We focus
on acyclic multi-unit processes and nominal feasibility
by neglecting modeling uncertainties. Section 2 provides
background on nested sampling, which is the adaptive
sampling algorithm of choice. Next, the methodology is
detailed in Section 3 and demonstrated with the case study
of a batch reactor network in Section 4.

2. BACKGROUND

Nested sampling is an adaptive sampling method con-
ventionally used for evidence approximation in Bayesian
parameter estimation (Skilling, 2006). It also finds appli-
cations in (nominal or probabilistic) feasibility chacteriza-
tion (Kusumo et al., 2019), as well as in set-membership
estimation (Paulen et al., 2020). For example, one may
wish to characterize the following set:

Θ := {θ ∈ Rnθ | G(θ) ≤ 0} (1)
where G : Rnθ → Rng describes a system of inequality
constraints. For application of nested sampling, alternative
descriptions of the inequality constraints that provide an
analogue to the likelihood function are required. A simple
example is provided by:

Θ = {θ ∈ Rnθ | I
[
G(θ)

]
= 1} (2)

where I : Rng → {0, 1} is the indicator function that
allocates a value of 1 if the constraints are satisfied, and
0 otherwise. In this context, nested sampling proceeds by:
(i) maintaining a set of live points, SL := {θ(1), . . . ,θ(L)};
(ii) drawing proposal points, θ(p), from a uniform prior,
p(θ), with support provided by a user-defined set, Kθ; (iii)
either accepting or rejecting the proposals if the constraint
I
[
G(θ(p))

]
> minθ∈SL

I
[
G(θ)

]
is satisfied or not; and (iv)

if the point is accepted, dropping the previous live set
point with minimum likelihood value from the live set
and storing it as dead point. This process enables the live

set to progressively concentrate on regions of the space
that satisfy constraints as steps (ii)–(iv) are repeated.
The search is terminated once all members of the live set
ensure the system of inequalities; the final live set then
provides an inner approximation to Θ with (no less than)
L elements.

The benefits of nested sampling relative to other Monte
Carlo approaches lie in efficiency, as inherited through ex-
tensions that improve the proposal sampling policy (Spea-
gle, 2020). Since using an indicator function as analogue to
the likelihood is unlikely to inherit these accelerations, a
preferable analogue is provided by a smooth monotonically
decreasing, scalar-valued function with a domain defined
by the co-domain of the constraint violation. Refer to
Paulen et al. (2020) and Skilling (2006) for more discussion
in this direction.

3. METHODOLOGY

3.1 Multi-Unit Feasible Space Characterization

Our problem setup assumes a set of units, N :=
{1, . . . , N}, whose connectivity may be described as a di-
rected acyclic graph (DAG), G := (N , E), where (i, j) ∈ E
defines a directed connection between unit i ∈ N and unit
j ∈ N . The connectivity of the DAG may be described
equivalently by a non-symmetric adjacency matrix, A ∈
{0, 1}N×N , with element aij = 1 indicating a connection
between unit i and unit j.

The following data is assumed for each unit i ∈ N :

• A set of in-neighbours which provide inlet streams to
unit i, denoted by N in

i ;
• A set of out-neighbours which receive outlet streams

from unit i, denoted by N out
i ;

• The properties of any inlet stream to unit i from an
in-neighbour j ∈ N in

i , denoted by uj
i ∈ Rnuij ; 1

• The properties of any outlet stream from unit i
connected to an out-neighbour k ∈ N out

i , denoted by
yk
i ∈ Rnyik ;

• The relations between the stream properties at the
outlet of unit i and its inlet properties:

yi = Fi(vi,ui) (3)
where vi ∈ Rnvi are process variables local to unit i,
and ui := (uj

i )j∈N in
i

∈ Rnui denotes the concatena-
tion of all inlet stream properties to unit i; 2

• The relations between the stream properties at the
outlet of unit i to the properties at the inlet of a
connected downstream unit k ∈ N out

i :

ui
k = Ci

k(yi); (4)
• Any inequality constraints to be satisfied by the

process variables local to unit i:
Gi(vi,ui) := gi(vi,ui,yi) ≤ 0. (5)

1 External inlet streams to any of the units may also be included
in the problem statement, but they are omitted here for notational
simplicity.
2 The mappings Fi need not be given in closed-form but could be
implicitly defined by a set of algebraic or differential equations or
even black-box functions such as a process simulator. It is also worth
highlighting that these mappings assume nominal descriptions of
uncertain process parameters, such as reaction kinetic parameters.
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The challenge that is posed by multi-unit feasibility char-
acterization is to identify the values of v := (vi)i∈N ∈ Rnv

that satisfy all of the constraints imposed on all of the
local process variables. Formally, such a multi-unit space
may be defined as:

V :=

v ∈ Kv

∣∣∣∣∣∣
∀i ∈ N ,∃ui ∈ Rnui :
0 ≥ Gi(vi,ui)
ui
k = Ci

k(Fi(vi,ui)), ∀k ∈ N out
i

 (6)

where Kv :=
∏

i∈N Kvi ⊂ Rnv describes the search space of
local unit process variables v, which is typically available
from preexisting experimental campaigns 3 .

Notice that recursive substitution of the unit inlet proper-
ties ui with their upstream dependencies Ci

k(Fi(vi,ui)),
k ∈ N out

i in the constraint expressions Gi(vi,ui) ≤ 0
would lead to an equivalent formulation of (6) as:

V := {v ∈ Kv | G(v) ≤ 0} (7)
Then similar to (1), a sampling-based algorithm such as
nested sampling could be applied to compute a set of
samples that satisfy all of the process constraints (5)
alongside the process model equations (3)–(4). We refer to
this as the simultaneous approach. Clearly, the combined
dimensionality nv =

∑
i∈N nvi must be small enough for

problem (7) to remain tractable using sampling. This is
because the expense will increase with the volume of the
search space, which is exponential in the dimension size
nv. To overcome these scalability challenges, we propose
to leverage process structure in a manner amenable to use
of any adaptive sampling approach.

3.2 Decomposition Approach

We explore methodology to decompose the multi-unit
identification into separate unit-wise subproblems, to be
solved incrementally. The result of this incremental iden-
tification determines a tight enclosure V ⊇ V of the
multi-unit feasible region in (6). As such, decomposition
effectively provides a space reduction strategy, as the joint
multi-unit feasible region may be reconstructed from V
thereafter. By decomposing the problem into a series of
subproblems with lower dimensionality, therefore, we hy-
pothesise that the overall efficiency of multi-unit identifi-
cation will be improved.

Local Feasible Space Subproblems The problem structure
described in Section 3.1 admits a decomposition because
the inequality constraints (5) are imposed on each unit
in terms of their local unit variables only. This leads to
a block diagonal structure in the biadjacency matrix of
a variable-constraint bipartite network representing the
simultaneous problem (Daoutidis et al., 2019).

For each unit i ∈ N , we consider an extended local
feasible space (FS) that jointly describes their local process
variables vi and their inlet stream properties ui, so that
for operation under any pair (vi,ui) ∈ VUi, (i) the local
constraints Gi(vi,ui) ≤ 0 are satisfied, and (ii) for all out-
neighbours k ∈ N out

i , there exists a setting (vk,uk) under

3 As indicated by the notation, the search space is synonymous
with the knowledge space common to design space problems in
pharmaceutical manufacturing.

which the local constraints Gk(vk,uk) ≤ 0 are satisfied.
The extended local FS is defined as follows:

VUi :=

(vi,ui) ∈ Kvui

∣∣∣∣∣∣
0 ≥ Gi(vi,ui)
∀k ∈ N out

i ,∃(vk,uk) ∈ VUk :
ui
k = Ci

k(Fi(vi,ui))


(8)

with Kvui
:= Kvi × Kui , and Kui is the search space of

the inlet stream to unit i. Although one may assume a
priori knowledge about Kvi , this may not be the case for
Kui . Herein, we estimate Kui via a two-step approach, first
gathering realizations ui ∈ Kvi for each unit through sim-
ulations of the multi-unit process under different scenarios
of v ∈ Kv generated through a space filling design, then
forming an outer-approximation (e.g., a box enclosure) to
the realizations gathered.

It is important to note that the set VUi yields a superset
to the actual FS of unit i, given by:

VUi :=

(vi,ui) ∈ Kvui

∣∣∣∣∣∣∣∣∣
0 ≥ Gi(vi,ui)
∀k ∈ N out

i ,∃(vk,uk) ∈ VUk :
ui
k = Ci

k(Fi(vi,ui))
∀j ∈ N in

i ,∃(vj ,uj) ∈ VUj :

uj
i = Cj

i (Fj(vj ,uj))

 .

(9)
This is because the definition of VUi in (8) omits further
restrictions imposed by in-neighbors j ∈ N in

i on the inlet
stream properties uj

i . As a result, the projections of the
sets VUi onto the subspace of local process variables, given
by:

Vi :=
{
vi ∈ Kvi

∣∣ ∃ui ∈ Kui
: (vi,ui) ∈ VUi

}
(10)

describe a superset to the projected multi-unit FS, Vi ⊇
Vi, and one has:

V :=
∏
i∈N

Vi ⊇ V . (11)

Back-Propagation Policy and Surrogate Constraints The
recursive definition of extended local FS in (8) imposes
back-propagation of VUi from downstream to upstream
units as the natural evaluation order. Formally, we can
define a partial order among units such that i ≺ k
whenever k ∈ N out

i , and we assume here, without the loss
of generality, that 1 ≺ 2 ≺ · · · ≺ N .

Such ordering of the units is straightforward for small
acyclic process networks. For larger networks, this task
could be automated, e.g., using the Coffman-Graham al-
gorithm, which is commonly applied to job-shop schedul-
ing problems under precedence constraints between tasks
(Coffman and Graham, 1972). 4

An observation that provides intuition for the use of back-
propagation is that the leaf nodes in a DAG, such as
N , are the only nodes from which one can initially solve
a subproblem. This is because leaf nodes have no out-
neighbors and, therefore, no complicating constraints:

VUN = {(vN ,uN ) ∈ KvuN
| 0 ≥ GN (vN ,uN )} (12)

4 For the Coffman-Graham algorithm to be applied appropriately
in a back-propagation context, it should be applied to the transpose
A⊺ of the DAG’s adjacency matrix. It is worth highlighting that
the Coffman-Graham algorithm could also identify an appropriate
assignment and sequencing of subproblems for parallel computation.
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For a unit i other than a leaf node, characterization of
the extended local FS, VUi, is challenged by the fact
that the extended local FS of any of its out-neighbours
k ∈ N out

i , VUk, is not known in closed form. With a
sampling-based algorithm such as nested sampling, one
may only determine an inner-approximation of VUk as a
finite collection of feasible settings (vk,uk). Our approach
to making VUi in (8) compliant with the generic setup in
(1), entails the training of surrogate constraint functions
Gk : Rnvk × Rnuk → R such that:

VUk ≈ {(vk,uk) ∈ Kvuk
| 0 ≥ Gk(vk,uk)} . (13)

This then allows approximating the extended local FS of
unit i as:

VUi ≈

(vi,ui) ∈ Kvui

∣∣∣∣∣∣∣∣∣
0 ≥ Gi(vi,ui)
∀k ∈ N out

i ,
0 ≥ min

(vk,uk)∈Kvuk

Gk(vk,uk)

s.t. ui
k = Ci

k(Fi(vi,ui))

 ,

(14)
which can now be sampled via the solution of auxiliary
optimization problems.

Final Reconstruction After back-propagating the ex-
tended local FS, VUi, through each unit i ∈ N of the
acyclic process network, it is immediate to determine
an inner-approximation of Vi in (10) by projection. The
multi-unit FS, V is defined as in (6), yet with the notable
difference that the original search space Kv can now be
replaced with the tighter Cartesian product set V:

V =

v ∈ V

∣∣∣∣∣∣
∀i ∈ N ,∃ui ∈ Rnui :
0 ≥ Gi(vi,ui)
ui
k = Ci

k(Fi(vi,ui)), ∀k ∈ N out
i

 (15)

Our main hypothesis is that reconstructing V from V
rather than Kv might significantly reduce the number of
process model evaluations. In principle, one could apply
nested sampling to determine (15). Instead, it is proposed
to evaluate different points in V by sampling a uniform
random distribution with support provided by the discrete
sets returned by nested sampling in decomposition, Vi ∀i ∈
N , and evaluating them under the process model until
a sufficient number of points characterize the multi-unit
feasible region.

Finally, the recursive procedure of local FS characteriza-
tion and surrogate constraint learning, followed by the
joint FS identification, is summarized by Algorithm 1.

4. CASE STUDY

4.1 Problem Definition

We demonstrate the decomposition approach on a batch
chemical reactor network that consists of two batch reac-
tors connected in series (Figure 1). The reaction mecha-
nism characterizing the reactors is the same:

2A
k1−→ B

k2−→ C

where component B is the desired product with modified
kinetics compared to Kucherenko et al. (2020).

The reactor dynamics are ODEs that describe the evo-
lution of component molar concentrations in continuous
time. The system adheres to Arrhenius kinetics:

Algorithm 1. Decomposition of feasibility characterization
in acyclic multi-unit processes

Require: DAG representative of unit connectivity, G =
(N , E), with set of units N such that 1 ≺ 2 ≺ · · · ≺ N

1. Estimate the search space of inlet variables Kui in
each unit i ∈ N through simulating the multi-unit
network using different settings of v ∈ Kv generated
from space filling design such as Sobol’ sequence

for all i ∈ [N,N − 1, . . . , 1] do
2a. Determine an inner-approximation of VUi as

defined in (14) using surrogate constraints for each out-
neighbour unit k ∈ N out

i

2b. Project VUi to determine an inner-
approximation of Vi as in (10) and store in memory

2c. Learn a surrogate constraint Gi of VUi as defined
in (13)
end for

3. Sample the multi-unit FS V in (15) with a uniform
prior defined on the Cartesian product V :=

∏
i∈N Vi

Output: Inner-approximation of multi-unit FS, V

Fig. 1. Case study illustration. A reactor network consist-
ing of two batch process systems in series. Red boxes
indicate the nodes of a process representative DAG.

Parameter Reaction 1 Reaction 2

k◦r (m3 kmol−1min−1) 6.66× 10−3 1.03

Er (kJ mol−1
) 2.52 5.00

Table 1. Arrhenius kinetic parameters used in case study

kr(T ) = k◦r exp
(
− Er

RT

)
where T is the reaction temperature; kr, the temperature-
dependent rate constant of reaction step r ∈ {1, 2}; k◦r ,
the pre-exponential factor; Er, the activation energy; and
R denotes the ideal gas constant. The kinetic parameters
are detailed by Table 1. The volume of both reactors is
assumed V = 1 m3. Each ODE system is given by:

ċA,j(t) = −2k1(Tj) cA,j(t)
2 (16)

ċB,j(t) = k1(Tj) cA,j(t)
2 − k2(Tj) cB,j(t) (17)

ċC,j(t) = k2(Tj) cB,j(t) (18)

where ci,j(t) (kmol m−3) describes the molar concentra-
tion of component i in reactor j; and Tj , the temperature
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in reactor j. Each reactor is operated over a time hori-
zon, t ∈ [0, τj ], where τj is the batch time. The initial
concentration of the first reactor is c1(0) = [2 0 0]⊺,
whereas the initial concentration of the second reactor is
c2(0) = [cA,1(τ1) cB,1(τ1) 0]⊺. Here, we assume that the
initial concentration of the second reactor is equal to the
composition present in the first reactor at the batch end-
point, subject to a separation step to completely remove
the (inert) component C. This operation is considered per-
fect and, therefore, is excluded from the FS identification.

The process parameters of interest in the FS characteriza-
tion are the temperature and batch time of both reactors,
such that vj = [Tj τj ]

⊺. An inequality constraint is im-
posed to ensure the molar purity of component B at the
end of operating the second batch reactor:

cB,2(τ2)

cA,2(τ2) + cB,2(τ2) + cC,2(τ2)
≥ b

with a minimal purity target of b = 0.82. The search spaces
Kv1 and Kv2 are defined such that τj ∈ [250, 800] (min) and
Tj ∈ [250, 1000] (K).

4.2 Implementation Details

The nested sampling and decomposition algorithms are
fully implemented within Python 3.10.12. All runs of the
nested sampling algorithm, including both the simultane-
ous and incremental FS identifications, consider 4000 live
points and draw 50 candidate replacement points at each
iteration. The search is terminated when all the live points
satisfy the imposed constraints. The nested sampling algo-
rithm is provided by the DEUS package 5 . Additionally, the
ODE systems definitive of reactor dynamics are all solved
with the same numerical integration scheme, specifically
a Tsitouras’ 5/4 Runge Kutta method (Tsitouras, 2011)
implemented within DIFFRAX (Kidger, 2022).

Specific to the decomposition method, we parameterise the
surrogate constraints Gk(vk,uk),∀k ∈ N out

i , constituent
of each FS subproblem VUi, via support vector machine
(SVM) classifiers with radial basis function (RBF) kernel.
The hyperparameters are the regularization weight con-
trolling the softness of the margin, and the shape param-
eter of the RBF kernel. They are selected through 10-fold
cross validation and grid search, which leverages the in-
silico data generated in identification of the extended local
FS, VUk. This framework is implemented via the scikit-
learn 1.10.1 package. The auxiliary optimization problems
are solved as box-constrained nonlinear programs using
the Limited memory Broyden-Fletcher-Goldfarg-Shanno-
B (LBFGSB) algorithm implemented in JAXopt 0.8.2. In
the forward pass to initialise Ku2

, we utilize 4096 Sobol
samples of v ∈ Kv, and then define Ku2

as a box enclosure
to the data generated. Specifically, we magnify the range
of the data in each dimension by a factor of 1.05.

4.3 Results and Discussion

The problem decomposes unit-wise via the proposed ap-
proach into two subproblems, with 1 ≺ 2. For reactor
2, the extended FS VU2 is constituted by four variables
(v2,u1

2) ∈ R2 × R2, with u1
2 indicating the initial molar

5 The package is available at https://github.com/omega-icl/deus

Fig. 2. Coupling between the decomposed feasible spaces.
The plot indicates the live set of reactor 2 (blue
scatter), the inlets to reactor 2 as a result of operating
reactor 1 according to its extended feasible space
(lightly transparent, red scatter), and a kernel density
estimate to the region deemed to satisfy constraints
by the SVM classifier (light red shaded region).

concentration of components A and B at the start of the
second batch, which is identical to that present at the
end of the first batch. An inner-approximation with 4000
samples determined by nested sampling (live set) is shown
in Figure 2 (dark blue point). Next, an SVM classifier is
trained to couple the extended FS VU2 to that of reactor
1 upstream. The classifier selected via the cross-validation
framework had an average validation accuracy of 99.7%.
The region of the extended search space characterized as
feasible by the SVM classifier is illustrated in light red on
Figure 2.

Since the initial concentration c1(0) in the first batch
is set, the extended FS VU1 of reactor 1 is constituted
by two variables v1 ∈ R2 only. After computing an
inner-approximation of VU1 with 4000 samples by nested
sampling, the resultant mapping u1

2 = C1
2 (F

2
1 (v1)) is

superimposed to Figure 2 via the (lightly transparent) red
scatter points.

The final step entails reconstructing the multi-unit FS
as described in Section 3.2.3 according to a uniform
prior on the discrete inner approximation to V1 × V2 as
provided by the initial decomposition. The final result of
the decomposition approach is detailed on Figure 3.

From comparison of the figures it is clear that the volume
of the multi-unit FS has been well recovered, indicating
that the procedure coupling the spaces is effective. This is
highlighted through comparisons of the projected set V2

from the live set of reactor 2, as visualized in Figure 2,
and the actual set V2 plotted in Figure 3. Figure 2
additionally demonstrates that the classifier parameterizes
the FS of reactor 2 as a superset of the joint multi-unit FS
projection. This is because the extended FS VU2 upon
which it is trained is also a superset to the multi-unit FS
projection.
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Fig. 3. The multi-unit feasible space identified through
decomposition.

Interestingly, the decomposition method requires approxi-
mately half (54%) the total number of function evaluations
in comparison to the method without decomposition (i.e.
simultaneously with a uniform prior on Kv1 ×Kv2), where
we regard a function evaluation as a numerical simulation
of one batch reactor. While case dependent, this result is
encouraging insofar as the FS subproblem for reactor 2
in the decomposition method has the same dimensionality
as the multi-unit FS itself. A likely explanation for this
behavior is that the extended search space of reactor 2,
Kvu2 has a smaller volume than that of the multi-unit
search space Kv1 ×Kv2 , resulting in improved acceptance
rates in nested sampling iterations.

5. CONCLUSIONS

A decomposition approach to sampling-based feasibility
in acyclic multi-unit processes has been presented. The
approach back-propagates unit-level FS subproblems that
are coupled via a constraint learning strategy to account
for restrictions imposed on the downstream units. The
joint FS is then reconstructed from the unit-level pro-
jections generated, which define a tighter prior than the
search space. We demonstrated that the decomposition
can enable more efficient FS characterization compared
to directly sampling from the search space, with the ben-
efit of reduced model evaluations in the case study. The
key assumption of the work is that the process network
can be represented as a DAG, which requires subgraphs
with recycle structures to be identified simultaneously at
present. In future, we will provide methodology to consider
recycles unit-wise, extend to the probabilistic FS, and
explore means to improve efficiency further.
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