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Abstract: Multiproduct pipelines are crucial for delivering substantial quantities of refined oil
products from major supply centers to clients within a nearby geographical area. Despite the
significant infrastructure investment, the associated transportation costs are markedly lower
than those incurred with traditional delivery trucks. However, the scheduling of these systems
presents a formidable challenge, requiring meticulous planning of pumping runs well in advance
to meet the anticipated demands of clients. In this work, we enhance an existing literature
model of a multiproduct pipeline system by introducing uncertainty in the customer demand.
The problem is then addressed via a two-stage stochastic formulation. The typical drawback with
stochastic formulations is the high computational burden required. To address this challenge,
we adapt the so-called Similarity Index decomposition, resulting in a 28-fold improvement in
CPU time while achieving equivalent solutions compared to solving the full-space problem.
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1. INTRODUCTION

Transportation of refined oil products constitutes a critical
aspect of the energy supply chain, with several alterna-
tives, including multiproduct pipelines, trains, and trucks.
Among these, multiproduct pipelines are preferred, facili-
tating the transport of approximately 70% of oil products.
The advantages of pipelines, such as cost-effectiveness and
efficiency, make them integral to the industry logistics.
However, the efficient operation of multiproduct pipelines
is challenging. Sequencing batches poorly or misjudging
injection volumes can lead to both contamination issues
and unmet market demands. Given the intricate nature of
these systems, the primary objective of pipeline scheduling
emerges as a delicate balance between meeting market
demands, ensuring safe operations, and minimizing costs.

Numerous studies have delved into pipeline scheduling,
recognizing the need to incorporate uncertainty into the
decision-making process (Li et al., 2021) in order to im-
prove feasibility in practice. Despite its obvious need, in-
troducing uncertainty via scenarios significantly amplifies
the computational complexity of the problem. This issue
leads to a considerable increment in the solution times,
which poses a challenge given the need for timely decision-
making in online scheduling setups (Li et al., 2021).

A usual approach to make less conservative decisions in the
presence of uncertainty is the so-called two-stage stochas-
tic optimization (TSSO) (Birge and Louveaux, 2011). In

TSSO, the problem decision variables are split into two
groups: the first-stage ones (x ∈ R) that need to be
made before actually knowing the future realization of
the uncertain parameters or inputs; and the second-stage
ones (ys ∈ R, where s ∈ S is the set of scenarios con-
sidered) which allow for adjusting near-future decisions
by scenario once the uncertainty is revealed (e.g. actual
demand will be known with precision when time arrives).
As the number of variables of the optimization problem
increases proportionally to the number of scenarios |S|, it
is well known that solving TSSO is NP-hard (Dyer and
Stougie, 2006). Hence, TSSO can easily become compu-
tationally intractable for real industrial-scale problems, so
alternative decomposition methods are often needed.

This paper tackles the computational challenges associ-
ated with two-stage stochastic pipeline scheduling. Our
approach centers on a decomposition algorithm based on
the similarity index (SI), aiming to streamline the decision-
making process. The basis is to decompose the optimiza-
tion problem into more tractable subproblems that can
be solved independently (Montes et al., 2022, 2023a).
Then, the SI links them all by measuring the similarity
among the subproblem solutions, and an iterative pro-
cedure is set up to progressively increase it until all the
subproblems are non-anticipative (the first-stage decisions
are equal among all the scenarios). By breaking down the
complexity into manageable components, we anticipate
significant improvements in solution times, thus enhancing
the applicability to industrial-size scheduling problems in
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real time. Note that this proposal differs from our previ-
ous work on how the first-stage continuous variables are
handled (the progressive hedging algorithm is not used).
Here, an iterative procedure is established: first a non-
anticipative solution to the first-stage is obtained using
the SI algorithm; then such variables are fixed and the
full-space problem (with non-anticipativity constraints) is
solved; if the first-stage solution yields an infeasible full-
space problem, such a solution is removed from the feasible
region and the process is repeated.

To illustrate the proposed method, we take a literature
model as the basis for the presented case study, showcasing
the adaptability and applicability of our decomposition
algorithm (Montes et al., 2023b, 2024) to address real-
world pipeline scheduling problems. Through this research,
we aim not only to contribute to the existing body of
knowledge but also to provide a tangible and efficient
solution to the challenges posed by uncertainty in multi-
product pipeline scheduling.

The following section expands the multiproduct pipeline
scheduling model to a two-stage stochastic formulation.
Section 3 presents the adaptation of the SI decomposition
algorithm to reduce the computational load for solving the
posed problem. Section 4 summarizes the results gathered
after solving an instance of the scheduling via the SI
decomposition and the monolithic formulation. Finally,
Section 5 provides some concluding remarks.

2. MULTIPRODUCT PIPELINE SCHEDULING
MODEL

Research on multiproduct pipeline scheduling has been
conducted for many years, and there are several models
with different network topology and time representations
(Li et al., 2021). This paper focuses on pipelines with a
single source (a refinery) and multiple depots along their
length that cannot supply products back to the pipeline.

Figure 1 shows a representation of the pipeline system
considered, with depots, refinery, and delivering different
product slugs. Moreover, every depot has several prod-
uct tanks, whose levels must be always between some
minimum and maximum limits. Each depots has its own
product demand over time that must be fulfilled from
the refinery. Note that there might be incompatibilities
between products that cannot be pumped adjacently. Also,
the volume of the interface between adjacent slugs depends
on the products. There is a minimum and maximum length
of each slug. Also note that the interface material cannot
be pumped to any depot, but to the final one to avoid
contamination of the products.

Cafaro and Cerdá (2004) proposed a scheduling model
based on a continuous-time formulation for pipeline sys-
tems of such a topology. In brief, the set of slugs i ∈ I
to be delivered to depots j ∈ D is divided into two: old
slugs already inside the pipeline at the beginning of the
scheduling horizon, Iold ⊂ I; and new slugs Inew ⊂ I to
be scheduled. Due to space constraints, further details on
this model are not included here, and the reader is pointed
to such a reference.

2.1 Two-Stage Stochastic Extension

The model proposed in Cafaro and Cerdá (2004) is deter-
ministic. That is, the values of all parameters and demand
forecasts are assumed to be known. This, however, is
seldom true in actual practice. As reasoned in Section 1,
recognizing and incorporating uncertainty in the decision-
making process offers substantial advantages in terms of
feasibility and optimality. Consequently, in this work un-
certainty is considered in the product-demand forecasts
(qdp,j,s) at each depot. Hence, a set of scenarios s ∈ S
associated with possible values of the product demands
and their occurrence probability (θs ∈ (0, 1],

∑
θs = 1) is

introduced. Then, index s is added to all variables in the
model of Cafaro and Cerdá (2004) to get a stochastic one.

Moreover, as actual demand will be revealed when time
arrives (i.e. when a slug reaches a depot location), a two-
stage stochastic formulation can be set up by choosing the
following decisions (see Figure 1)

yi,p, x
i′

i,p,j , Ai,p, qm
i′

p,j , ID
i′

p,j ,

as first-stage variables, where p ∈ P is the set of products
(only one product per slug is allowed). The reader is re-
ferred to the nomenclature section at the end of the paper
for the meaning of all model variables and parameters.

The choice is made according to the decisions that must
be taken “here and now” regarding the current product
to be injected, as the pipeline cannot be in standby until
some future demands are revealed. Hence, the first stage
in the proposed formulation concerns decisions linked to
the pumping run of the next new slug inew1 to be injected.
The non-anticipation constraints (NACs) to fulfill are:

yinew1 ,p,s = yinew1 ,p ∀p, s

x
inew1
i,j,s = x

inew1
i,j ∀i, j, s

Ainew1 ,p,s = Ainew1 ,p ∀p, s (1)

qm
inew1
p,j,s = qm

inew1
p,j ∀p, j, s

ID
inew1
p,j,s = ID

inew1
p,j ∀p, j, s

This choice of the first and second stages variables allows
for making the most imminent decision robustly, while
giving a chance to adapt decisions scheduled in the future
to the possible realization of the uncertain demand. This
concept is analogous to the decisions a pipeline operator
must face upon completing the pumping run of a slug. In
this situation, the operator must navigate the immediate
decision-making process, preparing subsequent actions to
cover the potential future realizations of the uncertainty.

3. DECOMPOSITION ALGORITHM

3.1 Origins

The Similarity Index (SI) decomposition algorithm was
recently proposed to decompose two-stage stochastic
scheduling problems that are based on a discrete-time
representation, and in which the first-stage only contains
binary variables (Montes et al., 2022). The goal is to
allow removing the non-anticipation constraints to enable
a scenario-based decomposition where each scenario sub-
problem is solved independently. Their solutions are later
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Fig. 1. Pipeline system considered and its associated model variables. Time evolution is represented by the rows, where
slugs spatial location in the pipeline is depicted.

compared using the Similarity Index. An iterative proce-
dure is set up so that the similarity of first-stage variables
among subproblem solutions progressively increases until
they are equal.

The Similarity Index builds upon the information theory
ideas for assessing dissimilarity among sets of binarized
data. Conceptually, it is defined as the size of the inter-
section divided by the size of the union of the sample
sets. In the two-stage stochastic scheduling setting, the
first-stage binary solutions from each scenario subproblem
are compared via their intersection either per time period
(discrete-time representation) or per time slot (continuous-
time representation) in such a way. Then, the summation
of such intersections over all time periods or slots belong-
ing to the first-stage horizon is divided by the maximum
intersection possible (i.e., the sets union). Therefore, the
SI is always between 0 and 1 (100%). If SI=1, individual
first-stage solutions are equal among all subproblems so
the non-anticipation constraints are met indirectly.

Remark 1. With binary datasets, the size of the union is
a fixed value, known in advance (e.g., the number of time
periods in the first-stage horizon). This nice feature keeps
the linearity of the mixed-integer formulation.

However, the SI algorithm as previously proposed in the
authors’ papers is not directly applicable to the pipeline
scheduling problem because:

(i) It can only cope with binary variables in the first

stage, but here Ai,p,s, qmi′

p,j,s, and IDi′

p,j,s are
continuous.

(ii) Despite being binary, it cannot deal either with

xi
′

i,p,j,s, as the number of slugs that will feed a depot
during a time horizon (i.e., the size of the sets union)
is not known a priori nor can be fixed.

3.2 Adaptation to pipeline scheduling

Given the above listed issues, the proposed algorithm for
the pipeline scheduling problem is based, in essence, on
a partial scenario decomposition strategy, where the SI is
employed to progressively enforce non-anticipativity just

on a subset of the binary first-stage variables, specifically
the assignment of products to slugs yinew1 ,p,s:

SI =
∑
p∈P

min
s∈S

{
yinew1 ,p,s

}
(2)

Algorithm 1 summarizes the iterative optimization strat-
egy. Recall that only one product per slug is allowed.

Algorithm 1 Proposed SI Decomposition Algorithm

Require: ρ, kmax,dmax

1: d← 0
2: repeat
3: k ← 0, λ(0) ← 0
4: ȳinew1 ,p = argmin (3)|s=s1
5: repeat
6: parallel for s ∈ S do ▷ Solve Subproblems
7: [y∗inew1 ,p,s;ψ

∗
inew1 ,p]← argmin (3)

8: SI ∗s ←
∑

p ψ
∗
inew1 ,p

9: end parallel for
10: s̄← argmins∈S SI

∗
s

11: ȳinew1 ,p ← y∗inew1 ,p,s̄ ▷ Worst local SI solution

12: SI ← SI (y∗inew1 ,p,s) ▷ Global SI by Eq. (2)

13: λ(k+1) ← λ(k) − ρ(SI − 1)
14: k ← k + 1
15: until SI = 1 ∨ k = kmax

16: if SI = 1 then
17: d← d+ 1
18: ν∗s ← argmin (4)|yinew

1
,p,s=ȳinew

1
,p

19: if ν∗s = ∅ then
20: Add (5) to Subproblems (3)
21: else
22: return ν∗s ▷ Feasible solution found
23: end if
24: end if
25: until d = dmax ∨ k = kmax

Initially, the non-anticipativity constraints (1) are dis-
abled, leading to the scenario independent subproblems (3)
with a modified objective function that depends of a coor-
dination multiplier λ. Subsequently, the SI (2) is employed
to progressively increase λ to enforce non-anticipativity.
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Fig. 2. Flowchart of the proposed SI decomposition algorithm.

Following this, variables yinew
1 ,p,s are fixed to the previously

obtained values and the monolithic problem (4) is solved,
now with the non-anticipativity constraints re-enabled. If
feasible, it provides the reached solution values for all first
and second stage variables, denoted by ν∗s . In the event
that (4) proves infeasible, the fixed values ȳinew

1 ,p are re-
moved from the solution pool by the addition of constraint
(5) in subproblems (3), and the cycle is repeated. Figure 2
shows the described flowchart.

Each subproblem corresponding to a scenario s′ is formu-
lated as (3), where notation νs′ stands for all the subprob-
lem decision variables (first and second stage).

min
νs′ , ψinew

1 ,p

zs′(νs′)− λ · SIs′ (3)

s.t. Model & process constraints,

ψinew
1 ,p ≤ yinew

1 ,p,s′ ∀p,
ψinew

1 ,p ≤ ȳinew
1 ,p ∀p,

SIs′ =
∑
p

ψinew
1 ,p

Where, zs′ : RN × BM → R is the objective function
corresponding of scenario s′.

Remark 2. The SI computed by (2) cannot be incorpo-
rated into the optimization problem (3), because it re-
quires values from all the scenarios (that would break
decomposition) and the min{} operator would disrupt the
problem linearity. Therefore, a local estimation of the SI
per scenario is conducted using the set of binary slack
variables denoted by ψinew

1 ,p ∈ B. In this way, such a local
SIs′ only needs the binary variables specific to subproblem
s′ and a given reference solution, denoted by ȳinew

1 ,p. See
Montes et al. (2022, 2023a) for a more in-depth explana-
tion.

The monolithic counterpart can be formulated as in (4).
The non-anticipation constraints are imposed on the first-
stage variables that are not included in the SI computa-
tion, as discussed in the above section.

min
νs

∑
s∈S

θszs(νs) (4)

s.t. Model & process constraints,

Non-anticipation constraints (1)

To remove a given set of values y
(d−1)
inew1 ,p,s from the pool

of candidate solutions (to restrict the feasible region),
constraint (5) is added to (3).∑
s∈S

y
(d)
inew1 ,p,s

∣∣∣
y
(d−1)

inew
1

,p,s
=0

+
∑
s∈S

(
1−y(d)inew1 ,p,s

)∣∣∣
y
(d−1)

inew
1

,p,s
=1
≥ 1

(5)

In the context of Algorithm 1, d is the outer iteration

counter. Note that if y
(d)
inew1 ,p,s = y

(d−1)
inew1 ,p,s ∀s, p, then the

left-hand side of (5) is zero.

To update the multiplier λ, a formula inspired in the sub-
gradient method can be used:

λ = λ− ρ (SI − 1) (6)

Where ρ is the single tuning parameter in Algorithm 1.

4. RESULTS

To evaluate the effectiveness of the proposed decomposi-
tion algorithm, we conducted tests using an instance of
the model featuring five depots, four products, and four
scheduled refinery production runs over a 75-hour horizon.
Detailed information regarding various parameters and
problem initialization can be found in Cafaro and Cerdá
(2004), Example 1.

To introduce a realistic uncertainty factor, we considered
future product demands at each depot to be not known
with precision but varying around ±20% of their nomi-
nal values. Eleven scenarios (s ∈ S) were generated to
represent variations in product demand from the nominal
values, each associated with specific probabilities. These
scenarios, along with their probabilities, are detailed in
Table 1. It is worth noting that the careful selection of
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scenarios and their associated values and probabilities is
pivotal in formulating a two-stage problem, with options
ranging from historical data to forecasts from sales de-
partments. Note, however, that this matter is outside the
scope of this paper, so the values presented in Table 1 were
arbitrarily chosen within realistic operational limits.

Table 1. Uncertainty scenarios and their asso-
ciated probabilities θs.

Scenarios
Demand
variation

Probability

s1 0% 20%
s2 +2.5% 2.5%
s3 +5% 12.5%
s4 +10% 10%
s5 +15% 7.5%
s6 +20% 7.5%
s7 −2.5% 2.5%
s8 −5% 12.5%
s9 −10% 10%
s10 −15% 7.5%
s11 −20% 7.5%

The full-space problem ended up in 26220 constraints,
17821 continuous variables, and 2563 binary variables.

The model was coded in GAMS 45.2.0 and solved using
Gurobi 10.0.3 with a convergence criterion set to 0.01%
optimality gap in all cases. Of course, the tests were all
run on the same machine, featuring an Intel i9-13900K
CPU and 128GB of DDR5 RAM. The results achieved by
solving the optimization problem via the standard full-
space monolithic formulation and via Algorithm 1 are
summarized in Table 2. Notably, the SI decomposition
algorithm exhibited a remarkable performance, solving
the problem in less than a minute and proving to be
approximately 28 times faster than solving the full-space
monolithic optimization. This swift computational time is
particularly advantageous for conducting what-if studies
or facilitating rescheduling efforts. Note importantly that
the objective values reached by both approaches fall within
the specified optimality gap, indicating that they can be
considered essentially equal.

Table 2. Comparison between the full-space
problem and the decomposition algorithm.

CPU Time (s) Objective Value

Full-Space Problem 630.92 150235.73
Decomp. Algorithm 22.87 150237.21

Furthermore, the solution obtained by Algorithm 1 was
insensitive to the chosen value for ρ in (6). This fact can
be explained by the few variables over which the SI is
computed for this case study. However, previous results
from other case studies showed minor sensitivity of the
objective value concerning ρ (Montes et al., 2024).

Figure 3 shows a Gantt diagram of the solution provided
by Algorithm 1 for scenarios s1, s6 and s11. Observe that
non-anticipation is evident for slugs inew1 as the solution is
equal across all scenarios. From there on, the decisions are
different to accommodate the different customer demands
considered in each scenario.
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Fig. 3. Gantt diagram of the solution obtained using the
decomposition algorithm. The vertical black dotted
lines represent the depot locations.
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5. CONCLUSIONS

The first contribution of this paper was extending a litera-
ture multiproduct pipeline scheduling model to a two-stage
stochastic formulation, in which the uncertain variables
are the future customer demands. As this drastically in-
creases the computational complexity of the optimization,
a second contribution is to adapt the authors’ Similarity-
Index decomposition to this class of problems. The key
idea of this method is relying on the Similarity Index
to enforce non-anticipativity on the complicating binary
variables. Once this condition is met and such variables
are fixed, the resulting monolithic problem is solved way
faster, despite including non-anticipation in the remaining
first-stage variables.

The test results showed a significant decrease in the re-
quired CPU time to get an economically identical solution
to the one obtained when solving via the direct monolithic
formulation. Although it is a conceptually simple idea, the
results are promising for practical purposes: the method is
easy to implement, and there is a single tuning parameter
(whose choice does not seem critical).

Nonetheless, these preliminary results require further test-
ing for different initialization conditions, longer time hori-
zons, and considering more deposits and products. In
addition, future work may expand the model to include
truck delivery of some low-volume specialty products to
the customer sites.
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NOMENCLATURE

Sets
i ∈ I Slugs. Can either be old iold ∈ Iold (inside of

the pipe at the beginning of the horizon, or new
inew ∈ Inew. Hence, Iold ∪ Inew = I.

j ∈ J Depots.
p ∈ P Products.
s ∈ S Scenarios.

Parameters
ρ Step size for updating λ.
θs Ocurrence probability of scenario s.
qdp,j,s Demand of product p in depot j in scenario s.

Decision Variables
νs Full set of decision variables of scenario s.
Ai,p,s Volume of product p injected in the pipeline while

pumping slug i.

IDi′

p,j,s Inventory of product p in depot j when pumping
slug i′.

qmi′

p,j,s Demand of product p served from depot j while
pumping slug i′.

xi
′

i,j,s 0-1 variable to represent that slug i feeds depot j
in scenario s while pumping slug i′.

yi,p,s 0-1 variable to assign product p to slug i in s.
zs Objective value of scenario s.

Other Variables
ȳinew1 ,p Reference solution towards which the SI is com-

puted.
λ Similarity Index weigh in the objective function.
SIs Local Similarity Index for scenario s.
SI Similarity Index.
ψinew1 ,p Slack variable for computing the local SI.
d Outer iteration counter.
k Inner iteration counter.
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