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Abstract: We use model predictive control (MPC) for the optimal energy distribution in non-
residential buildings. Our approach is special in that it treats thermal and electrical energy
flows simultaneously. Our sample application is a real office building, where components such as
heat pumps and heating rods introduce discrete variables. This implies the optimal control
problem that must be solved for MPC is a mixed-integer quadratic programming (MIQP)
problem. Because both continuous and integer variables are involved, the computation times may
become prohibitive for use in real-time. We explore a computationally efficient approximation
that replaces integer variables by continuous variables for later time steps along the horizon.
The performance of MPC using this method is investigated in simulations and the results are
compared to those for the original MIQP problem and solution. Our method significantly reduces
computational time while achieving a nearly optimal solution.
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1. INTRODUCTION

Buildings play a significant role in global energy consump-
tion, and improving their energy efficiency is crucial for
reducing CO2 emissions. While Aghemo et al. (2013) point
out that most contemporary buildings employ basic rule-
based control (RBC) systems offering minimal energy sav-
ings, Killian and Kozek (2016) highlight model predictive
control (MPC) potentials for energy management in build-
ings. With its capacity to balance multiple optimization
goals, integrate predictions, and conform to operational
constraints, MPC is identified as a highly suitable solution
for enhancing energy efficiency of buildings.

MPC is computationally intensive, as it requires solving
an optimal control problem (OCP) at every discrete time
step. The introduction of discrete decision variables typi-
cally increases the complexity of the problem dramatically
(see, e.g., Yao and Shekhar, 2021). This is relevant for
building energy systems where devices like heat pumps
and heating rods operate in discrete states, requiring the
solution of mixed integer quadratic programming (MIQP)
optimization problems. Cagienard et al. (2007) proposed
move blocking strategies to mitigate the computational
load by maintaining constant inputs at defined steps over
the control horizon. Löhr et al. (2020) established an
approach that involves an offline training phase for MIQP
using machine learning techniques, paving the way for
a faster and more practical online computations, though
this comes with a trade-off in terms of result precision.
For a comprehensive overview of MPC methodologies aug-
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mented with artificial neural networks, Afram et al. (2017)
provides a detailed review. Löhr and Mönnigmann (2021)
employed post-processing of continuous decision variables
to ensure constraint satisfaction with heuristic rules. Our
approach simplifies the MIQP by keeping discrete decision
variables for the first steps along the horizon and using
continuous variables for subsequent steps. This method de-
creases computational demands while ensuring constraint
satisfaction. The performance of the method is illustrated
through simulations that optimize energy flows within an
actual office building, using real-world measured data as a
foundation.

In Section 2, we introduce the energy system model of the
office building. Section 3 elaborates on the associated MPC
formulation and our novel method. We present the results
of our simulations, demonstrating the effectiveness of our
approach in Section 4. A summary is stated in Section 5.

2. SYSTEM OUTLINE AND MODEL FRAMEWORK

We implement MPC in an actual office building energy
system, integrating various electrical and thermal sub-
components to achieve coupled and simultaneous optimal
operation. Detailed models for each component are ex-
plained in Sections 2.1 and 2.2. These individual models
are combined to form a discrete-time system model suit-
able for MPC in Section 2.3. The model presented here is
composed of blocks that are similar to those introduced
by Löhr and Mönnigmann (2018), where, however, a res-
idential building was treated. We revisit and extend the
subsystem models presented in Löhr and Mönnigmann
(2018) for use with the particular non-residential building
treated here. An overview of the system can be seen in
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Fig. 1. Abbreviations used in Fig. 1 and throughout the
paper are explained in Table 1.
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Fig. 1. Structure of heating and electrical system. Heat
flows are illustrated by red lines, electrical flows are
represented by blue lines. Bidirectional flows P□

G ,
□ ∈ {dem, sup} and P△

BT, △ ∈ {ch,dis} denote grid
demand, grid supply, battery charging and battery
discharging, respectively.

Table 1. List of index abbreviations

Abbreviation Designation
G Electric grid
BT Electric battery
PV Photovoltaics
HR Heating rod
HP Heat pump
ST Hot water storage tank
Load Load demand of the building
dem Demand
sup Supply
ch Charging
dis Discharging

2.1 Heating subsystem

The heating subsystem comprises two brine-to-water heat
pumps, auxiliary electrical heating rods, and a hot water
storage tank.

Heat pump Two brine-to-water heat pumps serve as
the primary heat sources for charging the hot water
storage tank. They can operate only in on/off modes and
their functionality is modelled based on the relationship
between the electrical input and the thermal output. The
thermal flow of the heat pump i in sampling interval
k is characterized by the time-dependent coefficient of
performance (COP), denoted by COP i(k). This COP
value depends on both the brine temperature and the
supplied water temperature.
Let the heat pump efficiency be integrated into COP i(k),
and PHP,i be the electrical power input of the heat pump i.
The thermal flow of the heat pump i at time step k can
be calculated from

qHP,i(k) = COPi(k) · PHP,i(k). (1)

Since the two heat pumps are identical, the total heat flow
they produce is given by

qHP(k) = κ(k) qHP0
(k), (2)

where κ(k) ∈ {0, 1, 2} is the number of heat pumps
operating at time step k, and qHP0

(k) is the heat flow
generated by a single heat pump at time step k.

Heating rod Three heating rods, functioning in on/off
modes, provide additional heat to charge the hot water
storage tank. Since the three heating rods are identical,
the cumulative heat flow they produce amounts to

qHR(k) = λ(k) · qHR0
, (3)

where λ(k) ∈ {0, 1, 2, 3} indicates the number of opera-
tional heating rods at time step k, and qHR0 designates the
heat flow produced by a single active rod. The electrical
power input for the operation of the heating rods with a
100 % efficiency read

qHR(k) = PHR(k). (4)

Hot water storage tank The hot water storage tank
is discharged to meet the heating requirements of the
building. Using a simplified energy balance, the stored
energy in the storage tank EST at time step k + 1 is
represented by

EST(k + 1) = α1EST(k) + β1qHP(k) + β2qHR(k)
−β3qLoad(k),

(5)

where α1EST(k) represents the the stored energy of the
hot water storage tank at time step k reduced by the loss
factor α1, qLoad denotes the thermal load drawn to meet
the demand of the building, and βi, i ∈ {1, 2, 3} correspond
to efficiencies. The stored energy is bounded from below
and above according to

0 ≤ EST(k) ≤ Emax
ST , (6)

where the upper bound results from an upper bound on
the hot water temperature.

2.2 Electrical subsystem

The electrical subsystem powers the electric elements of
the heating system, and computer equipment and appli-
ances (PLoad). It consists of a battery, photovoltaics units,
and a grid connection.

Photovoltaics The photovoltaics power output can be
presented by a linear model of global irradiation as

PPV(k) = µG(k), (7)

where G(k) denotes the global irradiation, and µ encom-
passes a factor that combines parameters associated with
the physical properties and installation conditions of the
photovoltaic units, as well as other relevant factors. We use
real history data of the global irradiation of the building
to fit a linear model and find µ.

Battery The energy balance of the battery reads

EBT(k + 1) = α2EBT(k) + β4P
ch
BT(k)− β5P

dis
BT(k), (8)

where α2EBT(k) is the stored energy of the battery ad-
justed by the loss factor α2, and P ch

BT(k) and P dis
BT(k)

denote the electrical power flow into and out of the battery
with efficiency factors β4 and β5. The energy stored in the
battery is subject to the bounds

Emin
BT ≤ EBT(k) ≤ Emax

BT , (9)
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where the lower bound must be respected to avoid deep
discharging.

Grid connection The grid connection can either demand
power from the grid, labelled as P dem

G , or supply power to
the grid, referred to as P sup

G .

Electrical balance node As the virtual balance node
depicted in Fig. 1 cannot store energy, the total power
entering and leaving the electrical node at each time step
k are in balance, therefore

P dem
G (k) + ηP dis

BT(k) + ηPPV(k) = PLoad(k)
+P sup

G (k) + PHP(k) + PHR(k) +
1
ηP

ch
BT(k),

(10)

where η is the AC to DC power conversion coefficient and
vice versa of the battery inverter.

2.3 System Model

We regard stored energies as state variables, i.e., x(k) =
[EST(k), EBT(k)]

T , with thermal and electrical energy
flows as inputs. Continuous and integer inputs are denoted
by u(k) and δ(k), respectively, to clearly distinguish them
from one another. These inputs encompass

u(k) =

 P ch
BT(k)

P dis
BT(k)

P dem
G (k)

P sup
G (k)

 , δ(k) =

[
κ(k)
λ(k)

]
. (11)

The thermal loads are considered to be measured distur-
bances d(k) = [qLoad(k)]. The resulting linear discrete-time
state space model reads

x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) + Ed(k)

y(k) = Cx(k), (12)

with system matrices

A =

[
α1 0
0 α2

]
, Bu =

[
0 0 0 0
β4 −β5 0 0

]
,

Bδ =

[
β1 · qHP0(k) β2 · qHR0

0 0

]
, E =

[
−β3

0

]
, and C =

[
1 0
0 1

]
.

3. CONTROL STRATEGY

We solve an OCP identifying the optimal electrical and
thermal flows in the system on a receding horizon. The
model ensures thermal comfort by matching the discharge
from the hot water storage tank to the demand of building
at each time step as can be seen in (5). The subsequent
subsections present the cost function, constraints, and the
MPC problem statement.

3.1 Cost function

The cost function reads

J(k) = Jy(k) + Ju(k) + Jδ(k), (13)

where Jy(k) models reference tracking for the target levels
of the battery and the hot water storage tank, and Ju(k)
and Jδ(k) regulate continuous and discrete energy flows,
respectively. Let (∗)(k + i|k) represent the prediction of
variable (∗) for time step k + i using information from
time step k, for example EBT(k + i|k) correspond to the
prediction of the stored energy of the battery. Further
let r(∗) denote the tuning parameter adjusted for specific

objectives linked with the variable (∗). The cost function
terms then can be stated as

Jy(k) =

N∑
i=1

rE,ST(k + i)(Eref
ST(k + i)− EST(k + i|k))2

+ rE,BT(k + i)(Eref
BT(k + i)− EBT(k + i|k))2,

(14a)

Ju(k) =

N−1∑
i=0

rBT,ch(k + i)(P ch
BT(k + i|k))2

+ rBT,dis(k + i)(P dis
BT(k + i|k))2 (14b)

+ rG,dem(k + i)(P dem
G (k + i|k))2

+ rG,sup(k + i)(P sup
G (k + i|k))2,

and

Jδ(k) =

N−1∑
i=0

rκ(k + i)(κ(k + i|k))2

+ rλ(k + i)(λ(k + i|k))2, (14c)

where N is the horizon.
Setting large rE,ST and rE,BT ensures closer adherence to
the referenced levels of energy stored in the storage tank
and battery. Setting large tuning parameters in (14b) and
(14c), i.e., rBT,ch, rBT,dis, rG,dem, rG,sup, rκ, and rλ, serve
to limit the corresponding continuous and integer energy
flows, respectively. Assigning a higher value to rλ than
rκ prioritizes the use of heat pumps over heating rods.
This preference is advantageous, for example, because heat
pumps are more efficient than heating rods.

3.2 Constraints

In addition to the constraints on the storage tank (6) and
battery (9), the continuous inputs are subject to

0 ≤P j2
j1
(k) ≤ P j2,max

j1
(k), (15)

with j1 ∈ {BT,G} and j2 ∈ {ch,dis,dem, sup}, (16)

where j1 and j2 refer to corresponding energy flows accord-
ing to Table 1. The number of operational heat pumps and
heating rods, represented by integer inputs, are subject to

κ(k) ∈ {0, 1, 2} and λ(k) ∈ {0, 1, 2, 3},
as integer constraints. Finally, to ensure the energy balance
as outlined in (10), we use the associated set of inequality
constraints

PHP(k) + PHR(k) +
1

η
P ch
BT(k) + P sup

G (k)

≤ −PLoad(k) + ηP dis
BT(k) + P dem

G (k),

−PHP(k)− PHR(k)−
1

η
P ch
BT(k)− P sup

G (k)

≤ PLoad(k)− ηP dis
BT(k)− P dem

G (k).
(17)

3.3 Hybrid MPC

Collecting the cost function, the constraints and the sys-
tem model yields the OCP
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min
x(k+i1|k)
u(k+i2|k)
δ(k+i2|k)

J(k) = Jy(k) + Ju(k) + Jδ(k) (18a)

s.t. x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) + Ed(k),

y(k) = Cx(k), (18b)

0 ≤ EST(k + i1|k) ≤ Emax
ST , (18c)

0 ≤ EBT(k + i1|k) ≤ Emax
BT , (18d)

0 ≤ P j2
j1
(k + i2|k) ≤ P j2,max

j1
(k + i2|k), (18e)

κ(k + i2|k) ∈ {0, 1, 2}, (18f)

λ(k + i2|k) ∈ {0, 1, 2, 3}, (18g)

(17), (18h)

where all constraints must hold for all i1 ∈ {1, 2, . . . , N},
i2 ∈ {0, 1, . . . , N − 1}, and the optimization variables
are the variables stated underneath the min-operator for
these indices. The indices j1 and j2 are used as explained
for (16).

The OCP (18) can be cast into a standard MIQP form by
introducing Ξ(k) = [ξ(k|k), ξ(k + 1|k), . . . , ξ(k +N − 1|k)],
where ξ(k+i2|k) = [u(k + i2|k), δ(k + i2|k)] represents the
combined predicted continuous and integer inputs at time
step k. Using this augmented input and by substituting
the dynamics (18b) into the cost function (18a) and con-
straints (18c-18h), the OCP can be transformed into a
MIQP of the form

min
Ξ(k)

ΞT (k)H(k)Ξ(k)−FT (k)Ξ(k)

s.t. ΩΞ(k) ≤ ω(k).
(19)

The derivation of (19) is not elaborated here (see, e.g.,
Maciejowski and Huzmezan (2007) for further details).
Because (18) and (19) involve continuous and integer vari-
ables, their solution is computationally expensive. It is
known that solving this problem can become prohibitively
expensive for real-time embedded applications even for
short horizons N (see Axehill and Hansson (2006) for nu-
merical examples). We describe our approach to reducing
this computational effort in the subsequent subsection.

3.4 Modified MIQP

Essentially, we split the horizon into a first part on which
the mixed continuous-integer inputs are retained,

{(k|k), (k + 1|k), . . . , (k + is − 1|k)}, (20a)

and a second part

{(k + is|k), . . . , (k +N − 1|k)} (20b)

where is, 1 ≤ is ≤ N , refers to the time step at which
the transition occurs. Reducing is results in a reduced
computational effort for solving (18) or (19). Note that
choosing is=1 still yields a solution that can readily be
applied to the real system without having to convert any
continuous variables to integer variables a posteriori.
We note that the relaxation of the integer variables to
continuous variables does in general affect the stability
properties of the closed-loop system. It is beyond the
present paper to address this question from a theoretical
perspective. We will investigate the behaviour in numerical
experiments with data from a real building in the present
paper.
We refer to the original problem with continuous and

integer variables (19) as MIQP, and to the problem after
introducing the splitting of the horizon (20) as modified
MIQP (mMIQP) for short.

4. CASE STUDY AND SIMULATIONS

We analyse the performance of the proposed method by
performing simulations utilizing actual data from a real
office building. 1 The facility, completed in 2021, is a
two-floor office building with a total net floor area of
2,366 m2. Using real-time data from the building and a
300 s sampling time h, we determined loss and efficiency
factors of the state-space model (12) to be

α1 = 0.99947, α2 = 0.999, β1 = 0.075,

β2 =0.075, β3 = 0.0833, β4 = 0.0694, β5 = 0.0942.

The 300 s sampling interval exceeds the minimum off
and on periods required by the heat pumps, rendering
dwell time considerations obsolete. At each time step k,
we dynamically update the COP i(k) and power input
PHP,i(k) for both heat pumps i = 1, 2. These updates are
based on the supply temperature, derived from the current
state of the hot water storage tank, and a constant brine
temperature of 8 ◦C (281 K). As for forecasting within the
current time step, we consider COP i(k+j|k) and PHP,i(k+
j|k) as fixed values. This approach improves on the static
COP assumption found in Löhr and Mönnigmann (2018).
The heat output generated by a single activated heating
rod, i.e., qHR0

, is 9 kW. The capacity of the hot water
storage tank is Emax

ST = 72.48 kWh, operating within a
temperature range of 23-65 ◦C (296-338 K), while the
battery has a capacity of Emax

BT = 35.1 kWh with η = 0.9
for the battery inverter. Solar irradiance data, used to fit
the linear model and determine PPV(k) at each time step,
is sourced from solcast. 2 We assume that precise forecasts
for electrical and thermal loads are accessible at every time
step for validation purposes. We use actual data recorded
from the building for this purpose.

4.1 MPC parameters

Our primary goals include reducing grid dependency, pri-
oritizing use of heat pumps over heating rods, and ensur-
ing reference tracking for the storage tank and battery.
Specifically, the tracking problem involves maintaining
50 % of the capacities of the storage tank and battery
reserved for dynamic operation. Tuning parameters of the
cost function (14) that are suitable for these purposes were
determined by numerical experiments. They are given in
Table 2.
All simulations are based on an arbitrarily chosen four-day
period, which spans from March 15th to March 18th, 2023.
For the system under study during this interval, the mean
daily electrical load demand is 230 kWh, the mean daily
thermal load demand is 484 kWh, and the mean daily solar
irradiation is 190 kWh. All MIQP problems were solved
using the CPLEX solver on a Core i5, 1.7 GHz processor.

4.2 Comparison metrics

We assess computational demands using tcom, the time
required to solve (19). When we solve (19) repeatedly in

1 AUDAX, Niedereimerfeld 47, 59823 Arnsberg, Germany
2 https://solcast.com
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Table 2. MPC tuning parameters

Parameter Value Impact

rE,ST, rE,BT 40 Reference tracking
rBT,ch, rBT,dis 1 Penalize battery energy flows
rG,dem, rG,sup 100 Penalize grid energy flows

rκ, rλ 5, 100 Penalize discrete energy flows

closed-loop simulations, we report the mean and maximum
values, which are denoted by tmean

com and tmax
com , respectively.

In addition to tcom, we use the closed-loop cost as a metric
for comparing the MIQP and the mMIQP variants of
our MPC algorithm. More precisely, let VMPC(k) refer to
the cost function value (18a) of the closed-loop optimal
solution at time step k of the closed-loop simulation under
consideration. Let V mean

MPC refer to the time-mean of these
values for a simulation, i.e.,

V mean
MPC =

1

L

L−1∑
k=0

VMPC(k)

where L is the number of time steps carried out in the
simulation.

4.3 mMIQP versus MIQP

The mMIQP problem replaces some of the integer inputs
of the corresponding MIQP problem by real-valued in-
puts. Because this amounts to a relaxation of some of
the constraints of MIQP, the mMIQP solution results in
cost function value that is lower than or equal to the
cost function for the corresponding MIQP. However, since
we are altering the behaviour of the system by allowing
predictions to violate the physically motivated integer con-
straints, we need to check if a recursively feasible solution
results. While a theoretical investigation of the recursive
feasibility is beyond the present paper, we analyse the
feasibility properties in extensive numerical experiments.

Closed loop simulations We conduct closed-loop simu-
lations for three scenarios: MIQP with N = 33, mMIQP
with N = 33 and is = 1, and mMIQP with N = 192
and is = 1. Further analysis regarding the selection of
is values will be presented later. It will be evident from
the results discussed further below that N = 33 is the
maximum horizon the MIQP can be solved for with the
given computational resources.
It will also be evident that the horizon can be extended
considerably toN = 192 for MPC with mMIQP and is = 1
(see section 3.4), while retaining recursive feasibility in
all our computational experiments without considerable
improvement in results from further extending the horizon.
For each scenario, the MIQP problem (19) was solved 1152
times by running closed-loop simulations, utilizing real
data from the targeted four-day span. The closed-loop cost
values VMPC is shown in Fig. 2 for these 1152 solutions,
where we used a moving average with 6 time steps to filter
out high-frequency fluctuations.
A summary of results obtained with the comparison met-
rics introduced in Section 4.2 is presented in Table 3.
This table states the average of the closed-loop cost values
depicted in Fig. 2, the average computational time, and
the maximum computational time required for a single
iteration of solving MIQP (19).
In the following paragraphs, we will elaborate on the
findings presented in Table 3 and Fig. 2.

Table 3. Comparative analysis of scenario
solutions: computational time and V mean

MPC
outcomes

Scenario
Metrics

V mean
MPC tmean

com (s) tmax
com (s)

MIQPN=33 1.6905e4 14.43 432
mMIQPN=33 1.7801e4 0.0834 0.0891
mMIQPN=192 1.5753e4 3.19 11.34

Computational time assessment Considering the sam-
pling time of 300 seconds, the implementation within the
actual building requires that solving (19) should not ex-
ceed approximately 15 seconds. It is evident from Table 3
that a horizon of N = 33 for MIQP results in an average
computation time that meets this requirement. However,
it should be noted that actual computational times can
occasionally exceed the 15-second limit, as indicated the
tmax
com value in Table 3. This implies that even N = 33 is
an optimistic horizon length that would require the MPC-
based controller to be augmented with a fallback control
strategy, if the MPC controller was to be based on solving
the MIQP problems.
The values of tmean

com and tmax
com in Table 3 indicate that

mMIQP leads to a significant reduction in computational
effort compared to the original MIQP problem as ex-
pected. This reduction implies longer horizons than those
achievable with standard MIQP can be used with mMIQP.
Our computational experiments reveal that a horizon of
N = 192 in mMIQP still results in a smaller computational
effort than MIQP with N = 33.

Control performance assessment Figure 2 shows that
the MIQP solution results in slightly better closed-loop
cost function values VMPC(k) than mMIQP, if MIQP and
mMIQP are solved for the same horizon N = 33. Because
it results in a drastic reduction of the computation time,
longer horizons can be treated, however, with mMIQP.
As indicated by the V mean

MPC values in Table 3, extending
the horizon results in lower closed-loop cost values on
average for mMIQP with N = 192 compared to MIQP
with N = 33.
The observed variations in the values of VMPC(k) across
the scenarios, as depicted in Fig. 2, are largely attributed
to the performance in regulating the battery levels, which
are shown in Fig. 3. The performance of the controllers in
managing thermal flows and storage tank levels is nearly
identical across the three scenarios. We have excluded
detailed presentations in figures for brevity here.
Figure 3 shows that mMIQP with a horizon of N = 192
achieves superior control performance in maintaining the
battery near its target 50 % state of charge. Note this is
achieved even though mMIQP with a horizon of N = 192
still requiring less computational time than MIQP with
the shorter horizon N = 33.

Computational time/sub-optimality trade-off It remains
to investigate the impact of the choice of is on computa-
tional times and control performance. We again solve MPC
with mMQP 1152 times and vary is for this purpose. All
remaining parameters are not altered, and the horizon is
set to N = 33.
We consider the V mean

MPC value obtained in the case of
standard MIQP to be the reference value in the compar-
ison that follow. Let ∆V mean

MPC be the difference between
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Fig. 3. Comparison of simulated battery levels. The dashed
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the V mean
MPC value obtained from the mMIQP solution and

this reference value. A larger value of ∆V mean
MPC obviously

indicates a larger level of suboptimality must be accepted.
Figure 4 shows ∆V mean

MPC for various values of is. Addi-
tionally, the figure reveals the relation of ∆V mean

MPC to the
average computation times tmean

comp, showing how the choice
of is results in a trade-off between suboptimality and
computational efficiency. Notably, as is increases, there is
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Fig. 4. Impact of is on ∆V mean
MPC and tmean

comp. Reference line
set to 1.6905e4 is V mean

MPC for MIQP with N = 33.

an exponential growth in computational time. However,
this increased computational effort does not correspond
to a proportionate decrease in the sub-optimality of the
solution, represented by ∆V mean

MPC . Figure 4 also shows that,
even with is=1, the average of closed-loop cost values in
the case of mMIQP, i.e., V mean

MPC , is not significantly dif-
ferent from the reference line representing the solution of
standard MIQP. However, there is a substantial reduction
in computational time. The subtle yet better performance
of is = 20 over is = 33 is linked to the same factor
causing the variable trends seen in Fig. 2 between the
MIQP and mMIQP (depicted by the green and red lines,
respectively). In rare cases, the mMIQP outperformed the
MIQP even with the same horizons.
Considering the computational resources, desired horizon,

and system complexity, an effective compromise can be
made in choosing is. This compromise seeks to lower
computational time while still securing a near optimal
performance, as seen with the selection of is = 15 for the
described system.

5. CONCLUSION

In this study, we employed a hybrid MPC approach to opti-
mize energy generation, consumption, and storage in office
buildings. We introduced an auxiliary problem that relaxes
integer constraints for later time points along the horizon,
thereby significantly reducing computational effort. We
evaluated the proposed method by conducting simulations
using real world data from an office building. The re-
sults indicate that our approach can achieve near-optimal
solutions while significantly reducing computational time
rendering it highly practical for real-time applications.
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