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Abstract: For a non-linear system, sample-based state estimators have proven to be a better alternative
to their derivative-based counterparts, due to their superior ability to obtain transformed probability
densities. However, the computation relating to propagation of the numerous samples make these
methods relatively expensive. In this work, a novel ML-based state estimation method is proposed
to reduce computation time for a specific form of sample-based state estimator namely, constrained
unscented transform based filters. The key feature of the proposed approach is that a trained neural
network (NN) model is used as a map between initial posterior samples (or sigma points), manipulated
inputs and new measurements to obtain filtered posterior sigma points. The efficacy of the proposed
approach is demonstrated on a non-isothermal continuous stirred tank reactor and the Williams Otto
reactor. It is shown that the proposed approach outperforms unscented transform-based state estimator
in terms of computation time, while matching its performance.
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1. INTRODUCTION

State estimation is an essential element of model-based meth-
ods, commonly employed in monitoring, detection & diagnosis
of faults and control of dynamic systems. In state estimation,
model predictions of the system dynamics are merged with a
datastream of available real-time measurements in a Bayesian
framework to obtain an estimate of the plant. The filtered state
estimates must satisfy two requirements: 1) the estimates must
accurately describe the system behaviour, which is invariably
non-linear, while complying with the system constraints, and
2) all computations related to the state estimation algorithm
must be completed in a small fraction of the sampling period.
Satisfying both of the above requires dynamic models and fast
computations. An opportunity to solve this trade-off is avail-
able due to the recent advances in hardware and computational
techniques involving AI/ML (Venkatasubramanian, 2019).

Bayesian methods for state estimation are predicated on the
time propagation of probability density of associated states via
the model and subsequent incorporation of real-time measure-
ments to assimilate the effect of uncertainties. These methods
can be broadly divided into derivative-based and sample-based
estimation. Derivative-based filters like Extended Kalman Filter
(EKF) use a first-order approximation of the nonlinear dynamic
model and assume additive uncertainties to propagate the state
densities in time. This approach endows EKF with computa-
tional efficiency, and have field deployability, but makes the
state estimates inaccurate for significantly nonlinear systems.
On the other hand sample-based filters, such as particle filters
(PF) (Patwardhan et al., 2012). or Unscented Kalman filter
(UKF) (Julier and Uhlmann, 2004), propagate samples (or real-
izations) of the probability density to reconstruct the propagated
density. Using a large number of samples, such as in PF, affords
an accurate estimate of the propagated density (Gelb, 2006)
(Patwardhan et al., 2012). However, the computational costs
make such methods impractical for certain systems.

UKF solves the trade-off via deterministic sampling. It can
be shown that the moments of Gaussian density can be cap-
tured by a small set of deterministic samples. While the small
set of samples relieves the issue of computational complexity
for small-sized problems, its implementation for medium and
large-scale problems is still a bottleneck. Moreover, the inabil-
ity of UKF/PF to be implemented in a real-time scenario be-
comes dramatically pronounced in the presence of constraints,
as it involves repeated solutions of constrained optimization
problems in real time.

The immense popularity and success of AI/ML methods have
led to use of NN in systems engineering to offset the computa-
tional burden associated with using nonlinear dynamic models.
Different modes of integration of AI/ML models with state es-
timators have been explored in the literature. The literature can
be broadly classified based on roles of NN in state estimation
algorithm into: 1) NN used to augment the state estimation al-
gorithm (Sieberg et al., 2022; Revach et al., 2022; Jouaber et al.,
2021) 2) NN used to obtain modelling and estimation errors
(Wang et al., 2021; Vaidehi et al., 2001; Yun and Zanetti, 2021;
Talla and Peroutka, 2011). In particular (Yun and Zanetti, 2021)
have approximated the measurement update step of UKF using
an NN. The approach, however, uses the mechanistic model for
the prediction step which is similar to the conventional UKF.
The prediction step in UKF is computationally intensive and
can pose difficulties in the real-time implementation of UKF
for a system with fast dynamics.

While existing literature often incorporates AI/ML methods for
partial roles in model representation or measurement integra-
tion, notable gaps exist,

(1) reports of a complete replacement of the state estimation
algorithm, including state propagation and measurement
update, do not exist,
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(2) use of NN to approximate constrained state estimator has
not been reported.

In this work, an ML-based approach is proposed for non-
linear state estimation aimed at enhancing state estimation
speed while performing at par with sample-based estimators,
namely UKF, in both constrained and unconstrained settings.
Unlike the reviewed literature, wherein only a partial aspect
of the filter implementation was replaced by an NN, a single
NN replaces both the propagation and updation steps in the
proposed approach. The efficacy of the proposed approach
is demonstrated on a non-isothermal continuous stirred tank
reactor (CSTR) and Williams Otto reactor (WOR). The rest
of the paper is organized as follows: Section 2 reviews typical
steps in a sample-based estimator algorithm; Section 3 presents
the proposed approach; Section 4 presents two comparative
case studies between sample-based state estimators and their
NN approximations for a CSTR (2 states) and WOR (6 states).

2. PRELIMINARIES

2.1 Dynamic model and assumptions

Consider a plant whose model is represented by a non-linear
discrete state space model Eq. (1).

xk+1 = F(xk, uk, d̄+wk) (1)
yk = h(xk)+vk (2)

where xk ∈ Rnx represents the state vector, uk ∈ Rnu is the
known piecewise continuous input to the system, yk ∈ Rnv rep-
resents the measured states, d̄ ∈ Rnw represents the mean value
of unmeasured disturbance, wk ∈ Rnw represents a zero mean
gaussian white noise with covariance Q, vk ∈ Rnv represents a
zero mean gaussian white noise to the measurements with co-
variance R. The sampling interval is T such that tk = kT where k
represents the sampling instant. F : Rnx×nu×nw→Rnx represents
the non-linear dynamic system. h : Rnx → Rnv represents the
measurement model.

2.2 Constrained Recursive Sample Based Bayesian Estimator

Consider a sample-based constrained state estimator. The typ-
ical steps involved in a constrained recursive sample-based
Bayesian estimator for a non-linear process are as follows
(Vachhani et al., 2006; Kadu et al., 2010; Kottakki et al., 2016).

(1) Constrained sample generation:
Samples of states and noise are generated from their

respective probability distribution. The process of sam-
pling can be deterministic or non-deterministic. Let Ω[.]
represent the sampling operator. Given the initial posterior
for the system states p(xk|y1, . . . ,yk) and densities for
state noise and measurement noise namely p(wk), p(vk)

respectively, obtain n samples of random vectors x(i)k|k, w(i)
k ,

v(i)k for i = 1, . . . ,n using Eq.(3,4,5) such that constraints
as represented by Eq. (6,7) are satisfied are as follows,
where xL,xU represent the lower and upper bounds on
states, while g(.) represent the non-linear constraints,

x(i)k|k = Ω[p(xk|y1, . . . ,yk)] (3)

w(i)
k = Ω[p(wk)] (4)

v(i)k = Ω[p(vk)] (5)

xL ≤ x(i)k|k ≤ xU (6)

g(x(i)k|k)≤ 0 (7)

The sample mean x̂k|k and sample covariance Pk|k are
calculated using Eq. (8,9) as follows,

x̂k|k =
nx

∑
i=1

ω
(i)x(i)k|k (8)

Pk|k =
2nx+1

∑
i=1

ω
(i)[x(i)k|k− x̂k|k][x

(i)
k|k− x̂k|k]

T (9)

where, x(i)k|k is associated with weight ω(i) such that

∑
n
i=1 ω(i) = 1. W denotes a vector of weights W =

[ω(1),ω(2), ...,ω(n)].
(2) Sample Propagation: The samples generated in Step 1

are propagated through the non-linear process F(.) (Eq.1),
to obtain x(i)k+1|k i=1,2,..n using Eq.(10),

x(i)k+1|k = F[x(i)k|k,uk, d̄+w(i)
k ] (10)

The propagated mean x̂k+1|k and covariance Pk+1|k are
calculated using similar procedure as described in Eq.
(8,9). Let Xk|k be defined as follows,

Xk|k = [x(1)k|k
T

x(2)k|k
T
...x(n)k|k

T
]
T

(3) Constrained Sample update: The samples are updated
using the new measurement yk+1 and some appropriate
operator ϒ[.].

x(i)k+1|k+1 = ϒ[x(i)k+1|k,Pk+1|k,yk+1,v
(i)
k+1,R,g(.),xL,xU ]

(11)
Finally, the filtered estimate x̂k+1|k+1 and its covariance
Pk+1|k+1 are obtained using Eq. (12,13),

x̂k+1|k+1 = H[Xk+1|k+1,W ] (12)
Pk+1|k+1 = Π[Xk+1|k+1,Pk|k+1,R,W ] (13)

where H[.] and Π[.] are appropriate operators.

In case of UKF Eq. (3,4,5) represent unscented transform,
wherein the mean x̂k|k and covariance Pk|k are represented by
the n = 2nx +1 samples (or sigma points) as follows.

x(1)k|k = x̂k|k (14)

ω1 =
κ

nx +κ
(15)

x(i)k|k = x̂k|k +
√
(nx +κ)Pk|kξ i (16)

ωi =
1

2(nx +κ)
(17)

x(i+Nx)
k|k = x̂k|k−

√
(nx +κ)Pk|kξ i (18)

ωi+nx =
1

2(nx +κ)
(19)

here, ξ i represents a unit vector with all elements except ith
component as zeroes.
Remark. If constraints Eq. (6,7) in Eq. (3 - 13) are omitted,
the estimation corresponds to an unconstrained version.

The following section presents the neural network approxima-
tion of the unscented transform based state estimator.
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3. MAIN CONTRIBUTION: NN APPROXIMATION OF
UNSCENTED TRANSFORM BASED FILTERS

The mainstay of the proposed approach is use of NN to predict
the posterior density samples x(i)k+1|k+1 (Eq.11) using the initial

posterior density samples x(i)k|k (Eq.3), measurement yk+1 and
input uk as the input to the network in a single step, thereby
replacing the two-step procedure, namely propagation (Step
2) and update (Step 3) as noted in the previous section. In
this work, it is considered that the input-output data for train-
ing of the NN is obtained by implementation of UKF. The
input-output structure of UKF can be represented as in Fig. 1.
Thus, the proposed NN is a direct map between UKF inputs
Xk = [Xk|k

T uk
T yk+1

T ]
T ∈Rn×nx+nu+nv and the samples corre-

sponding to UKF posterior at sample k+ 1, Xk+1|k+1 ∈ Rn×nx .
Note that while the posterior mean and covariance are obtained
directly from UKF, it is proposed to train the NN to predict the
posterior samples that are consistent with UKF posterior mean
and covariance.

Consider a feedforward NN consisting of p hidden layers and
an output layer, with corresponding weight matrices W(i) and
bias vectors b(i), i = 1, · · · , p + 1. Let the intermediate layer
outputs and associated activation function be denoted by η(i)

and ρ(i) respectively. Given the NN inputs Xk and NN model
with parameter θ = {W(i),b(i) : i = 1,2..p+1} the NN output
consists of the set of the propagated samples and is denoted as
X̃k+1|k+1 = N N (Xk,θ) and is calculated as,

η
(1) = ρ

(1)(W(1)Xk +b(1))

η
(2) = ρ

(2)(W(2)
η
(1)+b(2))

. . .

η
(p) = ρ

(p)(W(p)
η
(p−1)+b(p))

X̃k+1|k+1 = ρ
(p+1)(W(p+1)

η
(p)+b(p+1)) (20)

The NN approximation error with respect to UKF targets can
be quantified by rk+1 (Eq.21),

rk+1 = Xk+1|k+1−N N (Xk,θ) (21)

Fig. 1. Input output structure of UKF for NN training

3.1 Data Generation and Pre-Treatment

NN requires an enormous amount of data to be trained for a
good approximation of any system or function. In the current
work, the training data is generated by collecting multiple real-
izations of UKF by estimating the process states via simulations
over a wide range of operating conditions obtained by random
process inputs, for multiple noise realizations, and different
initial states. Multilevel random input (For example, see Fig.
(3)) coupled with different steady-state operating points ensures
that a large enough input/output space is covered. Such a strat-
egy of use of simulators to generate data for neural network

Fig. 2. NN for online deployment

training is discussed in Dufour et al. (2005). The ”Constrained
Sample Generation” step from section 2.2 is carried out after
the updated states are obtained to generate a complete set of
input and output pairs. The input/output data is standardized
before training, and the parameters are preserved to be used
while implementation to scale the data.

3.2 NN Training

The loss function used for the NN training J(θ) to estimate θ

for ne epochs with ns data points is,

Ek =
1
ns

ns

∑
k=1

rT
k rk (22)

Eθ =
1
2

p+1

∑
i=1

θ
2
i (23)

J(θ) = αEθ +βEk (24)
Note that the objective function is regularized by Eq. (23), to
reduce the extent of overfitting. α,β are initialised to [0 1]
respectively and are estimated per epoch as a part of the training
algorithm. The training is carried out using MATLAB NN
training toolbox (MATLAB, 2022a).

3.3 Online Implementation of NN-UKF

Algorithm 1 outlines the online implementation of the proposed
approach, while Fig. 2 is a pictorial representation of the online
implementation. As shown in Fig.2, the NN output X̃k+1|k+1
is used as input for the next time instant. The training of the
NN is based on a single step-ahead prediction. However, during
deployment, the predicted X̃k+1|k+1 is used in the NN input
for the next time instant. The predicted samples are used to
calculate the state estimates ˆ̃xk+1|k+1.

Algorithm 1 Online Implementation of NN

1: At each instant k
2: Generate Samples and associated weights: x̃(i)k|k,ωi using

ˆ̃xk|k and associated covariance Pk|k ▷ from Eq.(3,14-19)
3: Generate vector of input for NN: Xk = [X̃k|k,uk,yk+1]

4: Sample Propagation: X̃k+1|k+1 = N N (Xk,θ)

5: Compute sample mean: ˆ̃xk+1|k+1 = ∑
nx
i=1 ω(i)x̃(i)k+1|k+1

6: Compute sample covariance: Pk+1|k+1 =

∑
2nx+1
i=1 ω(i)[x̃(i)k+1|k+1− ˆ̃xk+1|k+1][x̃

(i)
k+1|k+1− ˆ̃xk+1|k+1]

T

7: Set: k← k+1
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4. SIMULATION CASE STUDIES

In this section, efficacy of the proposed approach is demon-
strated using two simulation case studies. The first system
is a two state CSTR system while the second system is the
benchmark Williams Otto reactor system. Stochastic simulation
experiments are carried out to generate data for UKF imple-
mentation and generation of data sets for NN training. The
performance metrics used for assessing the performance of the
NN based estimator are chosen as follows:

(1) Computation Time:

T =
1
L

1
Ns

Ns

∑
i=1

L

∑
j=1

t j
i (25)

T is the average computation time over L realizations, Ns
represents number of samples in one run.

(2) Relative Average root mean squared error:

R−ARMSEi =
1
L

L

∑
j=1

√
∑

Ns
k=1(x̂

j
i,k|k− ˆ̃x j

i,k|k)
2

Ns
(26)

R − ARMSEi represents Relative Average root mean
squared error over L realizations, x̂ j,i,k|k represents the
states estimated by the Bayesian estimator and ˆ̃x j,i,k|k rep-
resents states estimated by NN model at k

′th instant for jth
realization of ith state.

All computations were performed in MAT LAB version 2022a
on Windows 7 OS with Intel i7-7700, 4 Cores, 8 logical
processors, 32 GB RAM computer. The average computational
time is calculated from the sampling of x(i)k|k to the estimation of
x̂k+1|k+1 for all state estimation approaches.

4.1 Case Study A: Continuous Stirred Tank Reactor

A non-isothermal Continuous Stirred Tank Reactor (CSTR)
in which an irreversible first-order reaction Eq. (27) is taking
place is considered for demonstrating efficacy of the proposed
approach.

A→ B (27)
dCA

dt
=

F
V
(CA0−CA)− k0 exp(

−E
RT

)CA (28)

dT
dt

=
F
V
(T0−T )+

(−∆Hr)k0

ρCp
exp(
−E
RT

)CA−
Q

V ρCp
(29)

Q =
aFb+1

c

Fc +
aFb

c
2ρcCpc

(T −Tcin)

The system is governed by mass balance Eq. (28) and heat
balance equation Eq. (29). The system parameters used in
the simulation are taken from Marlin (1995). Here, [CA0 Tcin]

T

acts as a disturbance with its mean fixed at [0.2 365]T and is
assumed to be corrupted by a zero mean Gaussian white noise
characterized by the covariance matrix Q. The measurement T
is assumed to be corrupted by a zero mean white noise vk with
covariance R. The classification associated with the variables
is presented in Table 1. The reactor is simulated in open loop
conditions and the reactor temperature is the only measurement.
State and measurement noise model parameters are as follows,

Table 1. Case Study A: Variable description

Classification of Variable
State Variable (x) CA ,T
Measured Variable (y) T
Manipulated inputs (u) F ,FC

Disturbances (w) CA0,Tcin

Fig. 3. Case Study A: Multilevel Process Inputs

P0|0 =

[
6.278e−05 −0.0133
−0.0133 2.972

]
Q =

[
0.0025 0

0 0.0225

]
,R = 0.0225

xL = [0 0]T

Initial state x0 = [0.26 393.95]T is assumed to be a normally
distributed variable with covariance chosen to be P0|0. xL rep-
resent the lower bound imposed on the state estimates. The
system is excited by injecting multilevel excitation at multiple
operating points and the resulting simulation data is used for
generation of the training data set using CUKF. Fig.(3) depicts
one realization of manipulated inputs. In this case study, the NN
model is used to approximate constrained unscented Kalman
filter (CUKF) (Kottakki et al., 2016). The Input to the NN is
Xk ∈ R13 while output from the NN is X̃k|k ∈ R10. The NN
is a p = 4 hidden layered NN with 18 nodes in each layer.
The activation function ρ(i) for the hidden layer for i=1,2,3,4
is a tansigmoid function tansig(N) = expN−exp−N

expN+exp−N , while the

output layer ρ(p+1) has a linear activation function. The model
is trained on a dataset of 1× 106 instances (with L = 30) of
input/output pair while tested on 2.5× 105 instances. Details
on training algorithm and metrics for measuring performance
have been outlined in the Section. 3.2. A limit of 1×10−6 is set
on performance metric for training.

Table. 2 depicts the comparison metrics between the state esti-
mators. R-ARMSE values indicate that NN-CUKF generates
reasonably accurate estimation performance. The one metric
where NN-CUKF significantly outperforms CUKF is on com-
putation time. NN-CUKF is ∼8.9 times faster than CUKF. Fig
(4,5) depict temperature and concentration estimates, respec-
tively for the validation dataset. It can be seen that NN-CUKF is
able to track the states as well as CUKF. From Fig.(5) it can be
seen that NN-CUKF is able track the states, but the estimation
error is relatively higher when compared to CUKF.
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Fig. 4. Case Study A: Temperature estimates

Fig. 5. Case Study A: Concentration estimates

Table 2. Case Study A: Comparision of perfor-
mance metrics metrics

Parameter Performance Metrics
R−ARMSE1 (Concentration) 0.0082
R−ARMSE2 (Temperature) 0.0309
T (CUKF) (sec) 0.0579
T (NN-CUKF) (sec) 0.0065

4.2 Case Study B: Williams Otto Reactor

The performance of the proposed approach is demonstrated us-
ing the Williams Otto reactor (Valluru and Patwardhan, 2019).
In the reactor, irreversible exothermic reactions are taking
place. The plant dynamics are modelled by Eq.(30-35). Here,
XA, XB, XC, XE , XG, XP are mass fractions of components A, B,
C, E, G, P respectively. r1 = k1XAXBW,r2 = k1XBXCW,r3 =
k1XCXPW are the reaction rates of the respective reactions. W is
the mass of the reacting mixture. k1, k2, k3 are the reaction rate
constants. System parameters and associated reaction equations
are in (Valluru and Patwardhan, 2019).

WẊA = FA− (FA +FB)XA− r1 (30)
WẊB = FB− (FA +FB)XB− r1− r2 (31)
WẊC =−(FA +FB)XC +2r1−2r2− r3 (32)
WẊE =−(FA +FB)XE +2r2 (33)
WẊG =−(FA +FB)XG +1.5r3 (34)
WẊP =−(FA +FB)XP + r2−0.5r3 (35)

xL = [0 0 0 0 0 0]T

The measurements are assumed to be corrupted by a zero mean
white noise vk with covariance R. FA acts as a disturbance
(d)with its mean fixed at 1.827kg/s and is assumed to fluc-
tuate around it. FA, FB and TR are assumed to be corrupted
by a zero mean Gaussian white noise characterized by the
covariance matrix Q. A typical input profile (without noise) is
depicted in Fig.6. Initial state covariance is chosen to be P0,0 =

I6×6 × 10−6. The states cannot be negative as they represent

Fig. 6. Case Study B: Multilevel Process Inputs

Table 3. Case Study B: Variable description

Classification of Variable
State Variable (x) XA,XB,XC,XE ,XG,XP

Measured Variable (y) XB,XC,XE ,XP

Manipulated inputs (u) FB,TR

Disturbances (d) FA

Table 4. Case Study B: Comparision of perfor-
mance metrics metrics

Parameter Performance Metrics
R−ARMSE1 (XA) 0.0126
R−ARMSE2 (XG) 0.0063
T (ICUKF) (sec) 0.0235
T (NN-ICUKF) (sec) 0.0070

Fig. 7. Case Study B: XA estimates from estimators

the mass fractions of components. Hence, interval-constrained
UKF (ICUKF), as outlined in Kadu et al. (2010) is used to
generate state estimates, whose mapping is then approximated
using a NN. xL represents the lower bound on the states. A
description of associated variables can be found in Table.3

R = diag[0.00782,0.00032,0.00582,0.00222]

Q = diag[0.01832,0.04792,0.89702]

The Input to the NN is Xk ∈ R84 while output from the NN
is X̃k|k ∈ R78. The NN selected is a three-hidden layered NN
with 10, 20, 10 in respective layers. Hidden layer activation
function is a tansigmoid function, while the output layer ρ(4)

has a linear activation function. The model is trained on a
dataset of 4.5× 104 instances of input/output pair while tested
on 5× 103 instances (with L = 10). A limit of 1× 10−10 is set
on performance metric for training.

Table. 4 presents the comparison of performance metrics. The
performance of NN-ICUKF to estimate XG is significantly bet-
ter when compared to the estimation of XA. NN-ICUKF is∼3.3
times faster than ICUKF. Fig (7,8) depict estimates of XA
and XG respectively. It can be seen that NN-ICUKF is able to
track the states as well as ICUKF. From both the case studies it
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Fig. 8. Case Study B: XG estimates from estimators

can be seen that the proposed approach is superior in terms of
speed of execution and is at par in estimating states. The pro-
posed approach can approximate a constrained sample-based
state estimator, though the estimates from the NN were found
to violate constraints at few instances. Simulations revealed
that the NN implementations violated constraints 0.0347% and
0.004% times for the case studies A and B, respectively.

5. CONCLUSION

This paper explores approximation of sigma point-based esti-
mators by NNs. The NN-CUKF and NN-ICUKF are approxi-
mated representations of CUKF and ICUKF using ML meth-
ods. The approach directly maps the initial posterior to the
filtered posterior by exploiting the information of mean and
covariance stored in sigma points. While the NN representa-
tions mimic constrained estimation, they do not enforce the
constraints explicitly.

The results demonstrate that the benefit of the proposed ap-
proach relative to UKF lies in terms of computational efficiency
while retaining similar estimation performance. An obvious
disadvantage is the requirement of large amount of good quality
data required to train the NNs and this may not be available
for a practical case. However, if a digital twin of the system
is available, it can act as the source of data or augment avail-
able data to train the NN. Our future research will focus on
utilizing the proposed NN approach to speed-up particle filter
and other sample-based approaches in presence of polytopic
state constraints for problems of larger scale to enable practical
implementation.
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