
Safety with Non-Deterministic Control
Action Selection Using Quantum Devices 1

Kip Nieman ∗ Helen Durand ∗∗

∗ Wayne State University, 42 W. Warren Ave. Detroit, MI 48202,
USA (e-mail: kip.nieman@wayne.edu).

∗∗ Wayne State University, 42 W. Warren Ave. Detroit, MI 48202,
USA (e-mail: helen.durand@wayne.edu)

Abstract: Recent increasing interest in quantum computers has spurred research into practical
engineering applications for quantum algorithms. One potential application is process control.
The unique quantum phenomena involved with quantum computing brings up interesting
considerations for control. This work focuses on non-determinism, first through a motivating
simulation utilizing a continuous stirred-tank reactor. Following this, two methods of potentially
ensuring system stability in the presence of non-determinism are discussed. The first involves
including an additional gate to the modified Grover’s algorithm presented in our previous work,
which is designed to prevent a qubit state corresponding to an undesired control input from
being measured. The second method involves defining an inner region where, if the state leaves
the region, a classical stabilizing controller is activated to drive the state back inside the region.
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1. INTRODUCTION

Advances in quantum information science have driven
increased interest in quantum computing, which utilizes
quantum mechanics to perform computations. Through
the use of concepts such as entanglement and superposi-
tion, the hope is that one day quantum computer may out-
perform their classical counterparts in certain situations
(Yanofsky and Mannucci (2008)). These concepts, along
with practical considerations such as non-determinism and
the limited size of modern-day quantum computers, in-
troduce new challenges and opportunities towards imple-
menting quantum computations in engineering applica-
tions. Adoption of quantum computing for engineering
applications will require understanding how to deal with
and utilize these factors in a way that ensures safe process
operation.

Quantum computing algorithms have been studied for
a variety of engineering and computational-related tasks
including, for example, optimization and machine learning.
Optimization algorithms include the variational quantum
eigensolver (VQE) and quantum approximate optimiza-
tion algorithm (QAOA). VQE (Peruzzo et al. (2014)) is
designed to minimize the expectation value of a Hamil-
tonian using a parameterized quantum circuit, where the
parameters are iteratively updated using a classical op-
timizer with gradient descent. One application of VQE
is for determining ground-state energy configurations of
molecules. QAOA (Farhi et al. (2014)) is another varia-
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tional algorithm used for solving a type of combinatorial
optimization problem called a quadratic unconstrained
binary optimization (QUBO) problem. Many quantum
machine learning algorithms exist (Schuld et al. (2015);
Wittek (2014); Ramezani et al. (2020)). Overall, a great
deal of research has focused on investigating how quantum
computers might be used in real-life engineering applica-
tions (Ajagekar and You (2022); Bernal et al. (2022); Wang
et al. (2023)).

Our previous work (Nieman et al. (2022)) was an initial
study into the implementation of controllers on quantum
computers, focusing on how the unique operation of quan-
tum computers might affect process operation and safety.
We specifically studied theory relating to Lyapunov-based
economic model predictive control, or LEMPC (note that
many other control frameworks could be considered, and
we selected LEMPC as an initial investigation in this topic
as it has closed-loop stability guarantees in the presence
of disturbances). LEMPC is a control law that solves an
optimization problem, subject to a process model and
constraints (Heidarinejad et al. (2012)). In Nieman et al.
(2022), we demonstrated that closed-loop stability could
be ensured (under sufficient conditions) in the presence of
the discretization introduced by rounding, which may be
introduced due to the limited size of modern day quantum
computers.

We then began to investigate the influence of nondetermin-
ism. To do this, we first devised a quantum circuit inspired
by Grover’s search algorithm to represent a controller.
Grover’s algorithm is a quantum algorithm designed for
searching unstructured lists, yielding a searched result
with a probability. Our circuit, which we called the mod-
ified Grover’s algorithm or the Grover chain algorithm,
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was constructed from a series of individual Grover’s al-
gorithms. The circuit provides the desired control action
with probability λ, so there is a 1 − λ probability that
other control actions will be selected. This controller, while
inefficient and impractical, demonstrates a framework for
a first step towards uniting control theory with quantum
algorithms. In Nieman et al. (2022), we discussed how
the probability that the controller will maintain stability
for one sampling period is at least λ. However, not every
control action will be destabilizing, and different initial
conditions (and sampling periods) will be more vulnera-
ble to destabilizing inputs. Considering the effect of non-
determinism over the course of many sampling periods is
more complex and is thus the focus of this study.

In this work, we seek to determine how a control law
might be designed to ensure closed-loop stability when
non-determinism is a consideration. Our objective is not to
prove that a controller on a quantum computer will lead to
faster computations, but rather to pave the way towards
understanding desirable characteristics for quantum algo-
rithms based on safety. We begin with some background on
quantum computing, Grover’s algorithm, and the modified
Grover’s algorithm-based controller from Nieman et al.
(2022). Next, a motivating example is presented using a
continuous stirred-tank reactor (CSTR), where we investi-
gate how often the state leaves a stability region depending
on the value of λ. Following this, we discuss two methods of
potentially ensuring safe operation of a non-deterministic
controller on a quantum computer. The first method in-
volves a modification of modified Grover’s algorithm-based
controller from Nieman et al. (2022), where additional
quantum gates are added to prevent the algorithm from
selecting a specified control action. The second method
involves specifying another region within Ωρ where, if
the state leaves this region, a classical stabilizing backup
controller is applied until it returns.

2. BACKGROUND

2.1 Quantum Computing

Quantum computing uses qubits to manipulate informa-
tion, which are analogous to bits on classical comput-
ers. Similar to classical bits, qubits can be in the zero
or one state, typically represented for single qubits as
|0⟩ = [1 0]T and |1⟩ = [0 1]T respectively using ket and
vector notation. An advantage of quantum computing is
that qubits can also be in a superposition of the form
c0 |0⟩+ c1 |1⟩ = [c0 c1]

T , where c0, c1 ∈ C, |c0|2+ |c1|2 = 1,
and | · | is used to represent the magnitude of a complex

number (i.e., |α + βi| =
√
α2 + β2). The values of c0 and

c1 are called amplitudes. Multiple-qubit systems can be
represented using similar notation. For example, a two-
qubit system can be written as c0 |00⟩+ c1 |01⟩+ c2 |10⟩+
c3 |11⟩ = [c0 c1 c2 c3]

T , where c0, c1, c2, c3 ∈ C and |c0|2 +
|c1|2 + |c2|2 + |c3|2 = 1.

Qubit states are manipulated using quantum gates, which
can be represented as unitary matrices (a matrix U is
unitary if U∗U = UU∗ = I, where U∗ is the conjugate
transform of U). Some examples include the Hadamard
gate, which places a qubit into a superposition, and

the NOT gate. These gates can be described using the
following matrices:

H =
1√
2

[
1 1
1 −1

]
X =

[
0 1
1 0

]
(1)

The action of a quantum gate A on qubit |ϕ⟩ can be
represented using matrix multiplication as A |ϕ⟩. Multiple
quantum gates can also be represented together using the
tensor product. For example, the operation of n Hadamard
gates on n qubits can be found as H⊗H⊗. . .⊗H (this can
be abbreviated as H⊗n). Qubits perform calculations by
applying several or many quantum gates to an initial qubit
state, forming a quantum circuit. The final qubit state
after measurement contains the results of the calculation
performed on the quantum computer.

The last step of a quantum computation is measurement
of the final quantum state. For a single-qubit system,
measurement causes the qubit c0 |0⟩ + c1 |1⟩ to collapse
to the |0⟩ or |1⟩ state with probability |c0|2 or |c1|2,
respectively. Multiple-qubit systems collapse in a similar
way. For example, the two-qubit system c0 |00⟩+ c1 |01⟩+
c2 |10⟩+ c3 |11⟩ will collapse to state |00⟩ with probability
|c0|2, state |01⟩ with probability |c1|2, |10⟩ with probability
|c2|2, and |11⟩ with probability |c3|2.

2.2 Grover’s Algorithm

Grover’s algorithm (Grover (1996)) is a quantum comput-
ing search algorithm designed to locate the position of a
n-length binary number x∗ within the space of all n-length
binaries x = {x1, x2, ..., xi, ..., x2n} (Yanofsky and Man-
nucci (2008)). Each binary can be associated with elements
of an unstructured database, and Grover’s algorithm can
be used to find a desired element. The initial step of the
algorithm is to create an equal superposition state |s⟩ using
a set of n Hadamard gates (see the circuit in Fig. 1). Then,
Grover’s algorithm applies two quantum gates. The first
gate, called the oracle (or sometimes phase inversion), is
denoted as UG and is created in a way that selects the
value to be searched for. For example, if one wishes to find
the binary string corresponding to the decimal number 2,
the matrix representing the UG operator can be written
as:

UG =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 −1 . . . 0
...
...

...
. . .

...
0 0 0 . . . 1

 (2)

where the size of the matrix is 2n × 2n. The second gate
US is called the diffusion operator (or sometimes inversion
about the mean), and is designed to amplify the bit string
selected in the previous operation. The diffusion operator
takes the following form for an n-qubit system:

US =


2/2n − 1 2/2n . . . 2/2n

2/2n 2/2n − 1 . . . 2/2n

...
...

. . .
...

2/2n 2/2n . . . 2/2n − 1

 (3)

where the size of the matrix is 2n × 2n.

It is important to note that Grover’s algorithm is inher-
ently non-deterministic, with a probability for measuring
the marked value. Repeated application of the UG and then

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

667



Fig. 1. Circuit for Grover’s algorithm, which acts on n
qubits.

Fig. 2. Modified Grover’s algorithm chain circuit, which
implements a controller as a quantum algorithm using
a lookup table of process states and control inputs.

State x 00 01 10 11

Input u 10 11 00 01

Table 1. Lookup table representing an example
of the modified Grover’s algorithm in Fig. 2

US operators will lead to a higher probability of measuring
the desired result, with a maximum likelihood occurring
at approximately π

4

√
2n repetitions (Koch et al. (2022)).

A control algorithm utilizing Grover’s algorithm would
need to consider this nondeterminism in its design. The
next section considers a control algorithm designed using
Grover’s algorithm in a modified circuit.

2.3 Grover’s Algorithm Based Control

In our previous work (Nieman et al. (2022)), we discussed
a control algorithm made from many Grover’s algorithm
blocks in series. The quantum circuit is shown in Fig. 2
and consists of 2n Grover’s algorithm operations (denoted
by G1, G2, ..., G2n) being controlled by a set of n control
qubits representing the process state measurement |x⟩.
The idea is that the state measurement is converted to
binary form and supplied to the controller as control
bits. One Grover’s block is designed to activate for a
given binary |x⟩ and output a desired control action |u⟩
in binary form. The block performs Grover’s algorithm
to locate the desired control input in binary form. This
block then gives the desired |u⟩ on the bottom qubits,
while the non-activated gates avoid modifying the bottom
qubits. As an example to help in understanding how the
algorithm operates, consider a simple n = 2 case. For this
case, a potential look-up table is presented in Table 1. To
represent the values in Table 1 in the modified Grover’s
algorithm, the first Grover’s algorithm block would be
designed to search for |10⟩ and would be controlled so that
it only activates when the top qubits are in the state |00⟩.
The remaining blocks are designed in a similar fashion,
where the blocks search for |u⟩ and are controlled so that
they only activate when the control qubits are in the state
|x⟩. This circuit is likely not practical or efficient, due
to the need to create the lookup table, the likely large

depth of the resulting quantum circuit, and the need to
discretize states and inputs. However, it provided a key
method for uniting control theory with non-determinism
from a quantum algorithm, as described in Nieman et al.
(2022).

3. MOTIVATING EXAMPLE: CONTINUOUS
STIRRED-TANK REACTOR

In this section, we consider a continuous stirred-tank re-
actor (CSTR) simulation on a classical computer to begin
to understand how non-determinism may play a role in
system stability. First, a region of state-space is deter-
mined which satisfies the requirements of a stabilizing
Lyapunov-based controller h(x). Then, a simulation is cre-
ated starting from a specified initial condition, where con-
trol inputs are applied in a sample-and-hold fashion over
many sampling periods (as in LEMPC). The stabilizing
controller h(x) is applied during a sampling period with
probability λ and a random control input within the input
bounds is applied with probability 1 − λ, which is used
to mimic the kind of operation that might be expected
when a control law is implemented using a strategy like
the modified Grover’s algorithm described in the prior
section. Finally, this simulation is repeated many times
for different values of λ to try to ascertain a trend. Given
the assumptions behind these simulations, the results are
not general, though they help to motivate further study in
the sections that follow.

The CSTR from Ellis et al. (2014) was simulated in
MATLAB and obeys the following dynamic model:

dCA

dt
=

F

VR
(CA0 − CA)− k0e

−E
RT C2

A (4a)

dT

dt
=

F

VR
(T0 − T ) +

−∆Hk0
ρRCp

e
−E
RT C2

A +
Q

ρRCpVR
(4b)

where the process states are the concentration of species
A in the reactor (x1 = CA − CAs) and the reactor
temperature (x2 = T − Ts), the control inputs are the
feed concentration of A (u1 = CA0 − CA0s) and the heat
added or removed from the reactor (u2 = Q − Qs), and
CA0s and Qs are the steady-state inputs which yield the
steady-state CAs and Ts. The remaining parameters and
their values are given in Table 2.

The CSTR system can be written in input-affine form as:[
ẋ1

ẋ2

]
=

[
f1
f2

]
+

[
g11 g12
g21 g22

] [
u1

u2

]
(5)

where f1 = F
V (CA0s−x1−CAs)−k0e

−E
R(x2+Ts) (x1+CAs)

2,

f2 = F
V (T0−x2−Ts)−∆Hk0

ρLCp
e

−E
R(x2+Ts) (x1+CAs)

2+ Qs

ρRCpVR
,

g11 = F
V , g12 = g21 = 0, and g22 = 1

ρRCpVR
.

The creation of a stability region and stabilizing controller
h(x) involves defining a Lyapunov function. The Lyapunov
function is defined as follows:

V = V1(CA−CAs)
2+2V2(CA−CAs)(T−Ts)+V3(T−Ts)

2

(6)
where V1, V2, and V3 are constants. To determine a stabil-
ity region, a MATLAB code was created to implement the
stabilizing Lyapunov-based controller from Lin and Sontag
(1991) using a Lyapunov function defined by V1 = 250,
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Table 2. CSTR simulation parameters from El-
lis et al. (2014).

F 5 m3/h Inlet/Outlet Flow Rate
T0 300 K Feed Temperature
VR 1 m3 Reactor Fluid Volume
E 5× 104 kJ/kmol Activation Energy
k0 8.46× 106 m3/kmol/h Pre-Exponential Factor
∆H −1.16× 104 kJ/kmol Reaction Enthalpy Change
Cp 0.231 kJ/kg/K Heat Capacity
ρR 1000 kg/m3 Density
R 8.314 kJ/kmol/K Ideal Gas Constant

V2 = 5, and V3 = 0.2. To accomplish this, a region of the
state-space is defined and discretized to verify the region
is acceptable. A region defined by V ≤ ρ is used, and the
state-space region (0.3 ≤ CA ≤ 2 and 400 ≤ T ≤ 480)
was discretized into 5589 points. Any point within the
stability region, where V ≤ ρ, must be tested to ensure
that the time-derivative of the Lyapunov function (i.e.,
dV
dt = ∂V

∂x1
ẋ1 +

∂V
∂x2

ẋ2) is less than zero. If was found that
ρ = 84.76 gives an acceptable region. Then a stabilizing
controller can be implemented by applying the following
control actions:

u1 = 0 (7a)

u2 =
−(a+

√
a2 + b4)

b
(7b)

where a = ∂V
∂x1

f1 +
∂V
∂x2

f2 and b = ∂V
∂x1

g12 +
∂V
∂x2

g22.

To investigate the effects of non-deterministic control ac-
tions on system stability, a series of MATLAB simulations
were created. The results are shown in Fig. 3. The first
set of simulations (labeled ‘Base Case’ in black in Fig. 3)
utilizes 1000 runs per value of λ (for 51 values from λ = 0%
to λ = 100%) and determines the percent of simulation
runs where the process state remains within the stability
region. For each run, the process begins with an initial
condition of (x1, x2) = (0 kmol/m3, 0K) and is simulated
for 10 sampling periods of length 0.025 h each. The general
trend is that larger values of λ correspond to fewer runs
leaving the stability region, with the process states of all
simulations remaining in the stability region at λ = 100%.
The second set of simulations (labeled ‘Increased Time’
in red in Fig. 3) uses 20 sampling periods instead of 10
(resulting in a doubled total simulation time). This causes
a general drop in the number of runs that remain in
the stability region. The third set of simulations (labeled
‘Different Initial Condition’ in blue in Fig. 3) again uses
10 sampling periods, but each run begins with an initial
condition closer to the edge of the stability region of
(x1, x2) = (0.6 kmol/m3, − 28 K). Again a general
decrease is observed in the probability of a run remaining
in the stability region. The amount of the decrease differs
from the ‘Increased Time’ case, being better with lower
values of λ and worse at higher values.

The results in Fig 3 demonstrate how the probability
of selecting the desired control input may affect control
operation. The simulations also have some limitations.
Firstly, for each set of simulations, the process starts at
the same initial condition and is only simulated for 10
or 20 sampling periods. A real process could start at any
initial condition within the stability region and would need
to remain within the stability region for all time. Secondly,

Fig. 3. Plot of the probability of the process state remain-
ing in the stability region versus λ (the probability of
applying the controller defined in Eq. 7). Each data
point represents 1000 simulations, each starting from
the same initial condition.

when a random control input within the input bounds
is selected, the input may or may not be stabilizing.
Finally, when h(x) is not selected for a sampling period
in these simulations, there is an equal probability of
any of the other control inputs being selected. This will
not generally be true for quantum algorithms, as often
one undesired result will have a higher probability of
being measured than another undesired result. Regardless
of these limitations, the results in Fig. 3 suggest that
the design of the control law (including the selection of
control parameters) may influence whether the process
remains in the stability region. They also show that more
systematic methods of ensuring stability in the presence
of non-determinism are desired, which is motivation for
future work. Next, the following sections are devoted to
describing two potential methods of modifying the control
strategy to ensure the process state remains within the
stability region.

4. SAFETY OF NON-DETERMINISTIC CONTROL
OPERATION FOR CONTROLLERS IMPLEMENTED

ON QUANTUM COMPUTERS

In this section, we discuss methods of further modification
to the Grover’s algorithm chain in Fig. 2 to try to ensure
safe operation. Two methods are discussed.

4.1 Method 1: Developing a Quantum Gate to Prevent
Unsafe Control Actions

One idea for attempting to prevent the instability could
be an adjustment to the modified Grover’s algorithm
discussed in Section 2.3. This adjustment involves creating
an additional gate following one of the Grover’s algorithm
gates, as shown in Fig 4. In this case, say that the process
state |x⟩ supplied in the top qubits activates the Grover’s
gate G1, so the bottom qubits will most likely measure the
corresponding control input |u⟩ from the look-up table.
However, also assume that it is known that one of the
other control inputs would be dangerous to implement
from this value of |x⟩. Given the non-deterministic nature
of the algorithm, we would like some method to prevent
this control input from being selected. To accomplish
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this, an additional gate, K1, is created which will reduce
the likelihood of measuring the dangerous control action
to a sufficiently small probability while maintaining the
amplitude of the desired input. The K gate, like the
Grover’s algorithm blocks, is a controlled gate that is
designed to only activate if the Grover’s block directly
before it is activated. The method of finding this gate
involves solving a series of equations to get a matrix
representing K1.

Fig. 4. Circuit of the series of Grover’s blocks with a
gate, K1 preventing dangerous inputs from being
implemented after the G1 Grover’s algorithm block.

To demonstrate how specifically theK1 gate would operate
in Fig. 4, we simulate (on a classical computer) Grover’s
algorithm acting on a 3-qubit state, with a marked state of
|000⟩. The resulting qubit state is shown on the left in Eq. 8
and labeled |ϕa⟩. In this case, the probability of measuring
|000⟩ is 78.12% and the probability of measuring the other
seven quantum states is 3.13%.

|ϕa⟩ =



0.8839
0.1768
0.1768
0.1768
0.1768
0.1768
0.1768
0.1768


, |ϕb⟩ =



0.8889 + 0.0093i
(2.98− 1.08i)× 10−4

0.0430 + 0.0242i
0.1243− 0.0758i
0.3268− 0.0494i
0.0228− 0.1659i
0.1170 + 0.0864i
0.1632− 0.0337i


(8)

It is assumed that the qubit state associated with the
001 bit string (corresponding to the second entry in the
vector on the left in Eq. 8) is undesired. To develop a gate
K1 to remove the possibility of a measurement of |001⟩,
a MATLAB simulation was created. In the simulation,
the nonlinear optimization algorithm fmincon was used
to satisfy a series of equations (note that other methods
of solving for an appropriate K1 gate that meets the
requirements could also be used). The formulation of the
optimization is as follows:

min( |RE(b2)|+ |IM(b2)| ) (9a)

s.t. KK∗ = I (9b)

K∗K = I (9c)

K |ϕa⟩ = |ϕb⟩ (9d)

100 ∗ |b1|2 ≥ 100 ∗ 0.88392 − 0.02 (9e)

100 ∗ |b2|2 ≤ 0.00001 (9f)
8∑

i=1

|bi|2 = 1 (9g)

− 1 ≤ RE(kij) ≤ 1, i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8} (9h)

− 1 ≤ IM(kij) ≤ 1, i, j ∈ {1, 2, 3, 4, 5, 6, 7, 8} (9i)

− 1 ≤ RE(bm) ≤ 1, m ∈ {1, 2, 3, 4, 5, 6, 7, 8} (9j)

− 1 ≤ IM(bm) ≤ 1, m ∈ {1, 2, 3, 4, 5, 6, 7, 8} (9k)

where K = K1, K
∗ is the complex conjugate of the K

matrix, I is an identity matrix of the same size as K, the

final quantum state is |ϕb⟩ = [b1 b2 b3 b4 b5 b6 b7 b8]
T ,

b2 is the amplitude of the quantum state that we would
like to avoid measuring, RE(·) and IM(·) are the real and
imaginary components of a value (respectively), and kij is
the element of K in the ith row and jth column. The deci-
sion variables are the real and imaginary amplitudes of the
final state (b1, b2, ..., b8), and the real and imaginary values
of the elements in K (k11, k12, ..., k43, k44, k51, ..., k87, k88).
The objective function (Eq. 9a) minimizes the probability
of measuring the quantum state corresponding to the am-
plitude b2, which is represented as the sum of the absolute
value of the real and imaginary components. Eq. 9b and
Eq. 9c ensure that K is unitary (note that both equations
are necessary). Eq. 9d represents the requirement that
multiplying K and the initial state |ϕa⟩ should yield the
final state |ϕb⟩. Eq. 9e is to ensure that the probability of
measuring b1 remains at least as high as it was initially (a
probability of 100∗0.88392%), within 0.02%. Eq. 9f ensures
the probability of measuring the unsafe state after the
algorithm is at most 0.00001%. Eq. 9g represents the ne-
cessity that the final state is normalized. Finally, Eqs. 9h-
9k represent the bounds on the decision variables. Solving
this optimization problem involves 144 decision variables
which consist of the real and imaginary components of
each element in K and each amplitude in |ϕb⟩.
The MATLAB solution results in the final quantum state
given on the right in Eq. 8. Note that the solution for K is
likely not the only possible solution and may not necessar-
ily be optimal from fmincon (though the constraints are
satisfied). After applying K, the probability of measuring
the desired quantum state is 79.02% and the probability
of measuring the unsafe quantum state is 1.004× 10−5%.
In this case, we are assuming this probability is sufficiently
small. If the probability of measuring the unsafe state
turns out to be too high, Eq. 9f could be rewritten with a
smaller tolerance and the problem resolved.

There are significant drawbacks to this strategy. For exam-
ple, the K gate only works correctly for a specific start-
ing quantum state. This method works for the modified
Grover’s circuit because the quantum state entering each
K gate can be precisely known (either the state the output
from a Grover’s block or the K gate is not activated).
In general, the quantum state may not be known at a
given point within an algorithm and the quantum state
may differ depending on simulation parameters. Addition-
ally, finding the K gate involves solving an optimization
problem that scales poorly with problem size. In this case,
a system with only n = 3 qubits requires 144 decision
variables. Finally, the undesired control inputs must be
determined beforehand for each process state. Given the
large number of process states that exist, this may re-
quire significant computational resources and create an
impractically large quantum circuit. It may be difficult to
physically create a gate with such fine-tuned values and in
the presence of noise. Despite this, the presented strategy
for finding K gates offers a first step in the direction of
developing methods of modifying quantum algorithms for
ensuring safe operation of a controller.
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4.2 Method 2: Utilizing a Backup Stabilizing Classical
Controller

Alternatively, a classical back-up controller could be uti-
lized. The concept involves defining an inner region within
the stability region (i.e., the region of state-space where
the process is known to operate in an efficient and safe
manner), where the controller implemented on a quantum
computer will operate. If the process state leaves this
region, a backup stabilizing classical controller (e.g., Eq. 7)
could then be activated to ensure that the process state is
driven back inside the inner region. The inner region would
need to be carefully selected so that, if a state is initially
within the inner region, the state cannot leave the stability
region during one sampling period. This would ensure the
classical backup controller always has time to activate.
The advantage of this strategy is that it would allow us
to capitalize of any advantages of quantum computation
while the process state is in the inner region, while also
ensuring system stability. See Fig. 5 for a depiction of the
two regions. To accomplish this, the inner region could be
defined as:

ρ = max{V (x(t)) : x(tk) ∈ Ωρ′ ,∀ t = [tk, tk+1), u ∈ U}
(10)

where xtk and xtk+1
are the process states at the start and

end of a sampling period respectively, and U is the set
of all possible control inputs. The symbol Ωr represents
a level set of the scalar-valued Lyapunov function V (x),
where Ωr := {x ∈ Rn : V (x) ≤ r}. The inner inner
region is described when r = ρ′ and the stability region
when r = ρ. In words, the definition in Eq. 10 states
that the Lyapunov function value that defines the level
set V (x) = ρ is equal to the maximum possible Lyapunov
function value if the state is in Ωρ′ at the start of the
sampling period (considering all possible values of the state
at the start of the sampling period, time throughout the
sampling period, and control inputs). By defining Ωρ′ such
that Eq. 10 holds, the process state cannot leave Ωρ in one
sampling period when the state starts in Ωρ′ . This ensures
that a backup stabilizing controller would have time to
activate before the state ever leaves Ωρ.

Fig. 5. Depiction of the regions Ωρ and Ωρ′ for a system
with two process states.

5. CONCLUSION

Non-deterministic control operation may be possible if
a control algorithm is implemented on a quantum com-
puter. The amount of introduced randomness will impact
controller stability, depending on factors such as the pro-
cess dynamics and control design. This work presents two
methods for managing this randomness. The first involves
a modification to the Grover’s algorithm chain introduced

in Nieman et al. (2022), where gates are added that reduce
the probability of measuring undesired control inputs. The
second method involves defining an inner region Ωρ′ inside
of the overall stability region Ωρ. In this formulation,
the controller implemented on a quantum computer is
active while the process state inside Ωρ′ . If the process
state leaves Ωρ′ , a backup stabilizing classical controller is
activated to drive the process state back inside Ωρ′ .
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