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Abstract: Fault diagnosis is an essential field for the safe operation of chemical processes. In this
paper, a self-supervised fault diagnosis method employing a tree-based deep learning model is
proposed. The temporal information of multivariate time-series data is compressed with a Long
Short-Term Memory structure, and the proposed method is demonstrated by performing the
classification of fault types in the Tennessee Eastman process. It showed substantial performance
enhancement compared to supervised learning, leveraging the feature representation obtained
from unlabeled data. Notably, the tree-based characteristic of the proposed method provides
interpretability of model results, illuminating the salient features of each fault type.

Keywords: process monitoring, fault diagnosis, self-supervised learning, tree-based deep
learning, TabNet, interpretability

1. INTRODUCTION

There is no denying that safety should be a top prior-
ity when operating an industrial process. Especially in
chemical processes, there is a risk of irreversible damage
in the event of anomalies. Therefore, comprehensive re-
search into the categorization and causation of potential
faults becomes imperative for ensuring both the safety
and efficiency of process operations. This need becomes
the driving force behind the active research in the realm
of process monitoring and fault diagnostics over the past
several decades. In the early days of research, method-
ologies grounded in statistical models, such as Principal
Component Analysis (PCA) or PCA-based methods like
dynamic PCA and kernel PCA, were mainly developed.
Subsequently, with advancements in computational power,
data-driven machine learning techniques became widely
used in the field of fault diagnosis. Notably, Support Vector
Machine (SVM) has evolved into the most widely em-
ployed traditional machine learning technique, principally
designed for binary classification. Its application extends
to solving multiple classification challenges through strate-
gies like one-against-one (OAO) or one-against-all (OAA)
as used in Yuan and Chu (2006) and Jin et al. (2014).
In addition, the exploration of various SVM variants
and optimization techniques, including least-square SVM,
wavelet SVM, and ensemble SVM, ensued to mitigate the
limitations associated with OAO and OAA strategies while
enhancing overall performance as reviewed in Hsu and
Lin (2002). Furthermore, adaptations and enhancements
of the k-nearest neighbor technique have been explored
and applied to fault diagnosis problems. However, these
traditional machine learning techniques confront inherent
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limitations, notably the significant impact of a few critical
hyperparameters on performance. Moreover, they are con-
strained by their incapacity to effectively utilize the vast
amount of data available in contemporary times.

In recent years, the rapid advancement of deep learning
within the domains of Computer Vision (CV) and Natu-
ral Language Processing (NLP) has prompted its active
application into the realm of fault diagnosis. Jiang et al.
(2016) introduced an active learning strategy selecting
pivotal features with employing a stacked denoising auto-
encoder. Subsequently, Jiang et al. (2017) conducted semi-
supervised learning through the utilization of a stacked
sparse auto-encoder. Further contributions by Zhang and
Zhao (2017), Yu and Yan (2018), and Wang et al. (2020)
applied deep belief networks to extract salient features
characterized by abnormal fluctuations, thereby facilitat-
ing fault detection and diagnosis. Wu and Zhao (2018)
introduced a convolutional Neural Network (CNN)-based
deep CNN network, while Han et al. (2020) proposed
a recurrent Neural Network (RNN)-based architecture
to capture the intricate temporal correlations inherent
in time series process data. Xia et al. (2022) diagnosed
faults of centrifugal chillers by extreme learning machine
combined with kernel entropy component analysis. More
recently, attention-based models, which account for de-
pendencies within a sequence, have garnered substantial
interest, particularly for overcoming limitations associated
with RNN-based methodologies. These models have found
applicability in diverse domains, including NLP and CV
field. Li et al. (2019) incorporated the attention mechanism
within a deep CNN-based framework, thereby endowing
the model with the capability to discern informative seg-
ments within the data during fault diagnosis. Recently, the
field of self-supervised learning, which leverages unlabeled
data, has gained significant attention. Researchers increas-
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ingly use vast volumes of unlabeled data to pretrain models
such as BERT and imageNet. These pretrained models
are then applied to various tasks. Deep learning benefits
from this approach as it allows the use of pretrained
architectures in downstream applications, including self-
supervised learning or domain adaptation.

Nervertheless, these deep learning techniques have some
limitations. With the exception of a few cases utilizing im-
age data, the predominant format of process data remains
tabular. In this context, tree-based approaches such as
Extreme Gradient Boosting (XGBoost) or Light Gradient-
Boosting Machine (LightGBM) continue to exhibit no-
table efficacy, characterized by proficient performance with
small model sizes and rapid learning rates compared to
deep learning. By contrast, the current state-of-the-art
models dominating the field of deep learning usually pos-
sess several hundred million parameters. In addition, in
the case of fault diagnosis in chemical processes, it is not
only necessary to determine which fault has occurred, but
also to analyze which features are affected by the fault and
influential in the model’s decision-making. Deep learning,
in its intrinsic nature, lacks inherent interpretability and
necessitates the incorporation of supplementary explain-
able AI methodologies.

Therefore, there have been a number of studies to com-
bine the advantages of both tree-based learning and deep
learning. Humbird et al. (2018) attempted to represent a
decision tree as a Deep neural net (DNN) block, and Tanno
et al. (2019) proposed a DNN architecture by adaptively
growing from primitive blocks. Most recently, Arik and
Pfister (2021) proposed a structure called TabNet and it
showed proficient performance by combining the advan-
tages of tree-based methods and deep learning. However, a
critical limitation arises in its applicability to multivariate
time-series data, a prevalent format in the domain of
process data.

In this study, we perform self-supervised fault diagnosis
of chemical processes utilizing a tree-based deep learning
architecture, TabNet. Before the fault diagnosis process, a
Long Short-Term Memory (LSTM) structure is employed
to compress the temporal information of process data
and identify the effects of each variable on diagnosis
results, instead of simply flattening the data. The realm of
chemical processes is an ideal context for the application
of self-supervised learning that utilizes unlabeled data for
feature representation. A vast amount of process data
can be collected during continuous plant operations, but
it is much more labor-intensive and time-consuming to
identify fault labels for specific data. Therefore, leveraging
the benefits of obtaining feature representation from an
extensive amount of unlabeled data is essential for fault
diagnosis. The main contributions are summarized as
follows:

• Self-supervised fault diagnosis of chemical process
with multivariate time-series data is performed by
tree-based deep learning architecture, combining with
LSTM structure to compress the temporal informa-
tion of data.

• The proposed method is demonstrated using the Ten-
nessee Eastman process, a simulated industrial chem-
ical process, and shows enhanced diagnosis perfor-

mance compared to supervised learning, even with
a compact model size, by utilizing unlabeled data
widely available in the actual operation of the process.

• The tree-based characteristic of the proposed method
provides interpretability of specific data samples by
elucidating which features had a dominant impact on
the fault diagnosis results of the model.

2. METHOD

2.1 Time compressing with LSTM

Typical tree-based models, including TabNet, are designed
to handle tabular data that have only features without a
time axis. Therefore, we employed a LSTM architecture to
compress the temporal information of each variable within
the process data. In order to facilitate unsupervised learn-
ing with unlabeled data, an autoencoder (AE) structure
was implemented to perform the reconstruction task of
input data. To assess the extent of reconstruction, Mean
Squared Error (MSE) loss was employed for training.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

To compress the temporal information of each feature into
a scalar value, the latent space of the autoencoder was
set to one dimension, and then only the encoder part was
utilized in the subsequent fault diagnosis step.

2.2 TabNet architecture

TabNet is a tree-based deep learning architecture special-
ized for tabular data Arik and Pfister (2021). It performs
sequential multi-step processing through N decision steps
wherein ith step receives processed data from the (i− 1)th

step. Each step discerns relevant features for utilization
and then processes the data through DNN modules. Sub-
sequently, all processed data from each step is integrated
to yield the final output. A decision step has the structure
of an attentive transformer and a feature transformer.

A pivotal aspect of TabNet lies in its ability to learn masks
facilitating sparse feature selection. By retaining salient
features while excluding unimportant ones, the model’s
efficiency and compactness are enhanced. These masks in
eq. 2 are derived from an attentive transformer in each
step, which consists of a fully-connected (FC) layer, batch
normalization (BN) and sparsemax function.

M [i] = sparsemax(P [i− 1] · hi(a[i− 1])) (2)

Sparsemax normalization encourages sparsity by mapping
the Euclidean projection on the probabilistic simplex,
which is superior in performance and provides salient fea-
tures for explainability. hi of M [i] is a trainable function,
using a FC layer and BN, and a[i − 1] is the processed
features from the preceding step. P [i] is the prior scale
term, denoting how much a particular feature has been
used previously.

P [i] = Πi
j=1(γ −M [j]) (3)
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Fig. 1. Overall procedure of self-supervised learning for fault diagnosis of chemical process

P [i] is determined by excluding previously utilized masks
based on a relaxation parameter, γ. Consequently, when
γ equals 1, each feature is employed only once across all
decision steps, and with an increasing γ, a feature can be
utilized in multiple steps. Furthermore, to control the spar-
sity of the selected features, TabNet uses sparsity regular-
ization in the form of entropy and a sparsity regularization
term multiplied by a sparsity coefficient, λsparse, added to
the overall loss. The hyperparameter λsparse offers control
over the sparsity of feature selection.

The data, filtered by the mask obtained from the attentive
transformer, undergoes processing in the feature trans-
former. The feature transformer comprises several small
sets of layers consisting of a FC layer, BN, and a gated
linear unit (GLU). For parameter-efficient and robust
learning with high capacity, some sets of layers in a feature
transformer are shared across all decision steps, as well as
sets for decision step-dependent. The data processed by
the feature transformer is split for the decision step output,
d[i] and information for the subsequent step, a[i].

[d[i], a[i]] = fi(M [i] · f) (4)

The outputs from all steps are aggregated and passed
through a FC layer to generate the final output.

For unsupervised learning, a decoder is necessary to per-
form reconstruction task of the input data. Similar to the
encoder, the decoder comprises multiple decision steps,
each featuring a feature transformer and an FC layer.
The outputs from each step are summed to obtain recon-
structed features. The MSE loss between the reconstructed
features and the input of the encoder is backpropagated
to drive the learning process.

2.3 Overall procedure

The overall self-supervised fault diagnosis procedure is
shown in Fig. 1. Firstly, an LSTM autoencoder for com-
pressing the temporal information was trained using the
total process dataset without labels. Through the trained
encoder, multivariate time-series data were converted into
data containing only features. Converted training data
without labels were then utilized for training the TabNet
encoder and decoder to obtain the feature representation
of process data. The pretrained TabNet encoder possessed
optimized model parameters for describing the feature
representation, facilitating improved fault diagnosis per-
formance compared to using only a small portion of data
with labels. Eventually, for fine-tuning, only the pretrained
encoder was imported to conduct the classification task of
faults, leveraging trained parameter values as initial pa-
rameters. Additionally, the softmax function was applied
to the final output of the FC layer, serving as a classifier,
and the cross-entropy loss was used between the predicted
labels and the actual labels.

3. RESULTS

3.1 Process description

The chemical process selected for the application of the
proposed model is the Tennessee Eastman process (TEP).
The TEP is a simulated process based on a real chemical
process designed by Downs and Vogel (1993) for evaluating
process control techniques. Over time, TEP has become a
benchmark chemical process widely utilized in the domains
of process control and fault diagnosis. The TEP dataset is
acquired from Harvard Dataverse 1 .
1 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.
7910/DVN/6C3JR1
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Fig. 2. A process flowsheet for the TEP

A process flowsheet of the TEP is depicted in Fig. 2.
The TEP data has 11 manipulated variables and 41
measured variables, but the variables ‘compressor recycle
valve’ and ‘stripper steam valve’ are not changed in any
fault scenario. Consequently, a total of 50 variables were
employed, excluding these two manipulated variables. In
addition, the TEP is designed to introduce 15 faults with
discernible causes, but three specific faults (fault 3, 9, and
15) pose considerable diagnostic challenges due to slight
variation in the mean and variance of the variables in
comparison to the normal scenario. Therefore, we used
data from a total of 13 fault scenarios and normal scenario,
and the fault list is shown in Table. 1.

Table 1. Faults utilized in the TEP

Fault ID Description Type

IDV1 A/C Feed ratio Step

IDV2 B composition Step

IDV4 Reactor cooling water inlet temperature Step

IDV5 Condenser cooling water inlet temperature Step

IDV6 A feed loss Step

IDV7 C Header pressure loss Step

IDV8 A, B, C Feed composition Random variation

IDV10 C Feed temperature Random variation

IDV11 Reactor cooling water inlet temperature Random variation

IDV12 Condenser cooling water inlet temperature Random variation

IDV13 Reaction kinetics Slow drift

IDV14 Reactor cooling water valve Sticking

For training, 500 simulation data points were used for
all faults and normal scenarios, and 100 simulation data
points were used for testing. Each training simulation en-
capsulated 25 hours of operation, with variables measured
every 3 minutes, resulting in 500 time steps. The test
simulation extended over 48 hours, with a total of 960
time steps. For training, both the training and test data
were segmented into samples with 20 time steps and a
window size of 16. All data were utilized without labels
indicating the type of faults, and a certain proportion of
the training data was employed with labels in the latter
supervised fine-tuning step.

3.2 Experimental setup

The LSTM autoencoder for compressing the temporal
information had four LSTM layers in each encoder and
decoder. The batch size was set to 64, and the learning

rate was set to 0.001. For unsupervised pretraining, the
TabNet encoder and decoder included three decision steps
(Nsteps = 3). The feature transformer comprised two
shared blocks across decision steps (Nshared = 2) and two
step-dependent blocks (Nindependent = 2). The dimension
of the decision step output and information for the sub-
sequent step was set to 8 identically (Nd = 8, Na = 8).
During the reconstruction task, a certain percentage of
masking was arbitrarily applied to the encoder’s input,
and the masking ratio was set to 0.8 through case studies.
A relaxation parameter, γ, was set to 1.3, and a sparsity
parameter, λsparse, was fixed at 0.001. The batch size was
set to 1024 for fast learning, and the learning rate was set
to 0.02. For the fine-tuning phase, the learning rate was
initiated at 0.02 and scheduled to decrease at a rate of 0.9
every 10 epochs with the Adam optimizer.

3.3 Application

To assess the efficacy of different time compression meth-
ods, self-supervised fault diagnosis was conducted on the
temporally compressed data. The TabNet structure uti-
lized was the final model outlined in Section 3.2, with 10%
of labeled data. A comparative analysis was performed
between a two-layer LSTM autoencoder and a fully-
connected autoencoder. The fully-connected autoencoder,
featuring two layers with 64 and 16 nodes, exhibited the
lowest performance in fault diagnosis, as shown in Table 2.
In cases involving an LSTM autoencoder, slightly better
performance was observed with four layers, prompting the
adoption of a four-layer LSTM autoencoder.

Table 2. Comparison of various types of time
compression method

Linear 2 layer LSTM 4 layer LSTM

accuracy 43.13 70.48 76.17

Subsequently, we compared the fault diagnosis perfor-
mance across varying mask percentages with 10% labeled
data for the reconstruction task of the TabNet autoen-
coder, as shown in Table 3. Generally, excessively low
values can cause ineffective learning, while excessively high
values hinder the reconstruction task, thus impairing per-
formance. In this case study, the pretraining effect peaked
as the mask ratio increased, indicating that a stringent
training regimen leads to superior feature representation.

Table 3. Impact of the mask ratio on the
pretrain model

mask ratio 0.6 0.7 0.8

accuracy 73.89 74.87 76.17

After pretraining the TabNet encoder, the classification
task of fault diagnosis was conducted with labeled data.
To check the performance of self-supervised learning, we
compared it with the case of supervised learning utilizing
the same amount of labeled data without pretraining,
while increasing the amount of labeled data. According to
Fig. 3, self-supervised learning outperformed supervised
learning in all cases. It can be inferred that the feature
representation extracted from unlabeled data is beneficial
for the classification across different fault types. The per-
formance of both self-supervised learning and supervised
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Fig. 3. Performance according to the quantity of labeled
data in supervised and self-supervised learning

learning generally increased in proportion to the amount of
labeled data. The more labeled data we used, the smaller
the difference between the performance of self-supervised
learning and supervised learning. Therefore, the effective-
ness of pretraining using unlabeled data is maximized in
situations where labeled data is extremely scarce. Addi-
tionally, the tree-based model has an advantage in achiev-
ing good performance even with a relatively small model
size. The proposed self-supervised model utilized fewer
than 50k parameters instead of possessing heavy models
with several million parameters.

Table 4. Fault diagnosis results of supervised
and self-supervised learning

Fault ID supervised self-supervised

IDV1 85.00 86.71

IDV2 83.24 79.27

IDV4 23.63 26.61

IDV5 79.10 82.14

IDV6 86.29 99.27

IDV7 94.22 93.82

IDV8 95.29 96.49

IDV10 85.04 86.39

IDV11 58.16 69.12

IDV12 95.76 96.02

IDV13 93.63 93.12

IDV14 92.84 96.80

Table 4 shows the test accuracy for each fault in self-
supervised learning and supervised learning, utilizing 30%
labeled data. In most faults, self-supervised learning in-
dicated improved performance compared to supervised
learning. Fault 4 posed challenges for both learning meth-
ods, given its fault magnitude of 9% relative to the normal
scenario, representing one of the faults with the lowest
magnitude difference. Consequently, it is difficult to dis-
tinguish fault 4 from normal data when using a limited
amount of labeled data. Nevertheless, the use of unlabeled
data contributed to a slight increase in accuracy.

Fig. 4. Interpretability scores for each variable obtained
from the aggregation of masks of test samples

As mentioned in Section 2.2, the tree-based character-
istic of TabNet employs learnable masks, only utilizing
salient features while excluding unimportant ones. After
training, aggregation of all masks at each step provides
interpretability of the model outputs for individual test
samples. In this study, raw aggregation of all masks showed
biased outcomes, wherein some common remarkable fea-
tures existed across both normal scenarios and all types
of fault scenarios, regardless of the fault types. Therefore,
we subtracted the aggregation of masks of normal samples
from the aggregation of masks of each fault sample to iden-
tify features specialized for a specific fault type, regardless
of the characteristics of the process itself.

Fig. 4 shows the result, illustrating the influence of each
variable on the model results. For each fault type, the
score is the mean of all samples of the same faults and
then scaled between the maximum and minimum values
to compare with the score of other faults. In Fig. 4, white
parts can be thought of as salient features explaining the
model results, and black parts as meaningless features, on
the contrary. For example, the variable ‘xmv 10’ of ‘reactor
cooling water flow’ explains only Fault 11 and Fault
14, which represent the faults related to ‘reactor cooling
water inlet temperature’ and ‘reactor cooling water valve,’
respectively. This result demonstrates that these faults
are problems arising from reactor cooling water. Actually,
Fault 4 is another fault related to reactor cooling water,
but the model cannot illuminate any specific features along
with low diagnosis accuracy, as shown in Fig. 4. On the
other hand, the variable ‘xmv 7’ of ‘separator pot liquid
flow (stream 10)’ is highlighted in faults related to reactor
feed or reaction kinetics, such as Faults 2, 6, 8, and 13.
It indicates that the composition of the separator output
is the most prominently differentiating factor for these
fault types compared to the normal scenario. In chemical
processes, variables in the rear end of the process are
highly dependent on other variables in the front end, and
especially in the case of the TEP process which has a
recycling unit, it was difficult to identify the detailed root
cause of faults or derive one or two sparse features that
thoroughly represent each fault. Nonetheless, the tree-
based deep learning architecture implies the possibility
of a deep learning model with inherent interpretability of
model results.
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4. CONCLUSION

In this paper, a self-supervised fault diagnosis method
employing a tree-based deep learning architecture with
a time-compressing process is proposed. To identify the
influence of each feature on the model results, the temporal
information of multivariate time-series data is compressed
with an LSTM encoder. Subsequently, self-supervised
learning using the TabNet architecture is conducted with
only a limited amount of labeled data. The proposed
method is demonstrated on the simulated industrial TEP
dataset and exhibits outstanding performance compared
to supervised learning. A substantial enhancement in per-
formance is achieved through pretraining with unlabeled
data, and the effect is particularly pronounced when la-
beled data is scarce. Given the constant operation of chem-
ical processes, acquiring unlabeled raw data is straightfor-
ward, but the manual labeling of data to identify faults is a
labor-intensive task. Thus, the capacity to leverage abun-
dant unlabeled data for feature representation, not acces-
sible in supervised learning, is of particular significance.
Moreover, the tree-based approach offers interpretability
of model results by illuminating the salient features for
each fault type. By examining the masks of TabNet for
test samples, we can reason about the approximate issues
caused by the process faults. Possibilities for further re-
search may exist, focusing on identifying the definite root
cause of faults.
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