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Abstract: Lithium-ion batteries play a pivotal role in modern energy storage, offering high
power, specific energy, and volumetric density, thereby establishing themselves as an eco-
friendly alternative for diverse applications. As the demand for these batteries continues to
grow, a comprehensive understanding of their intricate mechanisms becomes imperative. This
study delves into the fundamental modeling of lithium-ion batteries, elucidating electrochemical
processes and addressing aging complexities. Empirical models for Lithium-ion batteries, such
as equivalent circuit models and open circuit voltage models, stand out for their real-time
applications. Though these data-driven models achieve high accuracy and require low effort,
their lack of explainability poses a limitation. Consequently, to comprehend the intricacies of
batteries, it is essential to analyze the plausible causality inherent in internal electrochemical
processes and aging effects, aspects challenging to capture in a simplified approach. This study,
with a particular emphasis on aging, systematically scrutinizes model parameters, fitting them
to experimental data, thereby unveiling subtle impacts on performance. The insights gained
enhance predictive capabilities and contribute to the formulation of strategies for mitigating
aging effects, ultimately extending the lifespan of lithium-ion batteries.
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1. INTRODUCTION

Lithium-ion batteries have emerged as a cornerstone in
modern energy storage systems, serving diverse appli-
cations including portable devices, electric vehicles and
renewable energy integration. Their high power, specific
energy, and volumetric energy density, combined with
compact sizing and low energy cost, position them as a
revolutionary and environmentally friendly alternative to
traditional internal combustion engines. As the demand
for safe and efficient utilization of these batteries increases,
a deeper understanding of their intricate mechanisms be-
comes imperative.

This study embarks on an exploration into the fundamen-
tal modeling of lithium-ion batteries, analyzing their dy-
namic electrochemical processes and addressing complex
behaviors associated with aging phenomena. Fundamental
modeling of lithium-ion batteries plays a pivotal role in
comprehending the underlying behaviors that occur during
their usage. By unraveling the intricate interplay of elec-
trochemical reactions, transport phenomena, and material
properties, researchers can get valuable insights persuing
enhanced battery performance, longevity, and safety.

There have been active research efforts to understand the
nature of lithium-ion batteries through modeling. They in-

clude equivalent circuit models(ECM) [Liaw et al. (2004)],
empirical open-circuit voltage(OCV) models like the Shep-
herd model [Shepherd (1965); Tremblay and Dessaint
(2009)] and the Nernst model [Verbrugge and Tate (2004)],
and data-driven models that employ machine learning
techniques [Wang et al. (2017)].

ECM regards the battery as an ideal power source con-
nected to a circuit equivalent to the internal impedance
and resistance, thereby managing computational demands
[Lai et al. (2018)]. Empirical OCV models are the simpli-
fied version of modeling. As this method efficiently simu-
lates voltage on a macroscopic scale, these OCV models
are widely applied in industrial fields that require faster,
near-real-time computation for control and optimization
purposes [Raszmann et al. (2017)]. Li et al. (2019), Bou-
joudar et al. (2019), and Nascimento et al. (2021) studied
data-driven approaches, using various deep-learning tech-
niques and experimental data to simulate battery systems.
Although these models show high accessibility and compu-
tational efficiency, they possess the disadvantage that they
fail to provide enough description of the actual internal
behavior of the battery during the charge and discharge
process.

In terms of this interpretability, the models developed
from fundamental principles exhibit much less limitations.
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Table 1. Governing equations used in Doyle-Fuller-Newman model

These models have diverse branches, such as Doyle-Fuller-
Newman(DFN) model [Doyle et al. (1993)], Full Homoge-
nized Model(FHM) [Arunachalam and Onori (2019)] and
Single Particle Model(SPM) [Haran et al. (1998), Richard-
son et al. (2020)]. The full-scale DFN model is computa-
tionally intensive, and SPM and FHM reduce the spatial
resolution to address this computational burden.

Lithium-ion batteries(LIBs), like other energy storage sys-
tems, undergo significant changes in performance char-
acteristics over operation history due to aging factors.
Therefore, this study mainly focuses on these changes,
systematically analyzing model parameters closely related
to the aging process of LIB based on the fundamental
model.

The fundamental model was fitted to experimental data
on a cycle-by-cycle basis, resulting in model parameter
values corresponding to each cycle data. This allows us
to investigate how the key parameters related to the
battery’s performance change over cycles. Then, each
parameter was appropriately fitted as a function of cycles.
By using parameters for the corresponding cycle numbers,
the model can be applied to the actual usage of batteries.
Insights obtained from this process could enhance the
prediction of battery behavior and also contribute to the
development of control strategies that alleviate the adverse
effects of aging, thereby effectively managing the health
and lifespan of LIBs.

The remainder of this paper is organized as follows: Section
2 will introduce the methods including the utilized dataset,
model, and algorithm structure. The results are presented
in Section 3. Finally, Section 4 wraps up the paper and
suggests some future works.

2. METHODS

2.1 Dataset

The dataset utilized in this study was the battery dataset
from the National Aeronautics and Space Administration’s

Prognostics Center of Excellence (NASA PCoE)[Saha and
Goebel (2007)].

Each battery in this dataset independently underwent
charge, discharge, and impedance measurement steps in
various experimental settings, such as diverse discharge
termination criteria and ambient temperature measure-
ments. Only the discharge data were utilized, and each
discharge cycle data consists of voltage, current, and tem-
perature. The utilized discharge data were obtained from
several constant current conditions, under the ambient
temperature of 24 ◦C, and their battery indices were 5,
6, 7, 18, 33, 34, and 36(B0005, ..., B00036). A total of
168 discharge cycles exist for B0005 data, and the voltage,
current, and temperature of each discharge cycle were
plotted in Fig. 1.

Fig. 1. Voltage, current, and temperature of each discharge
cycle (168 cycles in total) in NASA PCoE B0005 data.

2.2 Doyle-Fuller-Newman(DFN) Model

Among various models introduced in Section 1, we adopted
the DFN model in order to retain the physical explanation
as much as possible in this study.

DFN model assumes that the electrode is a porous struc-
ture and that the geometry of the electrode’s active mate-
rials are sphere. Fig. 2 presents a clear illustration of the
system. The transport of lithium ion, and the resulting
concentration and potential changes are fundamentally
modeled based on first principles calculations.
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Fig. 2. Simple illustration of Doyle-Fuller-Newman model
system. Active materials within the porous electrodes
are assumed to have a uniform spherical shape within
each electrode.

The governing equations consisting DFN model are listed
in Table 1, and the notations are summarized in Table 2.

In Table 1, Eqs. 1 and 2 explain the changes of lithium
concentration in the active material (solid phase) and elec-
trolyte (liquid phase), respectively. Similarly, Eqs. 3 and
4 describe how the potential distribution changes within
the active material and electrolyte. Eq. 5 is the Butler-
Volmer kinetics, Eq. 6 calculates the cell voltage, and Eq.
7 is a relation for the simplification of the solid phase ion
concentration. Assuming that the concentration inside the
spherical active material follows a parabolic distribution,
the radial dependence of the solid phase concentration can
be eliminated by defining separate variables for the surface
and bulk concentrations.

2.3 Temperature model

The temperature was calculated as a lumped parameter
for the cell, solving the differential equation described in
Eqs. (8) - (10).

Q̇conv = hAheat(Tamb − T ) (8)

Q̇gen = iapp(U − V )−Vole,bFasjnT
∂U

∂T
(9)

dT

dt
=

1

mCp
(Q̇conv + Q̇gen) (10)

2.4 Algorithm

We developed a model from the DFN implementation by
Khalik et al. (2021). The flow chart describing the scheme
is described in Fig. 3. Since electrochemical and trans-
port phenomena demonstrate the physical mechanism of
the batteries, physical properties like diffusion coefficients,
conductivities, and resistances were selected as key pa-
rameters to be analyzed. The list of all physical proper-
ties optimized is presented in Section 3.1. The parameter
identification was achieved by minimizing the 2-norm loss
between the experimental data and DFN model’s voltage
and temperature. The optimization was performed via
MATLAB, lsqnonlin function on a cycle-by-cycle basis.
The constraint was set on each physical property, based
on previous studies or around the literature values. More
specifically, the loss function described in Fig. 3 considers
both voltage and temperature for accurate prediction on

Notation Variable Name

Aheat Heat exchange area [m2]
Asurf Electrode area [m2]

as Specific surface area per unit volume (= 3ϵs
Rs

) [1/m]

Cp Heat capacity of the battery [J/K]
c Lithium-ion concentration [mol/m3]
c̄ Bulk Li concentration [mol/m3]

cmax Maximum Li concentration [mol/m3]
csurf Li conc. at solid-electrolyte interface [mol/m3]
D Diffusion coefficient [m2/s]
F Faraday constant [C/mol]
h Heat transfer coefficient[W/(m2· K)]
i0 Exchange current density [A/m2]

iapp Applied current [A]
jn Lithium flux [mol/(m2· s)]
k0 Kinetic constant
L Total thickness (= δn + δs + δp) [m]
m Mass of the battery [kg]
p Bruggeman exponent

Q̇conv Convection heat transfer rate [J/s]

Q̇gen Heat generation rate [J/s]
R Gas constant [J/(mol· K)]

Rfilm Film resistance [Ω ·m2]
Rf,n SEI resistance [Ω ·m2]
Rs Radius of the active material particle [m]
T Cell temperature [K]

Tamb Ambient temperature [K]
t0+ Transference number

U Open circuit voltage [V]
V Cell voltage [V]

Vole,b Electrode bulk volume [m3]
αa Anodic charge transfer coefficient
αc Cathodic charge transfer coefficient
δ Electrode thickness [m]
ϵ Volume fraction
η Overpotential [V]
κ Ionic conductivity [S/m]
ν Thermodynamic factor
σ Electrical conductivity [S/m]
ϕ Potential [V]

Subscript

s Active material (Solid phase) OR Separator
e Electrolyte (Liquid phase)
n Negative electrode
p Positive electrode

Table 2. Notations for the Doyle-Fuller-
Newman and temperature model

both features. To achieve effective fitting, min-max scal-
ing was applied separately on voltage and temperature,
to ensure their contribution to the loss function remains
comparable.

The design for the loss function was critical for both
enhancing the accuracy of the final optimization result and
ensuring that the optimization itself proceeds. Parameter
guesses that deviate significantly from the accurate value
may lead to the simulation to terminate prematurely due
to violations of physical boundaries. Forcing a 2-norm
calculation despite length differences results in NaN values.
To properly formulate the loss function, one option can
be to assign a constant high value for such prematurely
terminated cases. This will be appropriate for the initial
values near the true parameters.
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Fig. 3. The flowchart for finding parameters for the Doyle-
Fuller-Newman model. Simulations were conducted
by the DFN model(shaded region) with each param-
eter guesses, and 2-norm losses were minimized with
respect to parameters.

However, when the initial values are significantly distant
from the true values, there will be no loss gradient, as every
parameter guess results in premature termination. When
various experimental data are used for parameter evalu-
ation, it is difficult to provide accurate initial values for
every experiment, which involves understanding a system
with multiple coupled differential equations. Therefore,
zero padding for the prediction values after the termina-
tion was applied to generate loss gradients toward the true
property value.

The first three and last three cycles were picked as repre-
sentatives, and a simultaneous optimization was conducted
for the representative cycles of all batteries at 24◦C. The
resulting parameters of this simultaneous optimization
were utilized as initial values for optimizations of individ-
ual cycles. After this process, the effect of cycle number
on physical properties was investigated.

3. RESULTS AND DISCUSSION

3.1 Finding physical properties for independent cycles

Optimizations were conducted for each cycle of B0005 data
to obtain physical property parameters. The optimized
physical property parameters can be categorized into the
following five sections.

1) Stoichiometry of positive and negative electrodes at 0%
and 100% SoC (s0,p, s0,n, s100,p, s100,n),

2) Diffusion coefficients of positive and negative electrodes
and the electrolyte (Ds,p, Ds,n, De),

3) Positive and negative electrode conductivity as well as
ionic conductivity (σp, σn, κ)

4) Resistances related to SEI film formation in the negative
electrode and the current collector interface. Denoted as
one symbol Rfilm in Table 1. (Rf,n, Rcc)

5) Heat transfer coefficient and heat capacity, which are
related to temperature dynamics (h, Cp).

These properties were then re-applied to the DFN model
for validation. The Root Mean Square Error (RMSE)
was calculated for each cycle, yielding an average RMSE
of 0.0780 V and 0.4978 K for voltage and temperature,
respectively.

The experimental data and model output of the first cycle
are displayed in Fig. 4, while those of the 121st cycle are
shown in Fig. 5.

Fig. 4. The experimental data and model output for
the first discharge cycle of B0005. The calculated
RMSE values for voltage and temperature were 0.2603
and 1.3485, respectively. A relatively high loss value
compared to the later cycles is believed to stem from
the initial relaxation of the cell.

Fig. 5. The experimental data and model output for the
121st discharge cycle of B0005. The calculated RMSE
values for voltage and temperature were 0.0221 and
0.2501, respectively.

More specifically, for the early cycles, the experimental
data points and the simulation results were not very close,
but the accuracy improved towards the later cycles.

There are two possible reasons for this. First, the op-
timal property parameters for the early stages may lie
outside the minimum and maximum values assigned for
each physical property. In other words, the optimization
may have been blocked at the boundary. However, the
probability of this reason is somewhat low, since there
were few improvements even when the boundary limits
were loosened into barely physical regions. The second
reason can be the various initial cell relaxation phenomena
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with several time constants [Fuller et al. (1994); Peled and
Menkin (2017)]. The radical discharge behaviors can be
observed in the early cycles, therefore this radical behavior
can be the reason for the relatively large gap between the
experimental data and model output.

3.2 Analysis on parameter changes over cycles

Important changes in parameters were plotted and re-
gressed in Figure 6. Since the obtained properties did not
predict the voltage and temperature for early cycles accu-
rately, the properties after the 50th cycle were regarded as
meaningful and were plotted.

The overall trend observed for diffusion coefficients was a
decrease in exposure time for the charge and discharge
loads, as well as the conductivities. Resistance values,
namely Rf,n and Rcc, increased with each cycle. The de-
crease in the diffusion coefficient for the negative electrode
suggests that the solid electrolyte interface(SEI) impedes
the diffusion of lithium ions. Although the increase in the
diffusion coefficient of the positive electrode in the later
cycle could be attributed to surface stabilization and in-
creased overall temperature, additional analysis is required
to explore other possible causes. Similar behavior that
appeared in the electrolyte phase seems to be caused by
electrolyte decomposition resulting from repeated cycles
of charging and discharging[Kabir and Demirocak (2017)].
The overall decrease in conductivity can be traced to
changes in local electronic structure [Nagpure et al. (2011),
Kleiner et al. (2015)] and side reactions such as transition
metal loss from the positive electrode and development
of passivation layers. For resistances, there is an obvious
increase in Rf,n since it represents the SEI film resistance
at the negative electrode. Furthermore, the corrosion and
oxidation of the current collector can explain the increase
in Rcc. The observed increase in both resistance values,
which are the internal resistances of the battery, with
cycle number matches the tendency of heat generation to
increase with each cycle.

B0006 was chosen to evaluate the obtained parameter
fittings for the reliability of the unseen batteries. The ex-
perimental conditions for B0005 and B0006 were identical
except for the criteria for the discharge termination. The
criterion was at 2.7V battery voltage for B0005 and 2.5V
for B0006.

The model using parameters from B0005 data was sim-
ulated following the operation condition of the B0006
experiment. The results were compared with the experi-
mental data of B0006 and shown in Fig. 7. The RMSE
was calculated for each cycle, and the average was 0.2497 V
for voltage and 1.1925 K for temperature. A fundamental
model like DFN is highly interpretable since it has internal
calculations that one can analyze step by step, but its
physical property values either need to be gathered from
the literature or obtained through measurement. If this
separate experimental measurement for precise physical
properties is challenging, it could be feasible to obtain
physical properties through charge and discharge exper-
iments on representative cells. Subsequently, the model
can be applied using these properties when the battery
operates under comparable circumstances.

Fig. 6. The physical properties, input for DFN model, cal-
culated from the optimization. These physical proper-
ties went through the regression with respect to cycle
number.

Fig. 7. The experimental data and model output for
the 51st and 121st cycle of B0006. The regressed
parameters obtained from B0005 were used.

4. CONCLUSION

We tried to get a peek into the internal dynamics of a
LIB through the fundamental model. Without predefining
the function form for the physical property change with
respect to the cycle number, the physical properties for
the DFN model were obtained through independent cycle-
by-cycle optimization. Based on the observed trends, the
discharge profile of another battery, which can be inter-
preted as unseen data, was simulated.
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Further development of this parameter estimation process
could provide valuable insight into the phenomena occur-
ring within the battery, such as the SEI layer growing
too much, without requiring physical disassembly of the
battery. This can serve as additional information for bat-
tery replacement and also contribute to the design of more
reliable and efficient control strategies.

Various future works are under consideration. First, con-
ducting a thorough investigation of the initial relaxation
process and adding this aspect into the model would
enhance the performance for the early cycle. Next, in
this study, B0005 and B0006 were treated as independent
datasets that were comparable and used one of them for
parameter fitting and the other one as unseen data. The
conditions are indeed nearly identical in all aspects, in-
cluding ambient temperature, number of cycles completed,
and the load current value during constant current dis-
charge. However, there is a slight difference between the
datasets in terms of discharge-stopping criteria for each
cycle. Therefore, it will improve the performance to apply
the rainflow counting [Fioriti et al. (2023)] technique that
considers the depth of discharge instead of just cycle count.
Lastly, a performance rise can occur from conducting a
parameter study that holistically considers the impact of
other variables.
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