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Abstract: This paper revisits two parameter estimation techniques, based on the gradient-
descent (GD) and the least-square (LS) methods, to propose two novel estimators usable for
estimating kinetic parameters in reaction systems. Typically, the activation energies of reactions
appear in exponential terms of reaction rates, thereby resulting in non-separable nonlinearities
while making the available techniques possibly worse. In this work, an overparameterized linear
regression equation (LRE) is first derived, where reaction rates are computed from the vessel
extents of reactions. On the one hand, we apply the dynamic regressor extension and mixing
(DREM) procedure with a simple first-order differential operator to the LRE and then obtain the
first estimator, called GD+D estimator. On the other hand, we adopt the technique, developed
in Ortega et al. (2022), to design the second estimator, called LS+D estimator. Interestingly, the
proposed estimators can estimate simultaneously all kinetic parameters and their convergence
is ensured under the interval exciting condition that is more relaxed than the persistency of
excitation. Simulations for the Van de Vusse reaction system illustrate the proposed estimators.

Keywords: Vessel extent, least squares, gradient-descent estimator, system identification, linear
regression model.

1. INTRODUCTION

Non-isothermal chemical reactors that can be operated in
batch, semi-batch or continuous mode in a process plant
have a key role in producing high value products such
as polymers and fine chemicals. In fact, from the first-
principle modeling, a set of material and energy balance
equations that constitutes a full-order lumped-parameter
reactor model can be established to express the dynamics
of state variables (Bequette, 1998). It should be noted
that reaction rates are nonlinear functions of kinetic pa-
rameters, reactor temperature and molar concentrations
of species (Alonso and Szederkényi, 2016). Since kinetic
parameters are often determined from experiments, the
reactor, therefore, belongs to a class of nonlinear systems
having a large parameter uncertainty (Dochain, 2003). So
far the online estimation methods for these parameters
were intensively investigated in Dochain (1991, 2018),
where the estimators were designed via the dynamics of
reaction variants and invariants (Asbjørnsen, 1972). In
these studies, only kinetic constants of the reactions were
estimated, while their activation energies, appearing in

⋆ No funding was received for conducting this work.
⋄ Corresponding author.

exponential terms as described by the Arrhenius law, were
assumed to be known. It is because the reaction rates
are not separable, that is, they cannot be straightaway
factorized as a product of a function of measurable or com-
putable signals and the one of unknown parameters. As a
result, simultaneously estimating both kinetic constants
and activation energies is a challenging issue. To the best
of our knowledge, there is no existing method applicable
to it.

In this work, we shall first transform the original reactor
model to an alternative model expressed in terms of vessel
extents 1 by utilizing an one-to-one linear time-invariant
(LTI) transformation in Hoang et al. (2020) (see also
Rodrigues et al. (2015)). Within the transformed model,
the reaction rates can be computed from the vessel extents
of reactions. Then, the relationship between each reaction
rate and its unknown kinetic parameters is formulated into
an overparameterized linear regression equation (LRE)
using the natural logarithm operator. Unfortunately, it
will be shown later that the regressor in the LRE is not
persistently exciting (PE), thereby limiting the applica-

1 This concept can be considered as a generalized version of reaction
variants and invariants in Asbjørnsen (1972).
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bility of classical gradient method (Ortega et al., 2020b).
To circumvent this problem, on the one hand, the dy-
namic regressor extension and mixing (DREM) method,
first introduced in Aranovskiy et al. (2017) and latter
studied further in Ortega et al. (2020a); Korotina et al.
(2022), is applied to construct a new extended LRE by
using a simple first-order differential operator. From this,
the first estimator, based on the gradient-descent (GD)
technique, can be obtained. We shall, therefore, refer to
it as GD+D estimator. On the other hand, the new least-
square (LS) technique with time-varying forgetting factor,
first reported in Ortega et al. (2022), is adopted to the
overparameterized LRE that allows designing the second
estimator, called LS+D estimator. The construction of
the two proposed estimators for simultaneously estimating
kinetic constants and activation energies is the main con-
tribution of this work. Interestingly, the global asymptotic
convergence of estimation error towards zero is ensured
with a weaker excitation requirement, namely the interval
excitation (IE) (Kreisselmeier and Rietze-Augst, 1990).

The rest of this paper is organized as follows. Section 2
briefly presents the model of Van de Vusse reaction system
in a CSTR and its decoupled dynamics expressed in terms
of vessel extents. The main results are developed in Section
3, while simulations in Section 4 illustrate the proposed
estimators. Finally, the conclusion is given in Section 5.

Notation. Rn
≥0 is the set of n-dimensional vectors of non-

negative real elements. 0m×n and 0m symbolize an m× n
zero matrix and an m-dimensional zero column vector,
respectively. Also, Im is an identity matrix of dimension
m. For any matrix A, ∥A∥ ,det (A) and adj (A) denote
the Euclidean norm, the determinant and the adjugate (or
adjoint) of A, i.e. A adj (A) = det (A) I, respectively.

2. PRELIMINARIES

2.1 Vessel-extent-based reactor model

We consider here the Van de Vusse reaction system oc-
curring in a non-isothermal continuous stirred tank re-
actor (CSTR). The system involves S = 6 species and
R = 3 independent reactions. Its reaction stoichiometry is
expressed as follows (Nguyen et al., 2021) :

C5H6 (S1)
rv,1−−−−−−−−→

+H2O (S5)
C5H7OH (S2)

rv,2−−−−−−−−→
+H2O (S5)

C5H8(OH)2 (S3)

2C5H6 (S1)
rv,3−−−→ C10H12 (S4),

where H2SO4 as the 6th component (S6) is the catalyst
of the reaction network. Besides, the CSTR is operated
with p = 2 independent inlet streams and one outlet
stream, whose the mass flowrates are denoted by uin(t) =
[uin,1(t),uin,2(t)]T and uout(t). The following assumptions
are made throughout the paper (we refer the readers
to Nguyen et al. (2021); Bequette (1998) for a detailed
interpretation of these assumptions).

A1 The reacting mixture is homogeneous, incompressible
and ideal.

A2 The operation of the CSTR is under isobaric condi-
tions.

A3 The rate of heat flow between the jacket and the
reaction mixture is modeled by the constitutive heat-
transfer equation as follows :

qex(t) = λ(TJ(t)− T (t)), (1)

where λ is the heat exchange coefficient, TJ(t) and
T (t) are the jacket temperature and the reactor one,
respectively.

A4 The rate of the rth reaction, denoted by rv,r(t) with
r = 1, 2, 3, is a separable function of T (t) and the
S-dimensional vector of concentrations of species,
denoted by c(t). In other words, it can be factored
into the following form (Alonso and Szederkényi,
2016) :

rv,r
(
c(t), T (t)

)
= V (t) kr

(
T (t)

)
ψr

(
c(t)

)
, (2)

where V (t) is the time-dependent volume of the
mixture (assumed to be available via measurements)
and the function kr (T (t)) is given by the Arrhenius
equation as follows :

kr (T (t)) = k0,r exp

(
−Ea,r

RT (t)

)
, (3)

with k0,r the kinetic constant, Ea,r the activation en-
ergy and R the ideal gas constant, while the function
ψr (c(t)) obeys the mass-action law, i.e.

ψr(c(t)) =
∏
s

c|νrs|
s (t) (4)

with νrs being the (suitably signed) stoichiometric
coefficient of Species (i.e. Reactants) s in Reaction r.

Essentially, the mathematical model of the CSTR, includ-
ing mole balance and enthalpy balance equations, can be
written in a compact form using the (S + 1)-dimensional

vector z(t) =

[
n(t)
H(t)

]
as follows (Hoang et al., 2020) :

�
z(t) = A rv(t) +b qex(t) + C uin(t)−ω(t) z(t), z(0) = z0

(5)

with the constant matrices A =

[
NT

0

]
(S+1)×R

, b =

[
0S

1

]
,

C =

[
Win

ȟT
in

]
(S+1)×p

and z0 =

[
n0

H0

]
, where

• n(t) is the S-dimensional vector of molar numbers,
computed as n(t) = V (t) c(t),

• H(t) is the enthalpy of reacting mixture, given by
H(t) = hT(t)n(t) with h(t) being the vector of S
component molar enthalpies of the outlet stream,

• rv(t) = [rv,1(t) rv,2(t) rv,3(t)]
T
represents the vector

of R reaction rates,

• N =

[−1 1 0 0 −1 0
0 −1 1 0 −1 0
−2 0 0 1 0 0

]
is the stoichiometric matrix,

• Win is the S × p constant inlet-composition matrix,
• ȟT

in is the p-dimensional vector of inlet specific en-
thalpies,

• n0 and H0 are the initial conditions of n(t) and H(t),
respectively,

• ω(t) := uout(t)
m(t) > 0 is the dilution rate of the reaction

system with m(t) being the mass of reacting mixture.

In fact, Hoang et al. (2020) proved that if the conditions
of S ≥ R+ p+ 1 and rank ([A b C z0]) = R+ p+ 2 hold,
there exists a non-singular square matrix, defined as :

T := [A b C z0 P]
−1
, (6)
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with the matrix P(S+1)×q (with q := S − R − p −
1 ≥ 0) satisfying [A b C z0]

T
P = 0(R+p+2)×q. More

importantly, the constant matrix T implies an one-to-one
LTI transformation from z(t) to x(t), the space of vessel
extents, as recalled in the following lemma.

Lemma 1. (Hoang et al., 2020) The transformation from
z(t) to x(t) via T is expressed by :

x(t) := [xT
r (t) xex(t) xT

in(t) xic(t) xT
iv]

T
= T z(t), (7)

that brings the dynamic reactor model (5) to the following
decoupled form :

�
xr(t) = rv(t)− ω(t)xr(t), xr(0) = 0R, (8a)
�
xex(t) = qex(t)− ω(t) xex(t), xex(0) = 1, (8b)
�
xin(t) = uin(t)− ω(t)xin(t), xin(0) = 0p, (8c)
�
xic(t) = −ω(t) xic(t), xic(0) = 1, (8d)

xiv = 0q, (8e)

where xr(t) ∈ RR
≥0 and xin(t) ∈ Rp

≥0 correspond to the
vector of vessel extents of reactions and inlet flows at
time t, while xex(t) ∈ R and xic(t) ∈ R≥0 represent
the vessel extent of heat exchange and the dimensionless
vessel extent of initial conditions at time t, respectively.
Additionally, xiv is the remaining invariant part with the
dimension of q. Furthermore, from x(t), the original state
vector z(t) can be reconstructed as follows :

z(t) = Axr(t) + b xex(t) + C xin(t) + z0 xic(t). (9)

Remark 1. The dynamics of xic(t) (8d) is exponentially
stabilized at zero due to ω(t) > 0, and the invariant part
xiv (8e) is identical to 0q.

Remark 2. Without the knowledge of the kinetic param-
eters, the vector of reaction rates rv(t) can be calculated
from the partial measurements of R − 1 mole numbers
and the reactor temperature T (t) via an extent-based
procedure as proposed in Nguyen et al. (2021). On this
basis, rv(t) can be considered as a computable signal to
estimate all unknown kinetic parameters.

2.2 Problem formulation

In this work, the kinetic parameters of reactions, i.e. k0,r
and Ea,r with r = 1, 2, 3, are considered to be unknown.
And, we are interested in simultaneously estimating them.
The following lemma gives a set of overparameterized
LREs that shows the relationship between these unknown
parameters and the computable signals.

Lemma 2. Under Assumption A4, the reaction system (5)
satisfies the following LREs :

yr(t) = ϕϕϕT(t)θθθr, r = 1, 2, 3 (10)

where yr(t) := ln

(
rv,r(t)

V (t)ψr(t)

)
is a computable signal,

ϕϕϕT(t) = [ϕ1 ϕ2(t)]
T
:=

[
1

−1

T (t)

]
is a regressor and θθθr =

[θr,1 θr,2]
T

:=

[
ln (k0,r)

Ea,r

R

]T

is an unknown constant

vector of the rth reaction. Moreover, the regressor ϕϕϕ(t) is
not persistently exciting (PE), that is, there is no positive
constant tr and δr such that the inequality :∫ t+tr

t

ϕϕϕ(τ)ϕϕϕT(τ)dτ ≥ δr I2, (11)

holds for all t ≥ 0.

Proof. It can be clearly seen from (2) that the function
kr (T (t)) can be expressed as follows :

kr (T (t)) =
rv,r(t)

V (t)ψr(t)
. (12)

Then, by substituting (3) into (12) and applying the
natural logarithm operator to its both sides, one obtains :

ln

(
rv,r(t)

V (t)ψr(t)

)
= ln (kr,0)−

1

T (t)

Ea,r

R
, (13)

which can be subsequently written into the form of (10).

Moreover, let T be the steady-state value of T (t) when the
time t goes to infinity, i.e. lim

t→∞
T (t) = T , the regressor ϕϕϕ(t)

then fulfills the following equality :

lim
t→∞

(ϕϕϕ(t)ϕϕϕT(t)) = lim
t→∞

 1
−1

T (t)
−1

T (t)

1

T 2(t)

 =

 1
−1

T−1

T

1

T
2

 .
(14)

Hence, one can see that

lim
t→∞

∫ t+tr

t

ϕϕϕ(τ)ϕϕϕT(τ)dτ − δr I2 =

tr − δr
−tr
T−tr

T

tr

T
2 − δr

 ,
(15)

whose right-hand side is positive semi-definite if and only
if the following conditions regarding all (leading and non-
leading) principal minors :

tr − δr ≥ 0, (16a)

(tr − δr)

(
tr

T
2 − δr

)
− t2r

T
2 ≥ 0, (16b)

tr

T
2 − δr ≥ 0, (16c)

are met for some tr, δr > 0 (Shores, 2007). Nonetheless,
it can be verified that they contradict each other, thereby
leading to the non-existence of any tr, δr > 0 to fulfill the
inequality (11) for t being sufficiently large. As a result,
the regressor ϕϕϕ(t) is not PE (Ortega et al., 2020b). The
latter concludes the proof. 2

Remark 3. For the case when one of kinetic parameters of
reactions, i.e. either k0,r or Ea,r, is assumed to be known,
a set of (standard, that is, the number of equations equals
the one of unknowns) LREs can be obtained, which has the
same form as given in (10). In this case, the regressor ϕ(t)
is PE, hence the simplified parameter estimation problem
is straightforward (even trivial).

Essentially, Wang et al. (2023) proved that the LRE (10)
is identifiable 2 that allows solving the kinetic estimation
problem, if the regressor ϕϕϕ(t) is interval exciting (IE),
which is a necessary condition strictly weaker than PE one.
Therefore, we shall impose it in the following assumption.

A5 The bounded regressor ϕϕϕ(t) is IE, that is, there exists
a positive scalar δr and a time instant tr such that
the following integral inequality :

2 From the mathematical viewpoint, this term means there exists
two different constants t1 and t2 such that rank ([ϕϕϕ(t1) |ϕϕϕ(t2)]) = 2.
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∫ tr

0

ϕϕϕ(τ)ϕϕϕT(τ)dτ ≥ δr I2 (17)

is satisfied (Kreisselmeier and Rietze-Augst, 1990).

3. MAIN RESULTS

3.1 The construction of GD+D estimator

In this subsection, the first step to estimate the vectors
of unknown parameters θθθr with r = 1, 2, 3 is to apply
the DREM procedure to the LRE (10) to generate a new
scalar LRE. Then, a GD+D estimator can be constructed
as represented in the following proposition.

Proposition 1. Let consider the LRE (10) with ϕϕϕ(t) ver-
ifying Assumption A5, and define the vector Yr(t) :=[

yr(t)
yf,r1(t)

]
and the matrix ΦΦΦT

r (t) :=

[
ϕ1 ϕ2(t)

ϕf,r1(t) ϕf,r2(t)

]
,

where the signals of yf,r1(t), ϕf,r1(t) and ϕf,r2(t) are
generated by the following differential equations :

�
yf,r1(t) =− br yf,r1(t) + ar yr(t), yf,r1(0) = 0, (18a)
�
ϕf,r1(t) =− br ϕf,r1(t) + ar ϕ1, ϕf,r1(0) = 0, (18b)
�
ϕf,r2(t) =− br ϕf,r2(t) + ar ϕ2(t), ϕf,r2(0) = 0, (18c)

with ar ̸= 0 and br ≥ 0 being tuning parameters. Then,
the following claims hold

(i) an extended set of two LREs is expressed as follows :

Yr(t) = ΦΦΦT

r (t)θθθr, (19)

(ii) the GD+D estimator :
�

θ̂θθr(t) = Γr ∆r(t)
[
Yr(t)−∆r(t) θ̂θθr(t)

]
, θ̂θθr(0) = θ̂θθr,0,

(20)
with Yr(t) := adj (ΦΦΦT

r (t))Yr(t) and ∆r(t) :=
det (ΦΦΦT

r (t)), where Γr > 0 is a gain matrix, ensures

that lim
t→∞

θ̂θθr(t) = θθθr, if ∆r(t) is not square-integrable

over R≥0, i.e.
∫ +∞
0

|∆2
r(τ)|dτ = +∞ or ∆r(t) /∈ L2

over R≥0.

Proof. To prove the claim (i), the first-order differential
operator Hr(p), given by :

Hr(p) =
ar

p+ br
, (21)

with p :=
d

dt
, is applied to both sides of the LRE (10),

which yields the following LRE :

yf,r1(t) = ϕϕϕT

f,r(t)θθθr, (22)

with ϕϕϕT

f,r(t) := [ϕf,r1(t) ϕf,r2(t)], where yf,r1(t), ϕf,r1(t)

and ϕf,r2(t) are generated from (18a), (18b) and (18c),
respectively. Writing the equations (10) and (22) into a
compact form then yields a system of two LREs as (19).

Furthermore, we have the following equation :

Yr(t) = ∆r(t)θθθr, (23)

by premultiplying from the left both sides of (19) by
adj (ΦΦΦT

r ) and noting that ∆r(t) I2 = adj (ΦΦΦT
r ) ΦΦΦ

T
r . Sub-

stituting Yr(t) from (23) into (20) subsequently leads to

the dynamics of estimation error: θ̃θθr(t) := θ̂θθr(t) − θθθr, as
follows :

�

θ̃θθr(t) = −Γr ∆
2
r(t) θ̃θθr(t), (24)

which can be solved analytically by :

θ̃θθr(t) = θ̃θθr(0) exp

(
−Γr

∫ t

0

∆2
r(τ)dτ

)
. (25)

Consequently, if the condition of ∆r(t) /∈ L2 over R≥0

holds, the global asymptotic convergence of θ̂θθr(t) to θθθr,

i.e. lim
t→∞

θ̃θθr(t) = 02, is ensured, thereby proving the claim

(ii). The latter concludes the proof 2

Remark 4. Instead of the operator Hr(p) (21), a general
single-input single-output operator, introduced in Ortega
et al. (2020a), can be utilized to generate a scalar LRE hav-
ing the same form as (22) with more degrees of freedom.
But, it certainly requires more computational demands.

3.2 The construction of LS+D estimator

In this subsection, we shall present the second estimator,
called LS+D estimator, to solve the estimation problem
for the LRE (10). It is designed by interlacing the LS
algorithm with time-varying forgetting factor and the
DREM procedure as given in the following proposition. It
should be noted that the estimation method was originally
published in Ortega et al. (2022).

Proposition 2. Let consider the LRE (10) with ϕϕϕ(t) veri-
fying Assumption A5. The LS+D estimator can be then
constructed as follows :

�
η̂ηηr(t) = αr F(t)ϕϕϕ(t) (yr(t)−ϕϕϕT(t) η̂ηηr(t)) , η̂ηηr(0) = η̂ηηr,0

(26a)
�
F(t) = − αr F(t)ϕϕϕ(t)ϕϕϕ

T(t)F(t) + βr(t)F(t),

F(0) =
1

f0
I2, (26b)

�

θ̂θθ′r(t) = Γr∆r

(
Yr(t)−∆r θ̂θθ′r(t)

)
, θ̂θθ′r(0) = θ̂θθ′r,0, (26c)

�
zr(t) = βr(t) zr(t), zr(0) = 1, (26d)

with the definition of :

βr(t) :=βr,0

(
1− ||F(t)||

M

)
, (27a)

∆r(t) :=det (I2 − zr(t)f0 F(t)) , (27b)

Yr(t) := adj (I2 − zr(t)f0 F(t))
(
η̂ηηr(t)− zr(t)f0 F(t) η̂ηηr,0

)
,

(27c)

with r = 1, 2, 3, where αr > 0, βr,0 > 0, f0 > 0,M ≥ 1

f0
are tuning parameters, and Γr > 0 is an adaption gain
matrix. Then, the proposed estimator guarantees that

lim
t→∞

θ̂θθ′r(t) = θθθr with all signals bounded.

Proof. From the LRE (10), a set of two extended LREs
can be constructed as follows :

Yr(t) = Θr(t)θθθr, (28)

where Yr(t) and Θr(t) are expressed by the following
differential equations :

�
Y r(t) + αr F(t)ϕϕϕ(t)ϕϕϕ

T(t)Yr(t) = αr F(t)ϕϕϕ(t) yr(t),
(29a)

�
Θr(t) + αr F(t)ϕϕϕ(t)ϕϕϕ

T(t)Θr(t) = αr F(t)ϕϕϕ(t)ϕϕϕ
T(t),
(29b)
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with Yr(0) = 02 and Θr(0) = 02×2. It was shown in Ortega
et al. (2022, Proposition 3) that their analytical solutions
are given by :

Yr(t) := η̂ηηr(t)− zr(t) f0 F(t) η̂ηηr,0, (30a)

Θr(t) := I2 − zr(t) f0 F(t). (30b)

From this, by premultiplying from the left both sides of
(28) by adj (Θr(t)), we obtain a new LRE as follows :

Yr(t) = ∆r(t)θθθr, (31)

with ∆r(t) and Yr(t) defined from (27b) and (27c), respec-
tively, that allows designing the estimator (26c). Noting
that its stability analysis can be found in Ortega et al.
(2022, Proposition 1). The latter concludes the proof. 2

Remark 5. In this work, the design of the LS-D estimator
is different as compared to Pyrkin et al. (2023) since kinetic
constants, i.e. k0,r, are not assumed to be known. Also,
instead of employing the dynamics of chemical invariants,
the extent-based reactor model (8) is exploited here to con-
struct the LRE (10) usable for simultaneously estimating
all kinetic parameters, i.e. k0,r and Ea,r.

4. SIMULATIONS

In this section, the CSTR is initiated at T0 = 388 (K)
and n0 = [1.4 1.6 11 0.4242 447 5.102]

T
(kmol) under the

operation of TJ = 370.8 (K) and uin = [12 24]
T
(kg/h).

Also, the reactor is operated such that the total mass
of reacting mixture is kept unchanged at m = 10 (kg),
leading to the constraint: uin,1 +uin,2 = uout = 36 (kg/h).
Besides, the coefficient λ = 866880(W/K) and the matrix

WT

in =

0.3

66
0 0 0

0.7

18
0

0 0 0 0
0.925

18

0.075

98

 (kmol/kg),

are chosen; and the vector ȟin = [−10269 −14890]
T
(kJ/kg)

is obtained with Tin,1 = Tin,2 = 403.3 (K).

4.1 The GD+D estimator

To implement the GD+D estimator in Proposition 1, the
tuning parameters and the gain matrix are selected as
follows: ar = 2000, br = 0.01 and Γr = γaI2 with
r = 1, 2, 3, where γa > 0 is a parameter to adjust Γr, i.e. to
ensure that Γr ∆r(t) is large enough during the operation.

From this, the convergence of θ̂θθr(t) to its exact value can be
achieved. Also, initial values of the estimator are taken as

θ̂θθ1,0 = [10 4000]
T
, θ̂θθ2,0 = [5 3000]

T
, and θ̂θθ3,0 = [12 2000]

T
.

As represented in Figure 1, all the vectors θ̂θθr(t) =[
θ̂r,1(t) θ̂r,2(t)

]T
with r = 1, 2, 3 asymptotically approach

their respective exact values without oscillation due to the
monotonic non-increase of estimation errors. On this basis,
the kinetic constants and the activation energies of three
reactions are simultaneously calculated. In addition, as γa
increases, the rising time of the transient responses dimin-
ishes. Hence, the increase in γa can accelerate arbitrarily
the convergence rate of the GD+D estimator.

4.2 The LS+D estimator

The LS+D estimator in Proposition 2 is implemented with
the tuning parameters: αr = 30, βr,0 = 250, f0 = 0.1 and

M = 10.5, and Γr = γb I2 with r = 1, 2, 3, where γb > is a
parameter for modifying Γr, i.e. to guarantee that Γr∆r(t)
is sufficiently large. From this, the convergence of the
estimator is ensured. Moreover, the estimator is initiated

at η̂ηη1,0 = η̂ηη2,0 = [27 9750]
T
, η̂ηη3,0 = [20 8500]

T
, θ̂θθ′1,0 =

[10 4000]
T
, θ̂θθ′2,0 = [5 3000]

T
, and θ̂θθ′3,0 = [12 2000]

T
.

Figure 2 shows the global asymptotic convergence of

θ̂θθ′r(t) =
[
θ̂′r,1(t) θ̂′r,2(t)

]T
with r = 1, 2, 3 towards their

respective true values under the LS+D estimator. From
this, all the kinetic parameters of three reactions can be

estimated simultaneously from θ̂θθ′r(t). Moreover, it can be
seen that by increasing γb, we can decrease the rising time

of θ̂θθ′r(t) that is instrumental in enhancing the transient
performance of the proposed estimator.

Note that the convergence time of estimated values under
the GD+D estimator (20) is faster than the LS+D estima-
tor (26c). However, the latter estimator seems to be more
robust in the presence of noise (Slotine and Li, 1991). This
feature is currently under consideration.

5. CONCLUSION

This paper has proposed two different solutions to estimate
kinetic constants and activation energies of a reaction
system simultaneously. The first one, called the GD+D es-
timator, is developed by combining the DREM procedure
with a simple first-order differential operator and the GD
technique. The second one is the LS+D estimator that is
designed from the LS technique with time-varying forget-
ting factor, derived in Ortega et al. (2022). It is important
to note that the convergence of these two estimators is
guaranteed with the IE condition, which is strictly weaker
than the PE one. Simulations of the Van de Vusse reac-
tion system illustrate their effectiveness. In addition to a
comparative analysis of the two proposed estimators, an
extension of the obtained results to heterogeneous reactors
and their combination with controllers to design adaptive
control systems will be part of our future work.
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