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Abstract: This work highlights the importance of dehydration in natural gas production, especially in 

offshore units, and tackles the challenges associated with adsorption processes. The main contribution is 

implementing digital solutions to monitor a Brazilian operational offshore natural gas dehydration unit. 

Bayesian inference and robust regression are utilized to determine the Remaining Useful Life (RUL) of the 

adsorbent in fixed beds. Furthermore, a mass balance in fixed beds provides valuable process insights, such 

as the adsorbed volume of water, a crucial variable for assessing the fixed bed's performance. Bayesian 

inference and the logistic function yielded the most accurate predictions for the end of the fixed bed's useful 

life. The proposed methodologies have been successfully integrated into a real-time monitoring dashboard 

at a Brazilian oil and gas plant. 
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1. INTRODUCTION 

Natural gas has gained significant attention as a clean 

and efficient fossil energy source, leading to a surge in 

demand (Daniel and Kemp, 1998; John, 2003). 

Dehydration, a crucial step in natural gas production, 

removes water vapor from the gas, preventing 

corrosion and hydrate formation in pipelines 

(Mokhatab et al., 2006; Santos et al., 2017). This 

process is essential for subsequent operations like 

Natural Gas Liquids (NGL) extraction and Liquefied 

Natural Gas (LNG) production (Aleghafouri and 

Davoudi, 2018). 

Adsorption beds are commonly used in refineries and 

petrochemical plants to ensure the desired water 

humidity specificity (Terrigeol and Trifilieff, 2015). 

Several studies have explored methods to optimize and 

extend the lifetime of adsorption beds in natural gas 

dehydration processes. Aleghafouri and Davoudi 

(2018) modeled a Pressure-Temperature Swing 

Adsorption (PTSA) process in a two-layer commercial 

adsorption system. Dalane et al. (2019) evaluated a 

membrane contactor with triethylene glycol (TEG) for 

natural gas dehydration and regeneration. Marco et al. 

(2019) assessed techniques to estimate the number of 

remaining useful cycles (NRC) of fixed beds, and 

Terrigeol (2012), and Terrigeol and Trifilieff (2015) 

identified factors that shorten the adsorbent lifetime. 

Therefore, optimizing adsorption and regeneration 

times is crucial for maximizing bed lifetime, as 

premature or delayed completion of these steps can 

reduce the bed's lifetime. 

To address the issue of premature adsorbent failure in 

natural gas dehydration units, this work proposes 

digital monitoring solutions for an offshore unit 

located on the Brazilian coast. The goal is to determine 

the RUL of the adsorbent in the fixed bed where 

dehydration occurs, thereby enabling timely 

maintenance and cost optimization. Due to limited 

failure data for critical equipment, degradation 

advancement analysis is employed, which involves 

monitoring variables responsible for system 

deterioration (Nikulin et al., 2010; Tang et al., 2014). 

Two methods are used for RUL estimation: Bayesian 

inference approach proposed by Wang et al. (2018) 

and a robust regression method with automatic 

parameter update algorithm proposed in this paper in 

a simplified manner. The motivation for comparing 

these methods lies in the fact that one is more complex 

and probabilistic (Bayesian inference), while the other 

is more intuitive and simpler (robust regression). This 

work also presents a mass balance for the fixed beds 

in natural gas dehydration units, providing valuable 

insights into the process that are not readily available 

from current instrumentation. One of the key variables 

obtained from this mass balance is the adsorbed 

volume at breakthrough, which is crucial for 

evaluating unit performance and determining the RUL 

of the fixed bed.  
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The proposed digital solutions, integrated within a 

real-time monitoring dashboard, assist in identifying 

the depletion point of adsorption beds. This enables 

predictive maintenance, thereby minimizing costs, 

environmental and operating risks, and production 

losses resulting from unforeseen shutdowns. 

This paper is organized as follows: Section 2 

introduces the dehydration unit. In Section 3, the 

methodology based on mass balance is presented. 

Section 4 introduces the methodologies for predicting 

RUL. Section 5 presents the results, and conclusions 

are provided in Section 6. 

2. ACTUAL OFFSHORE DEHYDRATION UNIT 

2.1 Temperature Swing Adsorption (TSA) Process 

The Natural Gas Dehydration Unit studied in this work 

was presented by Marco et al. (2019). In natural gas 

production, the undesirable presence of water is a 

problem because it can cause corrosion and lead to the 

formation of hydrates, which can obstruct well 

pipelines. The TSA method with adsorption using 

molecular sieves is employed to remove water from 

natural gas due to the need to achieve low water 

concentrations. 

Adsorption dehydration involves altering the 

adsorption equilibrium conditions to desorb molecules 

and regenerate the adsorbent. This regeneration step is 

essential and requires high temperatures. Multiple 

parallel adsorption beds maintain high flow rates 

(Terrigeol, 2012). The TSA method, widely used for 

mixture separation, involves adsorption at room 

temperature followed by regeneration at high 

temperatures, resulting in a longer cycle than Pressure 

Swing Adsorption (PSA) (Fonseca, 2011). 

The TSA process consists of at least two fixed beds 

operating in parallel in cycles. One bed adsorbs at 

room temperature, while the other regenerates at high 

temperatures (Nastaj and Ambrozek, 2015). The 

optimal timing of adsorption and regeneration steps is 

crucial for maximizing bed lifetime. Premature or 

delayed completion of these steps can shorten the bed's 

lifetime. 

The TSA method is recommended for strongly 

adsorbed components, while PSA is more suitable for 

weakly adsorbed components and products requiring 

high purity, such as hydrogen purification (Fonseca, 

2011; Santos et al., 2017). 

The TSA unit used in this work consists of three fixed 

beds, each undergoing adsorption and regeneration. At 

any given time, two beds are in adsorption while one 

is in regeneration, so the adsorption-regeneration cycle 

time needs to consider this switching. 

2.2 Contaminants that affect the lifetime of molecular 

sieves 

Adsorption beds in natural gas dehydration processes 

can experience several operational issues that reduce 

their performance and molecular sieve lifetime. Liquid 

contaminants like water and impurities cause these 

issues in the feed gas. Contaminants affect the 

adsorption process through adsorption competition, 

structure degradation, partial bed blockage, and side 

reactions like carbonyl sulfide (COS) formation 

(Terrigeol, 2012; Terrigeol and Trifilieff, 2015). 

Some dehydration units operate with a fixed cycle 

time, while others use breakthrough conditions, 

meaning the adsorption step ends when impurities are 

detected in the outlet stream. In the latter case, the 

cycle time gradually decreases until the bed's lifetime 

ends due to adsorbent property loss from fouling and 

degradation (Terrigeol, 2012). 

A well-designed molecular sieve can maintain the 

required adsorption capacity throughout its lifetime. 

However, contaminants affect the bed's lifetime, 

causing premature breakthroughs and a rapid increase 

in pressure drop. This significantly impacts the natural 

gas dehydration process and implies an earlier 

adsorbent replacement (Terrigeol and Trifilieff, 2015). 

A premature breakthrough occurs when the adsorbent 

fails to meet the specified water concentration before 

the projected adsorption step's end. Reasons for 

premature breakthrough include coking, adsorbent 

degradation, and preferential paths. Preferential paths 

can reduce total capacity due to "dead volumes" and 

lead to improper regeneration, causing residual water 

in the bed (Terrigeol, 2012; Terrigeol and Trifilieff, 

2015). 

Pressure drops in natural gas dehydration typically 

range from 0.2 to 0.5 bar at the start of the bed's 

lifetime. The pressure drop gradually increases with 

cycles due to fouling from hydrocarbon deposits and 

light dust from thermal stress and friction. An 

accelerated pressure drop can occur in severe cases 

with coking, liquid reflux, and heavy dust 

accumulation, potentially leading to preferential paths 

and flow restriction (Terrigeol and Trifilieff, 2015). 

Adsorbent lifetime is affected by regeneration, as 

inadequate regeneration, such as too fast heating, can 

cause liquid water reflux, while excessively long 

regeneration can cause thermal stress on the molecular 

sieve (Terrigeol, 2012; Terrigeol and Trifilieff, 2015). 

The decrease in cycle time, as the fixed bed degrades, 

affects the amount of water adsorbed by the column; 

therefore, the adsorbed volume by the adsorbent in the 

adsorption step when breakthrough occurs is used to 

evaluate the dehydration unit's performance. 
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3. MASS BALANCE 

This Section presents a methodology based on mass 

balance to estimate the adsorbed volume by the 

molecular sieve until the breakthrough instant. It is 

used to monitor the dehydration unit's performance. 

An algorithm was developed in this paper to perform 

a mass balance, focusing on humidity accumulation 

within the fixed beds. The algorithm operates through 

two main sections: adsorption and desorption. Each 

Section calculates the alteration in the volume of 

humidity captured within the columns over time using 

a simple mass balance model. When a humidity sensor 

is installed, it can be used to calculate the amount of 

water in the inlet stream. Otherwise, when this sensor 

is not working or even available, the amount of water 

can be estimated using a specific humidity model such 

as the Khaled model (Aimikhe and Adeyemi, 2020; 

Khaled, 2007). 

In the adsorption section, the algorithm starts by 

checking the previous state. If the previous state was 

desorption, the bed volume is initiated (set to zero), 

and the accumulated humidity in the step is added. If 

the previous state was adsorption, the algorithm 

checks for a breakthrough when the adsorbent 

becomes saturated and cannot capture humidity. The 

algorithm checks for a breakthrough by comparing the 

average humidity of the last hour and checks if it 

exceeds 5 ppm. If a breakthrough is detected, the 

volume is not updated, and the maximum volume of 

humidity is recorded. If no breakthrough is detected, 

the volume is updated with the mass balance. The 

humidity content in the gas is determined by the 

Khaled model, which considers the pressure at the 

inlet and the temperature. The volume of humidity 

held in each bed is updated by:  

𝑉𝑖 =  𝑉𝑖−1 + 𝐹𝑝𝑒𝑟 𝑏𝑒𝑑 . 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦. ∆𝑡 (1) 

where Fper bed is the global flow entering into the two 

fixed beds in the adsorption stage divided by two. 

The desorption section calculates the humidity based 

on the desorption pressure and temperature at the 

outlet. The flow rate undergoes a similar conversion as 

in the adsorption phase, representing the humid gas 

being released. The volume of water in the bed is 

updated by subtracting the product of flow, time step, 

and humidity. If the volume calculation yields a 

negative value, it is adjusted back to zero. Marco et al. 

(2024a) provide a detailed description of this mass 

balance. 

4. METHODS TO ESTIMATE RUL 

Two methods are proposed to monitor the Natural Gas 

Dehydration Unit's performance and estimate the fixed 

beds' RUL. The first method is based on Bayesian 

inference and was presented by Wang et al. (2018). 

The second method uses robust linear regression and 

the logistic function with a robust optimization method 

along with an automatic parameter update algorithm 

for regression models. 

4.1 Bayesian Inference 

Wang et al. (2018) proposed a Bayesian inference-

based methodology for estimating real-time RUL. The 

methodology employs a Wiener Process-based 

degradation model, incorporating deterministic and 

stochastic components for standard and individual 

equipment characteristics. This degradation model can 

accommodate systems with varying degradation rates 

under different operating conditions and applies to 

both linear and nonlinear degradation scenarios. 

The Bayesian methodology comprises two phases: 

offline and online. The offline phase involves using 

maximum likelihood estimation to determine the 

hyperparameters of the prior distribution for the 

stochastic parameter and the deterministic parameters 

based on historical degradation data from M identical 

systems. In the online phase, Bayesian inference is 

used to update the mean and the variance of the 

stochastic parameter and estimate RUL. The mean 

time to the remaining useful life is calculated using 

Equation (2). 

𝑚𝑒𝑎𝑛𝑅𝑈𝐿 =  ∫ 𝑙𝑘
+∞

0
𝑓𝐿𝑘(𝑙𝑘)𝑑𝑙𝑘 (2) 

where lk is the vector of RUL, and the probability 

density function (PDF) fLk(lk) is calculated. 

4.2 Linear Model 

The first regression model is the most straightforward 

function for fitting, which is the linear model, 

characterized by being a straight line, i.e., given by: 

𝑦(𝑥) = 𝑎𝑥 + 𝑏 (3) 

where a is the slope coefficient, b is the intercept, x is 

the current measure, and y(x) is the predicted 

degradation value. The coefficients a and b are 

responsible for the slope and intercept of the line, 

respectively. 

4.3 Logistic Model 

Nonlinear models are a viable option for data 

modeling because they capture a wide range of 

functions. It can provide a better fit for specific 

applications due to their reduced number of 

parameters, facilitating a more straightforward 

interpretation. Moreover, nonlinear models offer more 

robust predictions than polynomial models, 

particularly for extrapolation scenarios (Archontoulis 

and Miguez, 2015). 

The sigmoid curve is a promising nonlinear model for 

degradation fitting due to its S-shaped form that aligns 
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with patterns observed in life cycles and various 

phenomena. Widely used in fields like demography, 

biology, and economics, the sigmoid curve comprises 

three distinct phases: the base phase, the growth or 

logarithmic decay phase, and the stabilizing mature 

phase (Forouzanfar et al., 2010). Variants of the 

sigmoid model exist, including the logistic function. 

Forouzanfar et al. (2010) proposed using the logistic 

function to predict natural gas consumption in Iran. 

Equation (4) presents the logistic model. 

𝑦(𝑥) =  
𝑎

1+ 𝑒−𝑏(𝑥−𝑐) (4) 

where a is the maximum value of the logistic curve, b 

is the slope of the curve, c is the curve's inflection 

point, x is the current measure, and y(x) is the predicted 

value by the logistic function. Regarding fitting the 

logistic curve for degradation, the parameter c is 

critical as it determines the midpoint of the logarithmic 

phase. 

Linear and logistic models are used together with the 

automatic parameter update algorithm for regression 

models to estimate the RUL of fixed beds of natural 

gas dehydration. This algorithm is based on a 

reference degradation with reference parameters for 

each regression model used. Based on tolerance 

parameters, the algorithm decides whether to update 

the regression model parameters or not. This algorithm 

is presented in detail in Marco et al. (2024b). 

5. RESULTS 

This Section presents the results obtained for the 

performance monitoring and estimation of RUL of 

fixed adsorption beds in an Offshore Natural Gas 

Dehydration Unit in Brazil. The method uses the 

adsorbed volume at breakthrough, which is a critical 

variable for the performance of the dehydration unit. 

To obtain the hyperparameters of the Bayesian 

methodology proposed by Wang et al. (2018) and to 

obtain the reference degradation model to linear and 

logistic models, data between 2018 and 2019 are 

considered. Tests are conducted on data between 2022 

and 2023. The entire implementation was done in 

Python. To protect confidentiality, the data was 

normalized, and the units of the obtained parameters 

were omitted. 

5.1 Adsorbed Volume Calculated Between 2018 and 

2019 

The dataset of adsorbed volume at breakthrough spans 

from January 1, 2018, to November 1, 2019. Figure 1 

depicts the adsorbed volume data for each fixed bed. 

As illustrated in Figure 1, a gradual decrease in 

adsorbed volume is evident as the fixed bed degrades. 

There were 377, 324, and 456 breakthrough 

occurrences throughout this period, with the final 

measurements recorded on October 24, 2019, 

November 1, 2019, and October 30, 2019, for fixed 

beds A, B, and C, respectively. 

 

Figure 1. Adsorbed Volume Between 2018 and 2019. 

Additionally, Figure 1 reveals that the sampling 

intervals are not uniform. This means that a fixed bed 

may experience one breakthrough per week in the 

initial period, while it may experience one 

breakthrough per day in the subsequent period, for 

example. Another noteworthy aspect is the presence of 

outliers in the dataset. These outliers arise from 

uncertainties primarily associated with calculating 

inlet stream humidity and inlet flow. As detailed in 

Section 2, inlet humidity is calculated based on 

temperature and pressure measurements of the inlet 

stream, and there is no direct measurement of the 

individual flow entering each fixed adsorption bed. 

Consequently, the respective flow is assumed to be 

half of the total flow entering the fixed adsorption 

beds. 

To address the issue of outliers in the dataset, we 

propose an algorithm that employs a moving window 

technique. If a given data point j exceeds the mean of 

the moving window data plus s times its standard 

deviation, data point j is replaced with the mean of the 

moving window data plus s times its standard 

deviation. Conversely, if a given data point j is less 

than the mean of the moving window data minus s 

times its standard deviation, data point j is replaced by 

the mean minus s times its standard deviation. For this 

dataset, the moving window size was set to 10, and s 

with the value equals 0.1. 

As the time data is in date format, applying the 

proposed methodologies requires some mathematical 

transformations. The first one is to convert the 

measurement date into a numerical value. The next 

step in pre-processing the dataset is dealing with non-

constant sampling with linear interpolation with 1000 

points between the first and the last measurement for 

each fixed bed. Finally, after all these steps, the 

FILTFILT function in the scipy library is utilized to 

smooth the data and improve prediction quality. Figure 
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2 presents the dataset after undergoing all these 

mathematical transformations. 

 

Figure 2. Adsorbed Volume after pre-processing and 

mathematical transformations. 

For convenience, the threshold of adsorbed volume, 

Xf, was considered the last value of the filtered 

adsorbed volume for fixed bed C, which equals 6.64 

m³. Therefore, the date of October 30, 2019, is 

considered as the end of the useful life for fixed bed C. 

The datasets from fixed beds A and B are used to 

obtain the hyperparameters of the prior distribution of 

the stochastic parameter of the Bayesian degradation 

model, and the dataset from fixed bed C is used to test 

the Bayesian methodology and its ability to update the 

stochastic behavior for fixed beds of adsorption. The 

dataset from fixed bed C is used to obtain the reference 

degradation model to linear and logistic functions. 

Appendix A shows the hyperparameters of the 

Bayesian degradation model and the reference 

regression parameters for each model used. The vector 

lk has a start value of 0 and a stop value of 3000, with 

500 samples. More details are provided by Marco et 

al. (2024b). 

5.2 Prediction of RUL for the adsorbed volume 

dataset between 2018 and 2019 

The dataset from fixed bed C was employed to assess 

the methodologies for predicting RUL of fixed beds of 

natural gas adsorption. Fixed bed C attained the 

defined Xf threshold on October 30, 2019, which 

consequently marks the end-of-life date for this fixed 

bed. The methodologies for predicting RUL compute 

the lifetime lk and, hence, the end-of-life time, tend, 

which is defined as tend = tk + lk, where tk denotes the 

current measurement time.  

Two measurements of adsorbed volume per adsorption 

cycle in fixed bed C are analyzed to evaluate the 

quality of prediction of the presented methodologies. 

The first measurement was on December 31, 2018, and 

the second measurement on August 30, 2019. Fixed 

bed C showed 149 and 345 premature breakthroughs 

for these measurements, respectively. On the last 

measurement data analyzed, fixed bed A presented 

280, while fixed bed B gave 196 early breakthroughs, 

which indicates that fixed bed C is degrading more 

rapidly. 

Table 1 presents the estimated end-of-life date for each 

of the proposed methodologies. The logistic function 

was the most accurate method for predicting the end-

of-life of fixed bed C, outperforming other proposed 

methodologies. This is likely because data from fixed 

bed C between 2018 and 2019 was used to fit the 

logistic function. Linear regression, despite utilizing 

the same reference data, yielded unsatisfactory results 

due to the process's nonlinear nature. On the other 

hand, Bayesian inference continuously updates its 

end-of-life prediction with each new measurement, 

bringing it closer to the actual end-of-life date. 

However, it is essential to note that Bayesian inference 

based on the Wiener process exhibits Markov 

characteristics, implying that degradation depends 

solely on the current measurement. This can lead to 

misleading results in processes with significant noise. 

Table 1. End of Life predicted for data from fixed bed C 

between 2018 and 2019. 

Date of 
measurement 

Model Predicted 
End of Life 

Actual End of 
Life 

31-12-2018 Linear 25-01-2020 30-10-2019 

Logistic 02-11-2019 

Bayesian 10-07-2020 

30-08-2019 Linear 25-01-2020 30-10-2019 

Logistic 02-11-2019 

Bayesian 17-11-2019 

5.3 Prediction of RUL for the adsorbed volume 

dataset between 2022 and 2023 

The second dataset analyzed covers the period from 

August 2022 to May 2023. In this Section, the fixed 

bed A is analyzed. Table 2 presents the prediction of 

the end of useful life for this fixed bed. Three 

measurements of the adsorbed volume were chosen. It 

is evident that fixed bed A is degrading faster than the 

other columns according to the methodologies, 

because with each new measurement, the estimated 

end-of-life for this column is updated to a more recent 

date.  

Table 2. End of Life predicted for data from fixed bed A 

between 2022 and 2023. 

Date of 
measurement 

Model Predicted End 
of Life 

Actual End of 
Life 

01-11-2022 Linear 01-06-2024 Second 

Semester of 
2023 

Logistic 09-03-2024 

Bayesian 11-12-2023 

01-01-2023 Linear 01-06-2024 Second 
Semester of 

2023 
Logistic 21-07-2023 

Bayesian 25-09-2023 

25-02-2023 Linear 01-06-2024 Second 

Semester of 
2023 

Logistic 26-06-2023 

Bayesian 16-08-2023 
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The proposed algorithm for updating the parameters of 

regression models effectively enabled the logistic 

function to dynamically adjust its estimates and adapt 

to the degradation of fixed bed A. This is evident from 

Table 2. Notably, fixed bed A underwent maintenance 

in the middle of 2023. Consequently, the logistic 

function, in conjunction with the proposed algorithm 

and Bayesian inference, accurately predicted the end-

of-life for fixed bed A. The estimates of the methods 

are close to the date when fixed bed A underwent 

maintenance, corroborating the prediction. Linear 

regression, on the other hand, failed to produce 

satisfactory results due to the nonlinear nature of the 

process.  

It is important to note that these methodologies are 

already integrated into a dashboard that monitors the 

performance of an Actual Offshore Natural Gas 

Dehydration Unit in real-time. 

6. CONCLUSIONS 

This work presents digital solutions for monitoring the 

performance of an Offshore Natural Gas Dehydration 

Unit. A mass balance is developed for the unit's fixed 

beds, providing access to process information that is 

unavailable through the unit's instrumentation, such as 

the adsorbed volume by the fixed bed when a 

breakthrough occurs. This information is valuable for 

monitoring the unit's performance and estimating the 

RUL of the fixed beds. Two methods were used to 

determine RUL: Bayesian inference and an algorithm 

for automatic updating of parameters of regression 

models. These methodologies could estimate and 

update the end-of-life date for each fixed bed in the 

dehydration unit. The proposed methods for 

evaluating the unit's performance are implemented in 

a real-time dashboard that monitors the unit, helping 

reduce environmental, operational, and production 

loss risks. 
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Appendix A 

Table A1. Hyperparameters of Bayesian Inference. 
Hyperparameter Optimal Value Standard 

Deviation 

µα0 0.4000 0.0019 

σ α0² 5.06.10-8 6.93.10-10 

β 0.5961 0.0009 

σ 0.0090 6.06.10-7 

Table A2. Optimal parameters of the models. 
Model Parameter Optimal 

Value 

Standard 

Deviation 

Linear a -0.0200 0.0000 

b 20.00 0.0592 

Logistic a 20.00 0.0574 

b -0.0078 0.0002 

c 494.34 2.3023 
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