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Abstract:
Quality monitoring is important for biomanufacturing and often the methods used in laboratory
setting do not translate well to industrial setting. In this regard, we present a non-invasive
quality control method for classification of well differentiated cells from poorly differentiated
ones that is scalable and can be used in online setting for adherent culture systems. The method
was implemented on stage 4 of pluripotent stem cell differentiation into beta cells and we use
textural analysis to extract features from phase contrast microscopic (PCM) images which were
used to train our classifier that achieved an accuracy of 94.04 %. These preliminary findings
show promise for its application in the area of processes monitoring in bio-reactors.
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1. INTRODUCTION

The industrialization of stem cell production to generate
beta cells holds significant promise for the treatment of
diabetes and the mass production of insulin (Docherty
and Sussel (2021), Wallner et al. (2018)). Bioreactors,
in particular, have emerged as a key technology in this
endeavor, providing an environment conducive to the
large-scale cultivation and differentiation of stem cells
(Almezel (2021), Zhang et al. (2017)).

Quality control (QC) is a critical aspect of this process,
ensuring the identity, quality, and safety of the cells
(Vaes et al. (2012)).The process of stem cell differentiation
into pancreatic islet cells is a complex multi-step process
involving several differentiation stages from Stage-1 to
Stage-7 (Pagliuca et al. (2014)). Stage 4, where stem cells
commit to the pancreatic lineage and become pancreatic
progenitor cells (PPCs), is a critical milestone (Kahan
et al. (2003)). The presence of specific markers such as
PDX1 and NKX6.1 guides this transformation (Aigha and
Abdelalim (2020), Aigha et al. (2018)). Currently, flow
cytometry is a widely used technique in laboratories for
QC, offering a robust method for analyzing cell properties
(Nicotra et al. (2020)). However, this method has its
limitations. Flow cytometry requires fresh and intact cells,
and the process requires specialized equipment and trained
operators. Moreover, it requires a sample to be kept

separately to perform flow cytometry. Therefore, a part
of the product is lost to QC by flow cytometry which
is particularly problematic given the already low yield
of the process (Manohar et al. (2021)). Finally another
solution is to have a smaller culture on the side to do flow
cytometry on this, but it may not be representative of
the main culture. Generally, laboratories either culture the
cells on surfaces, or they culture them in suspension. Most
research laboratories currently culture them adherently
at least until stage 4, and real-time monitoring of the
conditions of the cultures is highly limited. Here, real-time
monitoring means observing the changes in culture in an
ongoing differentiation process.

In light of these challenges, there is a pressing need for non-
invasive, efficient, and scalable QC methods. This study
contributes to addressing this gap by exploring the use of
textural features from phase contrast microscopic (PCM)
images and machine learning for non-invasive QC that can
be implemented in an online setting. In this context, “on-
line setting” refers to a system where the quality control
process is integrated into the production line and operates
in real-time. This means that the machine learning model
can analyze the PCM images and make decisions about
the quality of the product instantly, without interrupting
the manufacturing process, allowing for immediate feed-
back and correction, potentially saving time and resources.
(Visschedijk et al. (2005)).
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Fig. 1. Proposed methodology used in this study on stage 4 cells, including preprocessing, image processing, feature
extraction and postprocessing

Image processing is a crucial component in the field of
biomedical research and clinical medicine. It involves the
acquisition and analysis of images to visualize anatomical
structures, assess the functionality of human organs, point
out pathological regions, analyze biological and metabolic
processes, set therapy plans, and carry out image-guided
surgery among other things (Maddalena and Antonelli
(2024)). Image processing significantly enhances the ac-
curacy and efficiency of tumor detection by aiding in the
precise segmentation of medical images and extraction of
suspicious regions such as tumors (Kapoor and Thakur
(2017)). Texture analysis plays a crucial role in a variety
of computer vision tasks, including object recognition,
surface defect detection, pattern recognition, and medi-
cal image analysis (Armi and Fekri-Ershad (2019)). The
primary aim of texture analysis is to create features that
can effectively categorize textured images. Recent research
has highlighted the effectiveness of combinational methods
(Liu et al. (2016)) for texture analysis. These methods,
which do not fit neatly into any specific category, priori-
tize discrimination performance, computational complex-
ity, and resistance to challenges such as noise and rotation.
In the context of classification, several algorithms have
been employed for texture image classification. Notable
papers in this field include (Wang et al. (2020)),which pro-
posed a deep learning network for image classification that
is based on very basic data processing components: cas-
caded principal component analysis (PCA), binary hash-
ing, and blockwise histograms , and (Chan et al. (2015)),
that introduced a simple deep learning network for image
classification, called the PCA network (PCANet), which
is based on cascaded PCA, binary hashing, and blockwise
histograms. Furthermore, advancements have been made
in utilizing morphological openings in a preprocessing
stage for improved deep learning (Maetschke et al. (2017)).
However, these established methods also demand dataset
size to be much larger compared to size of dataset that
was available to us. Hence, they were not applicable in
our study.

Imaging and texture analysis have the potential to be done
in real-time not just at stage 4 but even for earlier stages
by analyzing textural features in those stages. The primary

benefit of implementing it in earlier stages is that it will al-
low laboratories or bio-reactors to discontinue the batches
that are not meeting acceptance criteria, and therefore it
could lead to significant cost savings both during research
and development and during manufacturing.

The main contributions of this paper are - 1) We proposed
a novel feature extraction methodology based on textural
analysis of PCM images. 2) We present preliminary results
of SVM based classifier trained on extracted textural
features that shows potential to be scalable and used in
an online setting.

The rest of the paper is organized in the following manner:
Section 2 introduces the proposed methodology based
on textural analysis of PCM culture images for feature
extraction. Section 3 presents the results of classification
of stem cell differentiation based on the extracted features.
Section 4 discusses the obtained results, and Section 5
concludes the paper.

2. METHODOLOGY

This study’s methodology included data acquisition and
preprocessing, image segmentation, feature extraction,
and machine-learning-based classification. This process
helped accurately identify and distinguish stage 4 pancre-
atic progenitor cells (PPCs), hence providing useful infor-
mation about the cell differentiation process. The results
obtained from this study lay down the framework for non-
invasive classification of PPC from stage 4 PCM images.
The workflow of the proposed approach is illustrated in
Figure 1. Each step of the methodology is detailed in the
following subsections.

2.1 Data Acquisition and Preprocessing

This study used images of stage 4 cells cultures of pancre-
atic differentiation. 79 four times magnified (4X) and 141
ten times magnified (10X) PCM images were collected for
textural analysis and feature extraction.

In preprocessing, images were denoised to enable better
textural analysis and feature extraction. The Non-Local

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

785



Fig. 2. Phase contrast microscopy images of inter-cell voids
at stage 4 for 79% and 27% of PDX1+ and NKX6.1+
(a, b). It shows correlation of inter-cell voids with
standard differentiation validated by flow cytometry
results.

Means method, a common image processing technique for
noise reduction (Buades et al. (2011)), was used for this
denoising process.

2.2 Feature selection

The presence of inter-cell voids, as shown in Figure (2 a
and b), throughout the culture on day 3 and day 4 of stage
4 of pancreatic differentiation, showed a correlation with
higher PDX1 and NKX6.1 presence. This was validated
through flow cytometry (Figure 3). PDX1 and NKX6.1
are marker genes for PPCs. Furthermore, the absence of
inter-cell voids has been demonstrated and illustrated in
the Figure 2.b and Figure 2.c where PDX1 and NKX6.1
secretion is not observed. Because of this correlation of
inter-cell voids with presence of PDX1 and NKX6.1 , the
features chosen for this analysis were the number of inter-
cell voids, the area covered by inter-cell voids, the percent-
age of area covered by inter-cell voids, the uniformity of
inter-cell voids distribution and mean inter-cell voids size.
These features were easy to extract after segmentation and
helped quantify the quantify the correlation of inter-cell
voids with presence of PDX1 and NKX6.1 and enabled the
machine learning model to make predictions. Uniformity,
in this study, is a measure that shows the level of evenness
in the distribution of inter-cell voids across the image area.
It is calculated as the ratio of the number of inter-cell
voids to the image area, which has been normalized by
dividing by 10,000 in our case. A higher uniformity value
means a more even spread of inter-cell voids throughout
the image, while a lower value indicates an uneven or
clustered distribution. Images that met the criterion in
Figure 2 a) were labelled as standard while images similar
to the one represented in Figure 2 b) were labelled as sub-
standard.

Fig. 3. Phase contrast Microscopy image (a) of stage 4 cells
stained by PDX1 marker (b) and DAPI (c); there is
no inter-cell voids in the domain with no PDX1

2.3 Image Segmentation

After denoising, the preprocessed images underwent a seg-
mentation process, as described in (Van der Walt et al.
(2014)). The goal of image segmentation was to sepa-
rate and outline areas of interest, specifically, the inter-
cell voids in the PCM culture images. Local adaptive
thresholding method was used for this purpose (Roy et al.
(2014)). This method allowed us to adjust the threshold
values for each image region, which helped in extracting
relevant features with better precision because the col-
lected PCM images often had variable lighting.

2.4 Feature Extraction

After segmentation, a connected component analysis, as
described in (He et al. (2017)), was performed on the
segments to extract key features from the segmented areas.
The features - number of inter-cell voids, area covered by
inter-cell voids, percentage of area covered by inter-cell
voids, the uniformity of inter-cell voids distribution and
mean inter-cell voids size were used to train our machine
learning model for identifying standard differentiation.
Below is a pseudocode representing how features were
extracted.

Algorithm: Extract Cell Cluster Features

Input: image_path, min_cluster_area,
max_cluster_area
Output: num_clusters, total_area,
percentage_area_covered,
uniformity, mean_cluster_size

1: Load image in grayscale.
2: Define ’segment_clusters’ function.
3: Inside ’segment_clusters’:

- Apply adaptive histogram equalization.
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- Apply adaptive thresholding.
- Find connected components.
- Initialize ’cluster_areas’ list.
- For each label, calculate area.
- If area is within range,
append to ’cluster_areas’.
- Return number of clusters,
total area, and image area.

4: Call ’segment_clusters’ with image.
5: Calculate percentage area covered:

- percentage_area_covered =
(total_area / image_area) * 100

6: Calculate uniformity:
- uniformity =
num_clusters / (image_area / 10000)

7: Calculate mean cluster size:
- mean_cluster_size =
total_area / num_clusters

8: Return all calculated values.

2.5 Correcting class imbalances

Class imbalances were present in our PCM image dataset.
We had 30 standard differentiation images and 49 substan-
dard differentiation images for 4X magnification. Similarly,
we had 39 standard differentiation images and 102 sub-
standard differentiation images for 10X magnification. To
address this class imbalance issue, we used oversampling.
Oversampling involves adding artificial samples to the
minority class by duplicating existing examples or gen-
erating synthetic ones. In this study, Synthetic Minority
Oversampling Technique (SMOTE) (Chawla et al. (2002))
was used for oversampling. SMOTE creates synthetic ex-
amples by interpolating between the nearest neighbors of
the minority class. It helps to increase the diversity and
representativeness of the minority class.

2.6 Support Vector Machine (SVM) based Classification

The extracted features were then utilized as input data for
a Support Vector Machine (SVM) based classifier. SVM
is a robust and widely used machine learning algorithm
known for its ability to delineate patterns and classify data
points into distinct categories (Chauhan et al. (2019)) .
In our study, it was employed to classify between well-
differentiated and poorly-differentiated instances based on
the acquired feature set. SVM is known to be effective
in performing generalization on smaller datasets (Vapnik
(1999)). Convolutional neural networks (Li et al. (2014))
have traditionally performed well in image classification
tasks but due to the small size of our dataset, we could
not use them.

2.7 Performance Metrics

The SVM classifier’s performance was evaluated using
five-fold stratified cross-validation method (Berrar et al.
(2019)). In five-fold cross-validation, the dataset was split
into five parts, with four parts used for training and the
fifth part used for testing. The splits were rotated and
training and testing was performed 4 more times. This val-
idation method ensured that the classifier’s performance
was thoroughly checked and could be generalized to new

Fig. 4. Original phase contrast microscopy images of
cells at stage 4 along with the processed images
for standard (a and b) and substandard (c and d)
differentiation. It shows a larger number of inter-cell
voids uniformly distributed throughout the culture
for standard differentiation compared to substandard
differentiation

data. The evaluation criteria included several performance
metrics, such as accuracy, F1 scores, ROC-AUC scores,
recall, and precision. These performance metrics gave a
complete evaluation of the classifier’s ability to differenti-
ate between the two classes of differentiation.

3. RESULTS

In this section, we present the results we obtained using
the proposed methodology discussed in previous section.
Table 1 compiles the information about the features ex-
tracted from Figures 4 (a) and (b) and Figures 4 (c)
and (d). We can observe the contrast in the values of
featured extracted for standard differentiation compared
to substandard differentiation. Table 1 and Figure 4 are
representation example of how the features were used to
make the classification decision. Similar feature extraction
was done for every image in 4X and 10X dataset and these
extracted features were used to train the SVM classifier.

Tables 2 and Table 3 summarize the obtained performance
metrics values for (4X) and (10X) images for balanced
and unbalanced datasets. The performance metrics are
average values obtained during cross validation. Except
recall, values for the performance metrics are higher for 4X
images in comparison to 10X images. We can also observe
that the values of the metics for balanced oversampled
dataset is not much different from the unbalanced dataset.

Table 1. standard vs. sub-standard differentia-
tion features comparison

Features standard sub-standard

No. of inter-cell voids 896 660
area covered (pixels) 43026 24684

percentage area covered 2.24 1.29
Uniformity 4.67 3.44

Mean inter-cell voids size (pixels) 48.02 37.40
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Table 2. Cross validation average values for 4X
PCM images

Performance Metrics 4X 4X (Oversampled)

Accuracy 0.94 0.92
F1 score 0.91 0.89

ROC-AUC 0.97 0.97
Recall 0.87 0.89

Precision 0.97 0.97

Table 3. Cross validation average values for
10X PCM images

Performance Metrics 10X 10X (Oversampled)

Accuracy 0.89 0.88
F1 score 0.80 0.79

ROC-AUC 0.88 0.90
Recall 0.82 0.85

Precision 0.80 0.76

4. DISCUSSION

In Section 4, we will discuss the results presented in the
last section.

Table 1 compiles the information extracted from Figure 4.
The features related to the number of inter-cell voids, the
area they cover in pixels, and the corresponding percentage
show a distinct contrast for standard and substandard
differentiation. Specifically, the well-differentiated samples
have higher values for all three of these features, indicating
a larger presence and distribution of inter-cell voids within
their images. On the other hand, the poorly-differentiated
examples have significantly lower values in these areas,
suggesting a reduced presence and coverage of inter-cell
voids. We also considered two additional features: the
uniformity of inter-cell voids and the average inter-cell
voids size. Our analysis shows that well-differentiated
examples tend to have higher uniformity values, further
emphasizing the uniform distribution of inter-cell voids
within their images.

On the other hand, the average inter-cell void size feature
shows that well-differentiated instances tend to have larger
inter-cell void sizes. This observation can be explained
by the scarcity of inter-cell voids in poorly-differentiated
examples, and when they are present, they are usually
smaller in size. It is to be noted that large inter-cell voids
in the culture doesn’t always mean better differentiation.
For example, the presence of a single large inter-cell voids
in the culture would signify poor differentiation. On the
other hand, many evenly sized inter-cell voids throughout
the culture signifies a standard differentiation.

Table 2 and Table 3 present the average values of perfor-
mance metrics for images magnified 4 times (4X) and 10
times (10X) respectively. The performance metrics are for
both unbalanced dataset as well as for dataset balanced by
oversampling. For both unbalanced and balanced dataset,
the model’s performance is slightly better for 4X images
compared to 10X images. Oversampling does not have a
significance impact on the performance metrics for 4X and
10X image datasets.

Accuracy, which measures the proportion of correct pre-
dictions made by the model, shows that 10X magnified

images have an average accuracy of 0.89, and 4X magni-
fied images have an accuracy if 0.94 indicating that the
model performs better for 4X images when it comes to
accuracy. Recall, also known as sensitivity, measures the
proportion of actual positives that are correctly identified.
The average recall is higher for 4X images (0.82) compared
to 10X images (0.87), suggesting that the model is better
at identifying positive cases in 4X images. The metric pre-
cision measures the proportion of positive identifications
that are actually correct. The average precision is higher
for 4X images (0.97) than for 10X images (0.80), indicating
that the model is more precise in its predictions for 4X
images. The F1 score is a measure of a test’s accuracy that
considers both precision and recall. The average F1 score
is higher for 4X images (0.91) compared to 10X images
(0.80). This suggests that the model performs slightly
better on 4X images when both precision and recall are
considered.

The ROC-AUC score, which measures the area under the
receiver operating characteristic (ROC) curve, is another
important metric. The ROC curve is a plot that illustrates
the diagnostic ability of a binary classifier system as its
discrimination threshold is varied. The AUC (Area Under
The Curve) represents the measure of separability, telling
how much the model is capable of distinguishing between
classes. The higher the AUC, the better the model is at
predicting 0s as 0s and 1s as 1s. The average ROC-AUC
score is higher for 4X images (0.97) than for 10X images
(0.88), indicating that the model performs better on 4X
images when distinguishing between the classes.

These performance metrics provide a comprehensive as-
sessment of the model’s performance on both 4X and
10X magnified images. The model’s performance does not
have a considerable difference between 10X and 4X mag-
nified images. Best parameters estimated for 4X images
were C=0.1, gamma = 1 and kernal as sigmoid. Best
parameters estimated for 10X images was C=10, gamma
=1 and kernal to be radial basis function. In SVM, the
kernel transforms data into a higher dimension for complex
decision boundaries, C establishes balance between low
error on training data and decision function simplicity, and
gamma influences the shape of the decision boundary. The
difference in hyperparameters show that the model needs
to be tuned for different magnifications.

For the 4X images, oversampling slightly improves the
recall but reduces the accuracy and F1 score. For the
10X images, oversampling slightly improves the ROC-AUC
and recall but reduces accuracy, F1 score and precision.
These results suggest that oversampling may be slightly
beneficial compared imbalanced dataset PCM images for
some metcis but the difference in values are not very signif-
icant. Therefore, the performance of oversampling remains
inconclusive and in the future this can be addressed by
increasing the size of the dataset and balancing it which
might help achieve higher accuracy.

5. CONCLUSION

In this paper, we present our preliminary findings of a non-
invasive quality control method for bioreactors that uses
PCM images for classification. Our model performs well on
4X and 10X validation sets, but we still have to establish
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better correlation, and testing across different imaging
systems is required to establish its robustness. The method
promises to be more efficient and scalable compared to
conventional lab methods and can be applicable in an
online setting in bio-reactors for quality monitoring.
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