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Abstract: Within a frame of optimized performance by Extremum Seeking Control, this work 
conceptualizes the enzymatic hydrolysis of cellulose carried out in an isothermal stirred tank reactor of 
continuous operation. This reactor operation is aimed at increasing the production rate of reducing sugars 
in biorefineries. The basis is a batch reactor model extended to describe continuous operation, resulting in 
a stable process for any process condition. Based on an objective function that ponders productivity with 
dilution rate, it is applied an Extremum Seeking Control algorithm driven by the on-line estimation of the 
gradient of the control input-objective function map, improving convergence rate and enabling practical 
implementation. 
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1. INTRODUCTION 

Enzymatic hydrolysis of cellulose to produce fermentable 
sugars is an essential process in the conversion chain of agro-
industrial and forestry residues to high-value bioproducts. 
Currently, this process is carried out in a stirred tank reactor in 
batch or semi-batch operation at a certain temperature and pH, 
so its design lies in determining the load of biomass and 
enzyme, and the temperature and pH at which the process 
performs better. This task is mostly carried out in an 
experimental framework in which numerous batches are 
performed at diverse conditions (e.g., Hernández-Beltrán et 
al., 2018; Hernández-Beltrán and Hernández-Escoto, 2018). 
The production of reducing sugars depends on the biomass 
load and the time of the batch process, which evolves slowly; 
however, because of physical limitations, the concentration of 
raw materials in this bioprocess is low, as is the case in all other 
bioprocesses in biorefineries. As a result, the concentration of 
the product is also low, which in turn results in a high cost for 
the purification of the final bioproduct (Frolkova and Raeva, 
2010). Therefore, obtaining a cellulose enzymatic hydrolysis 
process with a high production rate and a high concentration 
of reducing sugars is a challenge. 

Although continuous operation of reactors enables a larger 
production rate in comparison with batch operation, it has not 
been explored for cellulose enzymatic hydrolysis, maybe 
because of its slow kinetics, and the assumed complex 
handling of cellulosic material (e.g., milled straw) in the input 
and output streams of the reactor. On the other hand, its 
process design, mainly meaning the determination of the flow 
rate of raw materials, provided the concentration of cellulose 
and enzyme in the input stream, and the temperature and pH 
of the reacting mixture, would be expensive if it were realized 

in an experimental framework as well, because of very long-
time experiments for different input flow rates with different 
raw material concentrations. 

In order to reduce the experimental work, an approach is to 
carry out the design task with model-based techniques. The 
mathematical models for this kind of process are scarce (e.g., 
Gusakov and Synitzin, 1998; Angarita et al., 2015), and when 
one is adopted for a certain biomass-enzyme-equipment 
system, parameter identification must be performed from time 
to time since the qualities of raw materials and enzymes vary 
throughout the process lifetime. Subsequently, related model-
based adjustments and experimental ones, because of the 
inherent uncertainty enclosed in the kinetics models, would be 
necessary. To overcome the above-mentioned variations and 
kinetics uncertainty, inserting the process into a proper control 
system, not just to maintain effective performance but to take 
it to its best as much as possible, is an approach worthy of 
exploration. 

In the last fifty years, different real-time optimization 
strategies have been developed to on-line optimize processes 
at steady state. Real-time optimization (RTO) encompasses a 
family of optimization methods that incorporate process 
measurements in the optimization framework to drive a real 
process to optimal performance, while guaranteeing constraint 
satisfaction. RTO has emerged to overcome the difficulties 
associated with process-model mismatch (Marchetti et al., 
2016). Among such methods, Extremum Seeking Control 
(ESC) is an RTO technique that allows the system to be led 
towards the extreme of a measurable convex (or concave) 
function corresponding to the optimal conditions in an 
operating region. The input is directly updated in a control-
inspired manner. The ESC is applicable in situations where 
there is a nonlinearity in the control problem, the nonlinearity 
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has a local minimum (or maximum), and the process model is 
uncertain as is the case of bioprocesses (Dewasme et al., 2020). 
 
Recently, Torres-Zúñiga et al. (2021) proposed an ESC 
strategy based on the super-twisting algorithm which profits 
the robust properties of sliding-modes to solve optimization 
problems on-line. The strategy consists of a gradient-based 
line search optimization algorithm proposed as a proportional–
integral ESC. The integral term corresponds to the standard 
ESC action and is used to compute the steady-state optimum 
point. The proportional term corresponds to an adaptive term 
and is used to accelerate the convergence of the algorithm. 
Furthermore, the gradient is estimated by a super-twisting-
based robust differentiator. 
 
In this paper, the above-mentioned super-twisting-based ESC 
is considered to on-line maximize a performance function to 
take the continuous operation of the cellulose enzymatic 
hydrolysis reactor to optimal performance. In the next section, 
the process is described, and its design task is defined, so the 
ESC is justified as a technique to be resorted to. Third section 
describes the control system conformation and the specifics of 
the ESC controller. In the fourth section, the performance of 
the control system is discussed by considering practical 
scenarios related to the concentration of cellulose in the input 
stream. Finally, Conclusions remark the feasibility of the ESC 
application to the continuous operation of a stirred tank reactor 
in which cellulose enzymatic hydrolysis is carried out. 

2. THE PROCESS AND ITS OPTIMIZATION PROBLEM 

2.1 Process Description 

It is considered the enzymatic hydrolysis of cellulose (CEH) 
carried out in a continuous stirred tank reactor (CSTR)(Fig. 1). 

 

Fig. 1. Cellulose enzymatic hydrolysis in a continuous stirred 
tank reactor (CEH-CSTR). 

 It is assumed that the mixture is homogeneous since the 
cellulose concentration does not overpass a critical value that 
makes the mixture a slurry that is almost immovable, and that 
it is equipped with control devices that maintain the reactor 
mixture at required constant temperature and pH. A suspension 
of cellulose and enzyme, of certain composition, is 

continuously fed through an input stream at the reactor top, 
and the reactor mixture that contains the remaining cellulose, 
enzyme, and glucose is continuously withdrawn through a 
bottom output stream. 

2.2 The Design Problem 

It is started with a system cellulose-enzyme for which 
temperature, pH, and cellulose-enzyme ratio have been 
established in a design work of batch experiments. The 
cellulose enzymatic hydrolysis is being carried out in the 
continuous stirred tank reactor (Fig. 1), so the operation 
condition to be determined is the biomass feed flow that yields 
a high production rate of glucose. As mentioned above, due to 
physical constraints, the cellulose concentration is required to 
be below a certain critical value that makes the content a 
slurry. 

2.3 The Mathematical Model 

Cellulose enzymatic hydrolysis is a reaction in which, with the 
aid of enzymes, cellulose is depolymerized into glucose. The 
basic reaction mechanism is the following: 

C + E
			"!"			$⎯⎯⎯&B + E

			""#			$⎯⎯⎯&G + E, C + E
			"!#			$⎯⎯⎯& G + E 

with a mass stoichiometric coefficient of 1. C represents 
cellulose, E is enzyme, G is glucose, and B is an intermediate 
sugar called cellobiose. 𝑣#$, 𝑣$%, and 𝑣#% are the reaction rates 
of each mechanism step. 

The mass balance in the CEH-CSTR (Fig. 1) results in the 
following mathematical model: 

𝐶̇ = 𝑟#(𝐶, 𝐵, 𝐺, 𝐸) + 𝐷 ∗ (𝐶&' − 𝐶),   𝐶(0) = 𝐶(       (1a) 

𝐵̇ = 𝑟$(𝐶, 𝐵, 𝐺, 𝐸) − 𝐷 ∗ 𝐵,     𝐵(0) = 0       (1b) 

𝐺̇ = 𝑟%(𝐶, 𝐵, 𝐺, 𝐸) − 𝐷 ∗ 𝐺,     𝐺(0) = 0       (1c) 

𝐸̇ = 𝑟)(𝐶, 𝐵, 𝐺, 𝐸) + 𝐷 ∗ (𝐸&' − 𝐸),   𝐸(0) = 𝐸(       (1d) 

where 𝐶, 𝐵, 𝐺, and 𝐸 are the concentrations in the reactor of 
C, B, G, and E, respectively. 𝐶&' is the concentration of C in 
the input stream, and 𝐸&' is the one of E. 𝐷 is the dilution rate, 
which replaces the term 𝐹/𝑉, in which 𝑉, the reactor volume, 
is considered constant; 𝐹 is the volumetric flow of the input 
stream. 𝑟* is the global reaction rate of the substance 𝑚 (𝑚 = 
C, B, G or E), 

𝑟# = −𝑣#$ − 𝑣#%           (2a) 

𝑟$ = +𝑣#$ − 𝑣$%           (2b) 

𝑟% = +𝑣$% + 𝑣#%           (2c) 

𝑟) = 0            (2d) 

As it is noticeable in Eqn. (2d), it is assumed that the enzyme 
reincorporates into the broth once it breaks cellulose, and that 
it does not suffer any spoilage effect (e.g., denaturalization), 
so its reaction rate is assumed as quasi-stationary. 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

859



 
 

     

 

The reaction rates 𝑣#$, 𝑣$% and 𝑣#% of each mechanism step 
are described by a Michaelis-Menten type kinetics form, 

𝑣#$ =
+!"())#

.!"/01	
"

$%!"
21#

           (3a) 

𝑣$% =
+"#())$

."#/01	
#

$%"#
21$

          (3b) 

𝑣#% =
+!#())#

.!#/01	
#

$%!#
21#

           (3c) 

Corresponding to each mechanism step, 𝑉#$,	𝑉$% and 𝑉#% are 
the maximum reaction rates depending on 𝐸, 

𝑉#$ = 𝑎#$𝐸 + 𝑏#$𝐸3 + 𝑐#$𝐸4         (4a) 

𝑉$% = 𝑎$%𝐸 + 𝑏$%𝐸3 + 𝑐$%𝐸4         (4b) 

𝑉#% = 𝑎#%𝐸 + 𝑏#%𝐸3 + 𝑐#%𝐸4         (4c) 

𝐾#$, 𝐾$% and 𝐾#% are Michaelis-Menten constants, and  𝐾5#$, 
𝐾5$% and 𝐾5#% are inhibition constants. The kinetics structures 
(3) are adopted from Gusakov and Sinitzyn (1985) since its 
comprehensive phenomenon addressing, which is encountered 
in recent works of modelling the enzymatic hydrolysis of 
lignocellulosic biomass (e.g., Angarita et al., 2015). Finally, 
the following Table 1 provides the values of the model 
parameters. 

Table 1. Value of model parameters for enzymatic 
hydrolysis below 100 g/L of cellulose and between 5 and 

60 g/L of enzyme (Gusakov and Sinitzyn, 1985) 

Parameter Value Parameter Value Parameter Value 

𝐾!" 13 𝐾"# 0.6 𝐾!# 15 

𝐾$!" 0.8 𝐾$"# 0.32 𝐾$!# 11 

𝑎!" 0.294 𝑎"# 0.0054 𝑎!# 0.144 

𝑏!" -0.003 𝑏"# -5.4x10-6 𝑏!# -4.8x10-5 

𝑐!" 1.8x10-5 𝑐"# 6.0x10-7 𝑐!# -4.2x10-5 

2.4 The Design Problem as an Optimization Problem 

Considering an optimization framework to design the process, 
the design problem means to maximize an objective function 
related to the production rate of glucose through dilution rate, 
with the constraints given by the process, 

max
6(7)

𝐽 = 𝜗(𝐺, 𝐷),           (5a) 

s.t.  Mathematical Model (1)-(4),            (5b) 

𝐹(𝑡) ≥ 0, 0 < 𝐶(𝑡) ≤ 𝐶∗.         (5c) 

Fig. 2 shows the steady states concentrations in the CEH-
CSTR as the dilution rate varies for a case in which the input 
stream carries cellulose at a high concentration. These steady 
states are obtained by solving the algebraic equations resulting 
from equating to zero the change functions of the mathematical 
model (1). 

 

Fig. 2 Steady states concentrations in the CEH-CSTR with 
respect to 𝐷, with 𝐶&' = 150	𝑔/𝐿. 

Should we consider productivity (𝐽 = 𝐺 ∗ 𝐷) as an objective 
function, the optimal dilution rate is infinite since steady-state 
productivity grows monotonically as a function of the dilution 
rate. In other hand, should we consider only such glucose 
concentration as an objective function (𝐽 = 𝐺), the optimal 
dilution rate is zero since glucose grows up to the input 
cellulose concentration with the decrease of dilution rate, 
becoming a batch operation. 

From a search for an appropriate objective function, the 
following objective function resulted: 

𝐽 = 𝐺 ∗ 𝐷 − 𝑓 ∗ 𝐷            (6) 

which is productivity competing with a pondered dilution rate 
(𝑓 is the pondering factor), which in turn makes the objective 
function concave and then amenable for optimization. One 
may see from Fig. 3 that such a function is concave, and the 
maximum value is highlighted with a red marker. 

 

Fig. 3 Objective function 𝐽 = 𝐺𝐷 − 𝑓𝐷, with 𝐶&' = 150	𝑔/𝐿 
and 𝑓 = 50	𝑔/𝐿. 

The following Table 2 shows the dilution rate that maximizes 
the objective function 𝐽 (6) for different values of 𝐶&', for 
which 𝐽 is also concave. It is worthy to highlight that glucose 
concentrations reached at the corresponding steady states (𝐶99) 
are pretty high, as encountered in any study of the enzymatic 
hydrolysis of cellulosic material carried out in a batch reactor. 

Table 2.  Optimal conditions for different glucose 
concentrations in the input stream (𝒇 = 𝟓𝟎	𝒈/𝑳) 

𝐶%&	(𝑔/𝐿) 𝐽'() 𝐷x10*	(1/ℎ) 𝐺++	(𝑔/𝐿) 

100 0.205585 11.233 68.30 

150 0.501057 15.557 82.20 

170 0.609180 16.298 87.37 

200 0.757273 17.074 94.35 
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Then, the optimization problem is the following: 

max
6(7)

𝐽 = 𝐺 ∗ 𝐷 − 𝑓 ∗ 𝐷          (5a)   

s.t. Mathematical Model (1)-(4),        (5b) 

𝐹(𝑡) ≥ 0, 0 < 𝐶(𝑡) ≤ 𝐶∗.         (5c) 

3. THE EXTREMUM SEEKING CONTROL 

Having an optimal control problem (5), in addition, it must be 
taken into account that the model process (1-4) has inherent 
uncertainties because of its biological nature and the potential 
operative deviations that appear along the process timeline. 
Therefore, it is resorted to an Extremum Seeking Control 
approach, in this case the one developed in Torres-Zúñiga et 
al. (2021). 

Firstly, it is considered that there is a vector 𝜃 composed by 
the objective function 𝐽 and the control input 𝐷, with an 
existing first time-derivative, 

𝜃 ∶= V 𝐽𝐷W, 𝜔 ∶= Y 𝐽
̇
𝐷̇
Z.     (7a, b) 

Then, the control system takes the following form: 

𝑥̇ = 𝑓(𝑥, 𝐷, 𝑑),    𝑥(0) = 𝑥(,   𝑥 = [𝐶, 𝐵, 𝐺, 𝐸]′,         (8)  

𝐷(𝑡) = −𝜆 ∗ a|𝜎d| ∗ sign(𝜎d) +	𝐷0(𝑡),   𝜎d = − :;<

:6
       (9a) 

𝐷̇0(𝑡) = −𝛼 ∗ sign(𝜎d),    𝐷0(0) = 𝐷0(;    𝜆, 𝛼 > 0.       (9b) 

𝜎d = −=>&
=>'

,   𝜔k3 ≠ 0.          (10) 

𝜃ṁ(𝑡) = −𝜅0 ∗ 𝜙0(𝑒?) + 𝜔k(𝑡),   𝑒? = 𝜃m − 𝜃,      (11b) 

𝜔k̇(𝑡) = −𝜅3 ∗ 𝜙3(𝑒?),   𝜅0, 𝜅3 > 0,       (11c) 

𝜙0(𝑒?) ≔ r𝜂‖𝑒?‖3
@A + 𝛽 + 𝛾‖𝑒?‖3

Bw𝑒?,   𝜙0(0) ≔ 0,     (11d) 

𝜙3(𝑒?) ≔ r𝜂(1 − 𝑝)‖𝑒?‖3
@A + 𝛽 + 𝛾(1 + 𝑞)‖𝑒?‖3

Bw𝜙0(𝑒?).
                (11e) 

‖𝑒?‖3 ≔ a𝑒?C𝑒?,   𝜂, 𝛽, 𝛾 > 0,   0
3
≥ 𝑝 > 0,   𝑞 > 0.     (11f)  

Eqn. (8) represents the process (1-4). Eqns. (9) form a 
controller, that is intended to be driven by the gradient of the 
objective function with respect to the dilution rate (𝜎 =
𝑑𝐽 𝑑𝐷⁄ ), where 𝜆 and 𝛼 are constant gains. This gradient 
cannot be on-line measured, so its estimate 𝜎d (10) is calculated 
on the basis of the time-derivative of the objective function 
(𝜔0 = 𝐽)̇ and the one of the dilution rate (𝜔3 = 𝐷̇) (7b). The 
super-twisting-based ESC generates the control input 𝐷(𝑡) 
that maximizes the concave objective function 𝐽(𝐷(𝑡)) at 
steady state.  

Since 𝜎 is unknown but 𝐽 is measured online, it is estimated 
together to the known control input 𝐷(𝑡) by the super-
twisting-based differentiator (11). By assuming that the 
absolute value of 𝜔̇ is element-wise bounded, the differentiator 
(11b, c) provides, in finite-time, an estimate of both 𝜃̇ and 𝜔̇. 

4. CONTROL SYSTEM PERFORMANCE 

In this section, the super twisting-based control system of the 
CEH-CSTR (8–11) is tested by considering scenarios in which 
the process is started up and the control system must take the 
process to its optimal performance. Later, the control system 
is faced with changes in the cellulose concentration of the 
input stream. The first scenario means that process is initiated 
with the following conditions: 

𝐶(0) = 𝐵(0) = 𝐺(0) = 0,   𝐸(0) = 23	𝑔/𝐿, 

𝐶&' = 150	𝑔/𝐿,   𝐷(0) = 0	ℎ@0. 

Next, once the process reaches its first optimal steady-state, a 
piece-wise trajectory of 𝐶&' with subsequent constant levels of 
150	𝑔/𝐿, 170	𝑔/𝐿, 200	𝑔/𝐿, and 100	𝑔/𝐿 is applied. Such a 
variation of 𝐶&' tries to mimic the variability of the raw 
material preparation throughout the process lifetime. 

The following values for parameters of the controller and 
differentiator were considered: 

𝛼 = 2	x	10@D,  𝜆 = 1	x	10@4,  𝜅0 = 3	x	10@4,  𝜅3 = 3	x	10@4,  
𝜂 = 2,  𝛽 = 4,  𝛾 = 10,  𝑝 = 0.25,  𝑞 = 0.5. 

Fig. 3 shows the dilution rate, objective function, and 
estimated gradient as a function of time for the control system 
when the above-mentioned conditions are applied, whereas 
Fig. 4 depicts the evolution of the CEH-CSTR state variables. 

 

Fig. 3 Closed-loop dilution rate and objective function towards 
the optimal performance of the CEH-CSTR. The dotted line 
represents the optimal values, whereas the continuous line 
shows the actual values. 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

861



 
 

     

 

 

Fig. 4. Evolution of the CEH-CSTR state variables towards 
optimal steady states. 

The numerical implementation of the ESC controller considers 
an update of the dilution rate every 5 days, thus allowing the 
plant to reach its steady state before computing a new value for 
the dilution rate. The gradient estimate (10), however, is 
continuously computed throughout the simulation span. 

It can be observed that the optimal values of the objective 
function, dilution rate, and glucose concentration, given in 
Table 1, are reached for every level of 𝐶&'. The search for the 
first optimal steady state, starting from zero initial 
concentrations of bio-substances, takes a very long time. 
Although expected to be shorter, this long time is a typical 
characteristic of the ESC controllers. Next, the search for the 
optimal conditions for the following changes in 𝐶&' takes a 
much shorter time; for the scale-time set by the first search, the 
convergence times seem almost instantaneous.  

In other hand, it is worthy to highlight that cellulose 
concentration is below 100 g/L, which is a value that enables 
mixing. 

6. CONCLUSIONS 

In this work, the enzymatic hydrolysis of cellulose carried out 
in a continuous stirred tank reactor was conceptualized and 
designed through an ESC controller. Based on an objective 
function, it was determined that the process is feasible to 

perform since the cellulose concentration is sufficiently low 
and the glucose concentration is like the one obtained in a 
batch process. Although the ESC controller takes the process 
to its optimal condition for a long time, it motivates future 
work aimed at improving convergence velocity. 
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