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Abstract: This paper presents a systematic data-driven methodology to infer macroscopic reaction
schemes and their associated kinetic laws from the measurements of concentration trajectories. The
procedure uses sparse identification incorporated with a generic kinetic structure combining activation
and inhibition factors. Only measurements of the extracellular species, i.e., biomass, substrates, and
products of interest, are required, and measurement noise can be tackled using specific regularization
techniques. The methodology is illustrated with a case study of a synthetic dataset from the production
of therapeutic proteins using mammalian cell cultures.
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1. INTRODUCTION

Macroscopic modeling of bioprocesses is particularly impor-
tant in developing software sensors and model-based con-
trollers. This task typically implies two fundamental steps: (i)
the definition of a reaction scheme and the estimation of the
stoichiometry, and (ii) the inference of a kinetic structure. Both
problems have aroused considerable interest in the literature
(Grosfils et al., 2007b).

On the one hand, a candidate macroscopic reaction scheme can
be determined by applying the Principal Component Analysis
(PCA) to the time evolution of the measurements of the macro-
scopic species under consideration (Bernard and Bastin, 2005).
An extension of this method, called Maximum Likelihood Prin-
cipal Component Analysis (MLPCA), was proposed by Mailier
et al. (2012a) to account for higher levels of measurement noise.
More recently, Pimentel et al. (2023b) exploited a data-driven
methodology to deduce macroscopic reaction schemes using
a robust algorithm for parallel implicit sparse identification
proposed by Kaheman et al. (2020).

On the other hand, the problem of determining the kinetic laws
has been mainly tackled from two different angles, either com-
bining several known kinetic laws such as the one of Monod
(Monod, 1949) for substrate activation or Jerusalimski (Jerusal-
imski and Engamberdiev, 1969) for inhibition, or through the
proposal of more generic and polyvalent laws either inspired
by existing kinetic model structures (Haag et al., 2003; Gros-
fils et al., 2007a) or by black box approaches such as neural
networks (Vande Wouwer et al., 2004). For instance, Mailier
and Vande Wouwer (2012b) developed a likelihood ratio test
to choose the most likely kinetic structure among candidate
models. The latter method involves examining a large number
of model alternatives, which unfortunately grows combinatori-
ally and makes it unsuitable for large-scale metabolic networks.
The same issue affects the approaches proposed by Mangan
et al. (2016) and Kaheman et al. (2020). However, Wang et al.

(2020) proposed an alternative approach, assuming that the
combination of Monod and Jerusalimski factors covers all pos-
sible kinetic modulation effects of the involved compounds. In
the same spirit, Grosfils et al. (2007a); Richelle and Bogaerts
(2015) proposed a simple but powerful method for extracting
the activation and inhibition factors involved in the reaction
rates for a predefined reaction scheme. This method consists
of obtaining the reaction rates signal from the process deriva-
tive measurements and using the logarithm transformation to
rewrite the problem into a linear identification problem that
reveals the process compound involved in the activation and
inhibition of the reaction rates. Recently, Forster et al. (2023)
proposed a methodology very close to the one of Grosfils et al.
(2007a); Richelle and Bogaerts (2015) but with a significantly
more complex optimization based on mixed-integer nonlinear
programming (MINLP). Dewasme et al. (2023) also proposed
a practical data-driven modeling procedure combining MLPCA
and the systematic selection of Monod/Jerusalimski laws based
on local parametric sensitivities.

This study aims to extend the results of Pimentel et al. (2023b)
to include the inference of kinetic laws to the sparse identifica-
tion procedure. One of the basic features of sparse identification
is the selection of a dictionary of basis functions that could
adequately describe the system’s nonlinearity. Here, we make
use of the general kinetic structure proposed by Richelle and
Bogaerts (2015), which is amenable to a linearization through
a logarithmic transformation. This greatly simplifies the extrac-
tion of information about activation and inhibition mechanisms.
In a further step, the kinetics can be expressed as products of
simple Monod/Jerusalimski laws in order to conform to the
tradition in bioprocess modeling. The resulting method dramat-
ically streamlines the size of the candidate library of functions
for parameter identification and yields a systematic and efficient
methodology to extract biological models out of experimental
data.
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This paper is organized as follows. Section 2 details the macro-
scopic modeling approach, and Section 3 presents the data-
driven techniques involved in the proposed method. Section 4
shows the results and analysis of a case study of the protein pro-
duction by mammalian cells considering lactate shift. Section 5
presents the conclusion and future work.

2. BIOPROCESS MACROSCOPIC MODELING
A macroscopic reaction scheme is a set of M reactions involv-
ing N key species, which are typically biomass, substrates, and
products (Bastin and Dochain, 1990):

∑
i∈R j

ki, jξi
ϕ j(ξ,ϑ j)−−−−−→ ∑

l∈P j

kl, jξl (1)

where R j and P j denote the sets of reactants, represented by
ξi, and products, defined as ξl , in the jth reaction. ki, j and kl, j
are pseudo-stoichiometric coefficients while ϕ j(ξ,ϑ j) are the
corresponding reaction rates, functions of ξ (reactant/product
quantities or concentrations) and the parameters of the rate
kinetic structure ϑ j.

Applying mass balance to (1), the following ordinary differen-
tial equation system is obtained:

dξ(t)
dt

= Kϕ(ξ(t),ϑ)+ v(ξ(t), t), (2)

where K is the pseudo-stoichiometric matrix, and v(ξ(t), t)
represents the transport term, including dilution effects, in-
put feeds, and gaseous outflows. In most cases, the number
of components N is larger than the number of reactions M
so that the rank of the stoichiometric matrix K is assumed
to be M. In an identification study, the component concen-
trations ξ(t) are measured and the transport terms v(ξ(t), t)
are known/measurable so that a so-called transport-free mass-
balance system can be expressed (Mailier et al., 2012a) as

dξ⋆(t)
dt

= Kϕ(ξ⋆(t),ϑ), (3)

where ξ̇⋆(t) = ξ̇(t)− v(ξ(t), t) is the transport-free state vector,
and ξ̇⋆(t) denotes the time derivative of ξ⋆(t).

3. DATA-DRIVEN METHODS
Reaction rates are intrinsically driven by a few reactants and
products, inducing activation and inhibition effects in a sparse
combination. This property makes the sparse identification
framework an adequate approach.

3.1 Parallel and Implicit Sparse Identification
Consider the following general nonlinear dynamic system

dξ(t)
dt

= f (ξ(t)), (4)

where ξ(t) is the state vector ξ(t) = [ξ1(t) · · · ξN(t)]
T ∈ RN ,

and the system dynamics is represented by a function f (ξ(t)),
which could be described in terms of a library of functions

Θ(ξ) = [θlib,1(ξ) θlib,2(ξ) · · · θlib,w(ξ)] , (5)
where w is the number of elements. Thus, each row equation
may be written as

dξk(t)
dt

= fk(ξ(t))≈ Θ(ξ)Ωk, (6)

where Ωk is a sparse vector, indicating which terms are active
in the dynamics (Brunton et al., 2016).

To determine the nonzero entries of Ωk through sparse re-
gression based on the trajectory data, the time-series data is
arranged into a matrix Ξ = [ξ(t1),ξ(t2) · · · ξ(tns)]

T , and the
associated derivative matrix Ξ̇ =

[
ξ̇(t1), ξ̇(t2) · · · ξ̇(tns)

]T
is

computed using appropriate numerical differentiation methods.

It is now possible to describe the dynamical system using a
model that is linear in the parameters and evaluated with the
measured state trajectories:

Ξ̇ = Θ(Ξ)Ω. (7)

Equation (7) might also involve derivatives of the state variables
on the right-hand side, i.e., include a factor Θ(Ξ, Ξ̇) and to
solve implicit model structures, Kaheman et al. (2020) pro-
posed a constrained optimization formulation where each can-
didate function is tested individually in an implicit and parallel
optimization. However, each of these individual equations may
be combined into a single constrained system of equations

Θ(Ξ, Ξ̇) = Θ(Ξ, Ξ̇)Ω such that Ω j j = 0. (8)

The constraint Ω j j = 0 forces the solution not to be the trivial
one (Ω = Iw×w) and the optimization problem can be written as

min
Ω

∥Θ(Ξ, Ξ̇)−Θ(Ξ, Ξ̇)Ω∥2, (9)

s.t. diag(Ω) = 0,and ∀|Ω{i, j}|< λ,Ω{i, j} = 0,

where λ is a sparsity-promoting parameter. This problem can
be solved in various ways, but in this study, the sparsity pattern
is obtained using sequentially thresholded least squares, which
iteratively computes a least-squares solution to minimize (9).
Any element of Ω smaller than a threshold λ is set to zero,
and then (9) is solved again with these fixed zero elements.
The sparsity parameter λ is a hyper-parameter, and each column
equation may require a different parameter λy (Kaheman et al.,
2020). In particular, to solve problem (9), CVX is used, a
package for specifying and solving convex programs (Grant and
Boyd, 2014).

The procedure is simple and consists of organizing the mea-
surements and their derivatives in the vector Θ(Ξ, Ξ̇), while a
large value is given to λ. Then, the value of this parameter is
decreased, and the fitting error ||Ξ̇− ˆ̇

Ξ||2/||Ξ̇||2 is analyzed for
each of the identified state derivatives ˆ̇

Ξ, for instance. A model
candidate is obtained when the error is small, and the vector Ω

is sparse. This procedure is repeated for each different library
Θ.

3.2 Computing Derivatives
Computing the measurement derivatives can be challenging
due to measurement scarcity and noise. The scientific literature
proposes various numerical differentiation methods, such as
filter-based approaches, Tikhonov regularization, and smooth-
ing splines, which have been successful in different applications
(Varah, 1982). Unfortunately, the mathematical formulation of
numerical differentiation is typically ill-posed, and one often
resorts to an ad hoc selection of one of the numerous computa-
tional methods.

In this study, Butterworth filtering is combined with the method
of van Breugel et al. (2020) to estimate the time derivative of
the measurement signals. The approach of van Breugel et al.
(2020) is a multi-objective optimization framework where a set
of parameters can be fine-tuned to estimate the derivatives of
noisy data.
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3.3 Selection of the Dictionary of Kinetic Laws (Activation,
Saturation, and Inhibition Factors)
Our approach will consider successively two distinct libraries
of basis functions to represent the nonlinear kinetic rates. The
first library is intended to discover activation and inhibition
mechanisms, and the second library is intended to get a model
in the popular form of Monod/Jerusalimski factors.

First, the reaction rates are represented by the kinetic model
structure proposed in (Grosfils et al., 2007a; Richelle and
Bogaerts, 2015):

ϕ j(ξ) = α j ∏
m∈Ri

ξ
γi,m
m ∏

l∈Pi

e−βi,lξl (10)

where α j > 0 is the jth rate constant, γi,m ≥ 0 the activation
coefficient of component m in the jth reaction, β j,l ≥ 0 the
inhibition coefficient of component l in the jth reaction. R j
and Pj are, respectively, the sets of indices of the reactants
and products that activate and/or inhibit reaction j. Note that
Eq. (10) is only able to account for a simple saturation effect
by the combination of activation and inhibition factors of the
same compound (Grosfils et al., 2007b; Richelle and Bogaerts,
2015). However, the main advantage of (10) is the possibility to
linearize the kinetic model structure concerning the parameters
by a logarithmic transformation of the form:

lnϕ j(ξ, t) = lnα j +∑h γh j lnξh(t)−∑l βl jξl(t), j ∈ [1,M], (11)
under the constraints:

[γh... j βl... j]≥ 0, (12)
which results in a sparse vector of γ and β factors, easily
inferred by a linear identification procedure (in the original
papers, a simple least-square solution is used).

Therefore, to cast the framework of the general kinetic model
structure into the parallel and implicit sparse identification
(Section 3.1), we first relax the constraint Ω j j = 0, replacing
it by Ω11 = 0. This eases the implementation of the constraints
imposed on γ and β (see (12)). From Eq. (11), ϕ j(ξ, t), which
is obtained by knowing the process stoichiometry and the nu-
merical differentiation of a predefined compound measurement,
can be expressed by the combination of the reactants and the
products involved in the process. Thus, the following general
library is used for each reaction:

Θ j(Ξ̂,
ˆ̇
Ξ) = [lnϕ j(ξ, t) 1 lnξ1(t) · · · lnξh(t) −ξ1(t) · · · −ξl(t)] , (13)

Ω j = [0 α j γ1 j · · · γh j β1 j · · · βl j]
T
, (14)

where j = [1, · · · ,M].

Once the activation and inhibition effects have been unveiled
by the values of γh j ̸= 0 and βl j ̸= 0, a second library of basis
functions can be proposed in terms of classical Monod and
Jerusalimski factors:

ϕ j(ξ) = µmax, j ∏
m∈R j

ξm

ξm +K j,ξm
∏
l∈Pj

K j,Iξ

K j,Iξl +ξl
X , (15)

i.e., in a well-accepted form in the study of biological models,
where µmax, j, is the maximum specific rate of reaction j, K j,ξm
and K j,Iξl are respectively the saturation and inhibition con-
stants of reaction j. In Remark 1, we present a simple example
of how to build this library, and Remark 2, we highlight the
interest of sparse identification to achieve this last step.
Remark 1. Identifying Monod law structures and their param-
eters using the direct application of the sparse identification
framework is unfeasible in cases where one wants to reveal if a

desired compound activates or inhibits the reaction rates. For
instance, let us consider a simple case of activation/inhibition
kinetics, i.e.,

µ(P) = µmax,P
P

P+KP

KI,P

P+KI,P
, (16)

where KP and KI,P are the half-saturation and inhibition con-
stants, respectively. Following the general sparse identification
procedure, (16) can be developed as follows:
(KPKI,P) ·µ(P)+(KP +KI,P) ·µ(P)P+1 ·µ(P)P2 = (µmax,PKI,P) ·P

(17)
and a regressive form where the regressor Θ(Ξ) and the param-
eter vector Ω read:

Θ(Ξ) =
[
µ(P) µ(P)P µ(P)P2 −P

]
, (18)

Ω = [(KPKI,P) (KP +KI,P) 1 (µmax,PKI,P)] . (19)

Consider now that P is a measured activating compound, and
µ(P) can be deduced from the derivative of the measurements
of P. Sparse identification should reveal that KI,P = 0 and
KP ̸= 0. However, canceling KI,P in Ω implies that the problem
is structurally unidentifiable as it is impossible to infer neither
the kinetic structure nor the parameter values. This illustrates
the importance of an a priori identification of the compound in-
fluences on the kinetics, which also allows a dramatic decrease
in the number of candidate functions of the library vector Θ(Ξ).
Remark 2. The parameters of the Monod and Jerusalimski
factors could be estimated using a classical nonlinear least
squares (NLS) approach based on the results of the previous
sparse identification which discovers the activating/inhibiting
compounds in each reaction. One could, therefore, wonder why
we propose an additional sparse identification step at this stage
of the procedure. The main reason is that sparse identification
does not require parameter initialization whereas a classical
NLS method is sensitive to initialization when the optimization
problem is multimodal, i.e., possesses several local minima.
Sparse identification, therefore, provides a good initial esti-
mate of the kinetic parameters for a further NLS identification
step (see next Section 3.4). Hence, parameter initialization is
achieved in a data-driven manner.

3.4 Global Identification
The separated identification of the stoichiometry and kinetics
may result in a parameter estimation bias. To solve this issue, a
global adjustment of the full parameter set can be achieved us-
ing the previously identified stoichiometric and kinetic parame-
ter values as initial guesses in a conventional nonlinear identifi-
cation procedure. A numerical optimizer from MATLAB can be
used for this purpose (“fmincon”, “fminsearch”, “lsqnonlin” or
a combination of the latter), minimizing the distance between
the vector of observations ξη and macroscopic model predic-
tions ξ(θ) in a nonlinear least-squares cost function of the form:

J(θ) =
Nexp

∑
w=1

ns

∑
i=1

(ξi,w(θ)−ξη,i,w)
T Q−1

i,w(ξi,w(θ)−ξη,i,w), (20)

where θ is the vector of parameters to be identified, index i
denotes the sample time of the wth experiment, and Qi,w is
a diagonal scaling matrix with the squares of the maximum
concentration levels (this allows scaling with respect physical
units and magnitudes). Parametric sensitivities can also be
computed by integration of the following ordinary differential
equation ξ̇θk, j =

∂ f j
∂ξ j

∂ξ j(i)
∂θk

+
∂ f j
∂θk

, where ξθk, j(i) is the sensitivity

of the jth state ξ j with respect to the kth parameter θk at time i,
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with ξ̇ j = f j the model RHS in (2). Parameter identifiability
can be assessed using the Fisher Information Matrix (FIM),
computed as:

FIM = ε
−2

ns

∑
i=1

ξ
T
θ,iQ

−1
i,wξθ,i, (21)

where ε2 is the a posteriori estimate of the relative measurement
error variance, inferred from the cost function residual ε2 =

J
nsNexp−p (where p is the number of parameters). An optimistic
estimate (i.e., a lower bound) of the parameter estimation error
covariance matrix is obtained from the inverse of the FIM:

Cov(θ)> FIM−1 (22)

4. CASE STUDY: PROTEIN PRODUCTION
CONSIDERING LACTATE SHIFT

Basically, mammalian cells consume glucose, its main carbon
source, and produce lactate. The accumulation of lactate leads
to cell growth and protein production inhibition. Cells are also
likely to shift their metabolism in case of a low glycolysis rate
(i.e., glucose consumption rate) combined with the presence
of a significant lactate concentration. This shift triggers lactate
consumption to compensate for the insufficient amount of glu-
cose. A three-reaction model has been developed in Pimentel
et al. (2023a):

k31G+Gn
ϕ1−→ k11Xv + k51L+ k61P (23a)

k52L
ϕ2−→ Xv (23b)

Xv
ϕ3−→ Xd + k63P (23c)

where Xv, Xd , G, Gn, L, and P are, respectively, the concentra-
tions of viable biomass, dead biomass, glucose, glutamine, lac-
tate, and proteins. The first reaction involves the consumption
of glucose and glutamine to produce viable biomass, lactate,
and proteins. This reaction is regulated by ϕ1. The second re-
action consists of the consumption of lactate to generate viable
biomass, governed by ϕ2. Finally, the third reaction represents
the death of viable biomass, leading to the production of dead
biomass and the release of proteins into the medium. Applying
mass balance to (23) yields the following ordinary differential
equation system:

dXv

dt
= k11ϕ1 +ϕ2 −ϕ3, (24a)

dXd

dt
= ϕ3, (24b)

dG
dt

=−k31ϕ1, (24c)

dGn
dt

=−ϕ1, (24d)

dL
dt

= k51ϕ1 − k52ϕ2, (24e)

dP
dt

= k61ϕ1 + k63ϕ3, (24f)

where the reaction rates are defined as:

ϕ1 = µmax,1
Gn

(KGn +Gn)
G

(KG +G)
Xv, (25a)

ϕ2 = µmax,2
L

(KL +L)
KGI

(KGI +G)
Xv, (25b)

ϕ3 = µdmax
KGnd

(KGnd +Gn)
Xv, (25c)

KGn, KG, KL are the half-saturation parameters, µmax,1, µmax,2,
and µdmax the maximum reaction rate parameters, and KGI and

KGnd the inhibition parameters. The reaction rate ϕ1 is driven
by two Monod factors activated by glucose and glutamine.
Likewise, ϕ2 stands for the selective consumption of lactate
activated by lactate and inhibited by the presence of glucose.
ϕ3 models the biomass death rate inhibited by the presence
of glutamine, which is the primary nitrogen source of the cell,
ensuring its viability.

Simulations of a cell batch culture were performed considering
independent and identically distributed (IID) Gaussian noise
e ∼ (0,σ2) corrupting the measurements. The imposed vari-
ances are 0.1× 106cell/ml, 0.0167× 106cell/ml, 0.2 g/l, 0.01
g/l, 0.1 g/l, and 1.0 µg/ml for viable biomass Xv, dead biomass
Xd , glucose G, glutamine Gn, lactate L, and proteins P, respec-
tively, which are taken four times a day (ts = 0.25 days) for a
culture time of seven days (tbatch = 7 days).

4.1 Step 1: Number of Reactions and Stoichiometry
This step of the whole methodology is the subject of an earlier
publication (Pimentel et al., 2023b) and is not described in
detail in this paper. Here, let us focus on the case study and say
that the data samples are first processed using the derivative ap-
proximation method presented in Section 3.2, delivering (Ξ̂, ˆ̇

Ξ).
These numerical derivatives are used as library functions, i.e.,

Θ(Ξ̂, ˆ̇
Ξ) = [ ˆ̇Xv

ˆ̇Xd
ˆ̇G ˆ̇Gn

ˆ̇L ˆ̇P]. (26)
Then, sparse identification is applied, and the following results
are obtained with the corresponding values of the sparsity
parameter λ:

ˆ̇G = 17.858 ˆ̇Gn λ = 10 (27a)
ˆ̇P = 4.1955 ˆ̇Xd −102.76 ˆ̇Gn λ = 2 (27b)
ˆ̇L =−1.1379 ˆ̇Xv −1.2632 ˆ̇Xd −18.124 ˆ̇Gn λ = 1 (27c)
ˆ̇Xv =−1.0699 ˆ̇Xd −15.984 ˆ̇Gn −0.88484 ˆ̇L λ = 0.5 (27d)
ˆ̇Xd =−0.21364 ˆ̇Xv −2.3115 ˆ̇Gn −0.21863 ˆ̇L λ = 0.08 (27e)
ˆ̇Gn =−0.064311 ˆ̇Xv −0.055947 ˆ̇Xd −0.052474 ˆ̇L λ = 0.02 (27f)

The inferred number of reactions is the maximum number of
species concentration derivatives involved in each equation of
(27), i.e., three. Combining the relations found in (27) with
three assumptions based on some process a priori knowledge,
the values of the stoichiometric parameters of the macroscopic
reactions can be calculated. The first assumption is that a
growth reaction is associated with glucose and glutamine. Thus,
we can define a first reaction rate ρ1 = − ˆ̇Gn (we use another
notation to make a possible distinction with the rates ϕ j of
the original model) and use (27a) to obtain ˆ̇G = −17.858ρ1,
which delivers k31, see (24c). The second assumption considers
a death reaction, where we define ρ2 =

ˆ̇Xd (obviously ρ1 = ϕ1,
but ρ2 = ϕ3). Using the definitions of ρ1 and ρ2 combined
with (27b), the stoichiometric parameters k61 and k63 can be
found (see (24f)). Note that the remaining equations, (27c) to
(27f), convey the same information. Thus, using ρ1 and ρ2
with (27c) yields k̂52 and a second term that is the relation
k̂51 = 18.0643−1.1301k̂11. To obtain the values of k̂51 and k̂11,
a third assumption is required. Thus a new library Θ(Ξ, Ξ̇) =

[ ˆ̇Xv
ˆ̇Xd

ˆ̇G ˆ̇Gn
ˆ̇P] is defined, which no longer considers

ˆ̇L. This results in the new relation ˆ̇Xv = 1.5296 ˆ̇Xd − 7.3401 ˆ̇Gn
from where we can obtain k̂11 and in turn k̂51 using the previous
relation. Table 1 presents the identified parameters in the Step 1
Ident column.
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Table 1. Identified Parameters of model (24). Step 1 is the identification of the stoichiometric parameters.
Step 2 is the identification of the kinetic parameters. The global identification considers the full

parameter set. σerr is their respective relative standard deviations of estimation errors.

Parameter Original Step 1 Ident Step 2 Ident σerr Global Ident σerr

µmax,1 0.460 — 0.33629 2.246 0.36234 0.46351
µmax,2 0.400 — 0.45528 1.4241 0.30113 0.17892
µdmax 0.03 — 0.014408 0.53245 1.8859 39.834
KG 1.10 — 2.5748 34.716 3.9616 1.1699
KGn 0.250 — 0.1805 34.323 0.044876 1.0061
KL 1.20 — 1.2668 1.5872 0.85507 0.35308
KGI 0.800 — 1.083 2.9575 1.1219 0.78463
Kgnd 0.002 — 0.0026574 0.92427 2.7585e-05 39.944
k11 6.80 7.3401 — 0.28706 6.3768 0.088159
k31 18.0 17.858 — 0.018053 18.733 0.0058337
k51 10.70 9.7689 — 0.22384 11.709 0.05156
k52 1.20 1.1301 — 0.1016 1.1888 0.028271
k61 107.80 102.76 — 0.034894 108.99 0.010779
k63 2.90 4.1955 — 1.507 2.4735 0.37776
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Fig. 1. Red error bars are the noisy process measurements,
light-gray dashed lines are the sparse identification con-
sidering Step 1+2, and dark-gray lines show the results of
the global identification.

Table 2. Activation and Inhibition terms for the
reaction rates

Parameter µ1,gen(·) µ2,gen(·) µ3,gen(·)
α -1.2939 -0.7868 -4.3143
γG 0.1368 0 0
γGn 0.8309 0 0
γL 0 1.2768 0
βG 0 0.3037 0
βGn 0 0 8.9093
βL 0 0.8502 0
λ 0.1 0.01 0.9

4.2 Step 2: Revealing Kinetic Structures and Parameters
Two distinct libraries of basis functions are used to estimate
the nonlinear kinetic rates. The first intends to discover the
activation and inhibition mechanisms, and the second uses
previous results to define a model in the popular form of
Monod/Jerusalimski factors.

Therefore, in the first step, we use the general library (13),
which in this case reads:

Θ(Ξ̂, ˆ̇
Ξ) =

[
ln(µ̂i(·)) 1 ln(Ĝ) ln(Ĝn) ln(L̂) −Ĝ −Ĝn −L̂

]
, (28)

where i = [1, · · · ,M]. µ̂i(·) = ϕ̂i/X̂v is obtained from the mea-
surement derivatives divided by X̂v. Indeed, the rates are respec-
tively approximated by ϕ̂1 = − ˆ̇Gn, ϕ̂2 = (k̂51/k̂52)

ˆ̇Gn − ˆ̇L/k̂52,
and ϕ̂3 = ˆ̇Xd (for simplicity of analysis of the results we use
back the notation of the reference model). Then, using (9) and
sweeping λ to minimize the errors of each of the estimates, we
obtain the values presented in Table 2.

The second step to estimate the parameters of nonlinear ki-
netic rates in the form of Monod/Jerusalimski factors exploits
the results of this latter Table. From the second column, the
structure of the first reaction rate can be defined as µ̂1(G,Gn),
activated by glucose and glutamine Monod factors imposed by
γG ̸= 0 and γGn ̸= 0. Accordingly, the suggested library and the
unknown parameter vector are composed of the reorganization
of the Monod terms as a sum of its factors, which reads:

Θ(Ξ, Ξ̇) =
[
µ̂1ĜnĜ µ̂1Ĝn µ̂1Ĝ µ̂1 ĜnĜ

]
, (29)

Ω = [1 KG KGn KGKGn −µmax,1]
T
. (30)

In the same way, the third column of Table 2 shows that lactate
drives both activation and saturation (γL ̸= 0 and βL ̸= 0) while
glucose is an inhibitor (βG ̸= 0). The corresponding regression
vectors read:

Θ(Ξ, Ξ̇) =
[
µ̂2 µ̂1Ĝ µ̂2L̂ µ̂2L̂Ĝ L̂

]
, (31)

Ω = [KLKGi KL KGi 1 −µmax,2KGi]
T
. (32)

The last column of Table 2 shows that µ̂3 is inhibited by
glutamine and Θ becomes:

Θ(Ξ, Ξ̇) =
[
µ̂3Ĝn µ̂3 1

]
, (33)

Ω = [1 Kgnd −µdmaxKgnd ]
T
. (34)

Table 1 reports the identified parameter values. The Step 2
Ident column shows fair values compared to the reference ones,
while the relative standard deviations of the estimation errors
remain in an acceptable range. It is important to highlight that
all the data-driven procedures have been implemented in a
decentralized way. The measurement derivative estimates are
considered independently, and the identification of the kinetic
parameters is run by considering each rate separately. For
instance, ϕ1 affects Ẋv, Ġ, Ġn, L̇, and Ṗ. Still, it has been
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inferred assuming ϕ̂1 = − ˆ̇Gn. Therefore, a global estimation
of the full model is required to cancel the remaining estimation
bias.
4.3 Global Identification
The noisy measurements and the proposed model predictions
are respectively contained in the vectors ξη and ξ(θ). In addi-
tion, we consider the full parameter set vector

θ = [µmax,1 µmax,2 KGn KGKL KGI µdmax Kgnd k11 k31

k51 k52 k61 k63 Xv0 Xd0 G0 Gn,0 L0 P0]
(35)

which also includes the initial concentrations as parameters.
The parameter adjustments and the relative standard deviation
of the estimation errors are computed according to (20) and
(22). Figure 1 highlights the fitting improvement, while the
last two columns of Table 1 report the new relative standard
deviation values. It is worth noting that the values of µdmax and
Kgnd , in Step 2, are related to the range of values of the regressor
µ̂3 in (33), which is a result of the product µdmaxKgnd in (34).
This can also be noticed in the global identification where
µdmax is two orders of magnitude larger than the original value.
In comparison, Kgnd is two orders of magnitude lower, and
both parameters exhibit a large relative standard deviation. This
shows that only the product of these parameters is practically
identifiable.

5. CONCLUSION
This paper presents a unified data-driven approach based on
the sparse identification framework to infer macroscopic re-
action schemes, the corresponding stoichiometry, and the ki-
netic structures. A mammalian cell culture mechanistic model
is proposed as a case study validating the proposed method.
Future work entails improving the data-driven approach for
accurately differentiating measurement trajectories since they
are sensitive to process noise. Another perspective is the use
of data-driven methods to estimate reaction rates, removing the
need for numerical differentiation.
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