
Evaluation of Direct and Iterative
Approaches for the Parallel Solution of
Structured Nonlinear Optimization

Problems

Laurens R. Lueg ∗ Michael Bynum ∗∗ Carl D. Laird ∗

Lorenz T. Biegler ∗

∗ Chemical Engineering Department, Carnegie Mellon University,
Pittsburgh, PA 15213 USA (e-mail: lb01@andrew.cmu.edu)
∗∗ Sandia National Laboratories, Albuquerque, NM 87185 USA

Abstract: Large-scale nonlinear optimization problems arise in a variety of applications and
often exhibit some structure, which can be exploited by the use of parallel decompositions to
speed up the solution. We present a general problem formulation for structured optimization
problems and apply the interior point method, outlining different approaches to parallelize the
step computations using the Schur complement decomposition. The use of an iterative linear
solver can boost performance, given an appropriate preconditioner for the Schur complement.
We present an approach to use sparse factorizations from previous solver iterations as a
preconditioner, and compare it to both an L-BFGS preconditioner and direct solution.

Keywords: distributed optimization for large-scale systems, parallel computing, nonlinear
optimization

1. INTRODUCTION

The solution of nonlinear programming problems (NLPs)
is an essential task in a variety of applications, such as
process design, parameter estimation or model-predictive
control. Different problem features, such as discretized dy-
namics or spatial heterogeneity, induce a structure on the
associated optimization problem, which may be exploited
for parallelization. This is especially relevant in applica-
tions where the solution of the optimization problem is
required in real-time.

The development of parallel methods for NLPs is an active
area of research. The interior point method (IPM) is a
widely-used algorithm for solving large-scale NLPs and
it incurs most of the computational cost by factorizing a
sparse indefinite KKT system at every iteration (Wächter
and Biegler (2006)). For structured problems, the use
of linear-algebra-level decompositions, such as the Schur
complement, can be employed to speed up this operation
(Zavala et al. (2008); Kang et al. (2014); Rodriguez et al.
(2023)). The use of iterative linear solvers in combination
with these methods has been identified as a promising
avenue for performance improvements. However, the use
of an appropriate preconditioner is imperative (Kang et al.
(2014)). In this work, we take a closer look at this aspect
for grid-structured parameter estimation problems. We
compare the direct formation and factorization of the
Schur complement with the implicit solution using an L-
BFGS preconditioner proposed in Kang et al. (2014), as
well as a preconditioner based on sparse factorizations of
the Schur complement from previous solver iterations. We
discuss the performance of the different approaches on

a medium-sized problem and outline the trade-offs with
respect to parallel performance.

2. PROBLEM STATEMENT

We begin by giving a general formulation for a structured
optimization problem, which is characterized by nP prob-
lem partitions, indexed below by k:

min

nP∑
k=1

ψk(xk, yk) (1a)

s. t. hk(xk, yk) = 0 ∀k (1b)

gk(xk, yk) ≤ 0 ∀k (1c)

yk = N>k y ∀k (1d)

xk ∈ Rnk , yk ∈ Rpk ∀k (1e)

y ∈ Rp (1f)

where gk : Rnk+pk 7→ Rrk , hk : Rnk+pk 7→ Rlk and
ψk(xk, yk) : Rnk+pk 7→ R are smooth and possibly non-
convex functions. N>k ∈ Rpk×p is a binary matrix with
row sum equal to one and column sum at most one. This
selects the appropriate complicating variables from y ∈ Rp
(pk ≤ p) for each partition k. We can visualize the extent
of interaction between problem partitions by defining a
bipartite graph G = (U, V,E), where

U =

nP⋃
k=1

{y(i)k }∀i=1...pk , V = {y(i)}∀i=1...p (2)

E = {(y(i)k , y(j)) ∈ U × V | N (j,i)
k = 1}, (3)

where vertices U and V represent local and global compli-
cating variables, respectively. An example of such a graph
for a small problem is shown in Fig. 1 (U in white, V

12th IFAC International Symposium on
Advanced Control of Chemical Processes
July 14-17, 2024. Toronto, Canada

Copyright © 2024 the authors. Accepted by IFAC for
publication under a Creative Commons License CC-
BY-NC-ND.

796

y(1)

y(2)

y
(1)
1

y
(1)
2

y
(1)
3

y
(2)
3

Partition 1

Partition 2

Partition 3

Fig. 1. Visualization of problem structure with respect to
complicating variables. Global complicating variables
on the left, local complicating variables on the right.
Edges represent equality constraints.

Fig. 2. Depending on partitioning, different structures can
arise for identical problems.

in black). Edges E represent the mapping from global to
local variables for each partition, according to Nk. Various
types of optimization problems can be described using
this framework, which shares some characteristics with
previous works on describing structure in optimization
problems, e.g. variable graphs in Allman et al. (2019) or a
modeling paradigm based on hypergraphs (Jalving et al.
(2022)). In considering a structured optimization problem
as described in (1), a partitioning (and thus induced graph
G) is not unique. In Fig. 2, two alternatives for an ex-
ample structure are shown. By reducing the number of
partitions, the number of complicating variables is halved.
Conversely, the size of the individual partitions in terms
of nk (sketched as size of the rounded boxes in Fig. 2)
increases. This defines a trade-off between number of com-
plicating variables and the number of partitions, as well as
the balancing of partition sizes. This trade-off will become
important for the parallel solution of structured problems
using the Schur complement method.

3. INTERIOR POINT METHOD FOR STRUCTURED
PROBLEMS

We apply the standard interior point method to Problem
(1). After moving inequality constraints (1c) to the ob-
jective using a logarithmic barrier term with coefficient
µ, the Lagrangian of the resulting augmented problem is
given by:

L =

nP∑
k=1

ψk(xk, N
>
k y) +

nP∑
k=1

λ>k hk(xk, N
>
k y)

+µ

nP∑
k=1

rk∑
i=1

ln(−g(i)k (xk, N
>
k y)), (4)

where we substituted the local definition for yk in terms
of the global complicating variables. The KKT conditions
for first-order optimality for the augmented problem are
hence given by:

∇xk
L = ∇xk

ψ +∇xk
hkλk +∇xk

gkzk = 0, ∀k=1...nP

(5a)

hk = 0, ∀k=1...nP
, (5b)

Gkzk = µ1rk , ∀k=1...nP
(5c)

∇yL =

nP∑
k=1

Nk [∇ykψk +∇ykhkλk +∇ykgkzk] = 0 (5d)

where Gk = diag({−g(j)k }∀j=1...rk) ∈ Rrk×rk . The evalua-
tion points for all functions were dropped for readability,
but they are analogous to (4). Applying a modified New-
ton’s method to solve (5), the following linear system is
solved at each iteration:

W1 A1

W2 A2

. . .
...

WnP
AnP

A>1 A>2 · · · A>nP
D

∆u1
∆u2

...
∆unP

∆y

 = −

r1
r2
...
rnP

ry

 , (6)

where

Wk =

[
∇2
xkxk
L+∇xk

gkG
−1
k Z̄xk

+ δHI ∇xk
hk

(∇xk
hk)> −δCI

]
, (7)

∆uk =

[
∆xk
∆λk

]
, (8)

A>k = Nk
[
∇ykxk

L+ Z̄>ykG
−1
k (∇xk

gk)> ∇ykhk
]
, (9)

rk =

[
∇xk
L+∇xk

gk(−zk + µG−1k 1rk)
hk

]
, (10)

ry =

nP∑
k=1

Nk
[
∇ykL+∇ykgk(−zk + µG−1k 1rk)

]
, (11)

D = δHIp +

nP∑
k=1

Nk(∇2
ykyk
L+∇ykgkG

−1
k Z̄yk)N>k .

(12)

The step direction in zk was eliminated and can be
recovered as

∆zk = −zk +G−1k [Z̄xk
∆xk + Z̄ykN

>
k ∆y + µ1rk], (13)

where

Z̄xk
= (∇xk

gkZk)> ∈ Rrk×nk , (14)

Z̄yk = (∇ykgkZk)> ∈ Rrk×pk . (15)

The parameters δH and δC are chosen to ensure inertia
requirements (Wächter and Biegler (2006)). The variables
are updated by

x+k = xk + αp∆xk, (16)

λ+k = λk + αd∆λk, (17)

z+k = zk + αd∆zk, (18)

y+ = y + αp∆y, (19)

where the step lengths are chosen by the fraction-to-the-
boundary rule (Wächter and Biegler (2006)). Once (5) is
solved using this procedure, the barrier parameter µ is
decreased, and the process is repeated until a solution
tolerance for the overall problem (1) is met. In many
applications where function and gradient evaluations are
relatively cheap, the majority of the computational effort
of solving (1) is spent on repeatedly solving systems
described by (6).

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

797

3.1 Parallel Implementations of the Schur Complement
Method

The solution of (6) can be decomposed as follows:

S = D −
nP∑
k=1

A>kW
−1
k Ak, (20)

S∆y = −ry +

nP∑
k=1

A>kW
−1
k rk =: rS , (21)

∆uk = −W−1k (Ak∆y + rk) , (22)

where S is the Schur complement. For this approach, we
identify the following high-level steps: forming the Schur
complement (20), solving for the complicating variables
(21) and solving for the local variables (22). This method
has been termed the explicit Schur complement method
(Kang et al. (2014)). A parallel implementation of this
algorithm is given in Alg. 1. Note that we assume the
number of available parallel processors to be equal to
the number of partitions nP . In this setting, factorizing
the diagonal blocks (1.4), forming S and rS (1.6-1.13)
as well as computing ∆uk (1.18-1.21) can be performed
in a distributed manner. In between, data needs to be
shared between processors (1.14-1.15), where we used
allreduce to denote a sum operation over all processors.
Furthermore, ∆y needs to be computed on all processors
(1.16-1.17). The factorization and backsolve operations for
Wk and S are performed using a sparse solver for indefinite
systems, such as HSL MA27 (Duff and Reid (1983)).

Algorithm 1 Explicit Schur complement

1: procedure xsc({Wk}∀k, {Ak}∀k, D, {rk}∀k, ry)
2: Given: sparse linear solver interface lsi
3: for k = 1...nP do
4: lsi.factorize(Wk) . Factorize blocks
5: Vk ← 0 ∈ Rp×p
6: for i = 1...pk do . Form S

7: j ← Index where N
(j,i)
k = 1

8: mk ← lsi.backsolve(Wk, A
>(j)
k)

9: V jk ← V jk −Akmk

10: end for
11: vk ← lsi.backsolve(Wk, rk) . Form rS
12: rSk ← Akvk
13: end for
14: S ← D + allreduce(Vk) . Communicate
15: rS ← −ry + allreduce(rSk) . Communicate
16: lsi.factorize(S) . Factorize S
17: ∆y ← lsi.backsolve(S, rS) . Solve for ∆y
18: for k = 1...nP do . Solve for ∆uk
19: rk ← rk +A>k ∆y
20: ∆uk ← lsi.backsolve(Wk,−(A>k ∆y + rk))
21: end for
22: Return {∆uk}∀k,∆y
23: end procedure

An alternative method to utilize the Schur complement to
solve (6) is to avoid forming S explicitly, and instead apply
the preconditioned conjugate gradient (PCG) algorithm to
solve

HS̃(∆y) = HrS , (23)

where S̃(u) :=

(
D −

nP∑
k=1

A>kW
−1
k Ak

)
u, (24)

and H an appropriate preconditioner. This method has
been termed the implicit Schur complement method (Kang
et al. (2014)). In order to apply PCG, the Schur com-
plement is required to be positive definite. This can be
achieved by adjusting parameter δH whenever negative
curvature is detected within a PCG step. See Kang et al.
(2014) for a more detailed discussion on how to fulfill the
IPM inertia requirements when applying the implicit Schur
complement method. Note that PCG does not require the
explicit formation of either S or H, but simply the ability
to compute the associated matrix-vector product. The
implicit Schur method is given in algorithmic form in Alg.
2. It is evident that the compute and communication costs
incurred by the explicit variant to form and factorize S is
avoided, at the expense of the use of the PCG algorithm.

Algorithm 2 Implicit Schur complement

1: procedure isc({Wk}∀k, {Ak}∀k, D, {rk}∀k, ry)
2: Given: sparse linear solver interface lsi
3: for k = 1...nP do
4: lsi.factorize(Wk)
5: vk ← lsi.backsolve(Wk, rk)
6: rSk ← Akvk
7: end for
8: rS ← −ry + allreduce(rSk)
9: Update preconditioner H

10: ∆y ← Solve (23) using PCG
11: for k = 1...nP do
12: rk ← rk +A>k ∆y
13: ∆uk ← lsi.backsolve(Wk,−(A>k ∆y + rk))
14: end for
15: Return {∆uk}∀k,∆y
16: end procedure

Hence, in order to accurately compare the performance of
the explicit and implicit Schur complement methods, the
cost of using PCG needs to be evaluated. Indeed, PCG
is an iterative scheme which requires the evaluation of
the matrix-vector products S̃(·) (24) and H(·) (23) once
per iteration. As the diagonal blocks Wk were already
factorized in (2.4), the main computational cost of S̃(·)
is the execution one backsolve operation per partition.
PCG might still require many iterations to converge to
a solution. To avoid this, a preconditioner H(·) is used to
improve the conditioning of the linear system. However,
defining a sensible preconditioner for the Schur comple-
ment system without forming S is not straightforward.

3.2 Preconditioning the Schur Complement System

The convergence rate of PCG for (21) depends on

κ(S)=λmax(S)
λmin(S)

, with improved convergence the closer κ

is to 1 (Saad (2003)). The use of a preconditioner aims
to improve the condition number of the preconditioned
system (23), thus decreasing the number of PCG iterations
needed to solve the system, at the expense of applying the
preconditioner once per PCG iteration. An additional cost
is incurred by forming the preconditioner. In the context

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

798

of interior point methods, where systems such as (6) are
solved repeatedly, the use of an L-BFGS preconditioner
based on PCG iterates from previous interior-point iter-
ations has been proposed (Morales and Nocedal (2000),
Kang et al. (2014)). This involves maintaining a memory
of m past PCG iterates, and computing H(·) using for-
mulations as described in Nocedal (1980) and Byrd et al.
(1994). In the case of L-BFGS, the preconditioner requires
storage of O(m) dense vectors of size p, whereas applying
it requires O(mp) floating point operations.

Here, we also propose an alternative preconditioning
scheme for Schur complement systems in the context of the
interior-point method. Instead of maintaining a memory
of CG iterates to compute H(·), the Schur complement
is formed and factorized explicitly in the first interior-
point iteration, and the associated backsolve operation
is subsequently used as preconditioner. If the number of
PCG iterations required to solve (23) exceeds a specified
threshold τcg, the preconditioner is updated by re-forming
and factorizing S in the next interior point iteration. The
preconditioner is thus

H(u) = backsolve(S−, u) ≈ S−1u, (25)

where S− is the most recently factorized Schur comple-
ment, and S the current one. To choose a threshold τcg, the
cost of forming and factorizing S has to be weighed against
the cost of additional PCG iterations at subsequent steps
in the interior point method. A decision rule based on
complexity estimates for backsolve and factorization op-
erations is conceivable, however we omit this here and
employ a heuristic that selects τcg proportional to the size
of the Schur complement p. We call this approach adaptive
Schur complement in the following.

4. COMPUTATIONAL EXPERIMENTS

The performance of the three approaches outlined above
– explicit Schur complement (XSC), implicit Schur com-
plement with L-BFGS preconditioner (ISC) and adaptive
Schur complement (ASC) – is compared on a set of syn-
thetic parameter estimation problems from the field of
infectious disease modelling. The associated nonlinear op-
timization problem is given in (26). For each geographical
region (e.g. counties, indexed by c in (26)), we define
the differential variables S,E, I,R (denoting susceptible,
exposed, infectious and recovered compartments of the
county’s population, respectively), the forcing term f , as
well as an error term, which is decomposed into positive
and negative components to allow for L1 regularization (cf.
(26a)). The parameter to be estimated for each county
c is the contact rate β, which is modeled as a piecewise
constant function over time, with K time intervals. Fixed
parameters of the model include the reporting fraction
and reporting delay, ρ and κ, regularization coefficient λ,
incubation rate σ and recovery rate γ. The model is fitted
to simulated data of daily new cases Y , for nC counties
and T time steps. In our experiments, we use K=10 and
T=200.

min

nC∑
c=1

T∑
t=1

(ρσEc,t−1 − Yc,t+κ)2 + λ(ε+c,t + ε−c,t) (26a)

Sc,t+1 = (1− fc,t)Sc,t − (ε+c,t − ε−c,t), ∀c,t (26b)

Ec,t+1 = (1− σ)Ec,t + fc,tSc,t + (ε+c,t − ε−c,t), ∀c,t (26c)

Ic,t+1 = (1− γ)Ic,t + σEc,t, ∀c,t (26d)

Rc,t+1 = Rc,t + γIc,t, ∀c,t (26e)

fc,t = βc,k(t)Ic,t +
∑
j 6=c Cc,j,tβj,k(t), ∀c,t (26f)

Sc,0 = 1, Ec,0 = Ic,0 = Rc,0 = 0, ∀c (26g)

S,E, I,R, f , ε+, ε− ∈ RnC×T
≥0 ,β ∈ RnC×K

≥0 . (26h)

Interaction between counties is modeled through the co-
efficient tensor C, where Cc,j,t is an approximation for
the likelihood of contact between individuals from county
c and infected individuals from county j at time t (see
Cummings et al. (2021) for more information on how to
estimate this term). Here we assume the sparsity pattern
of this tensor to be constant over time, so that a fixed
structure of interaction between counties is defined. This
is illustrated for the real-world example of Pennsylvania
in Fig. 3, where interaction between counties is given as a
graph.

Fig. 3. Illustration of epidemic model structure for Penn-
sylvania, showing mobility patterns between counties
(grey, red), as well as partitioning of counties with
nP=4 (colored).

In order to apply the methods discussed above to this
problem, we must define a problem partitioning. Given
that nP≤nC , this requires the grouping of geographical
regions into nP partitions. In Fig. 3, we illustrate the
partitioning of Pennsylvania into nP=4 partitions. Given
such a partitioning, the complicating variables of (26)
are the contact rates of counties which are connected to
counties from other problem partitions as defined by the
sparsity pattern of C (highlighted in red in Fig. 3). Hence,
the partitioning of geographical regions has direct impact
on the number of complicating variables, partition size and
thereby performance of the parallel decomposition schemes
discussed in this report. This is discussed further in Sec.
4.2. In our tests, we only consider a simplified square grid
of counties, where each county interacts with at most four
neighbors. Lastly, we note that for the problems solved
in our experiments, the only active inequalities at a local
solution were those associated with the non-negativity of
the decomposed error terms ε+ and ε− (26h). These can be
avoided by using an L2 regularization, however this did not
significantly affect the performance of the preconditioners
in our tests. Generally, the relationship between the active
set and the conditioning of the Schur complement of the
KKT system could be a relevant topic for future work.

All tests were performed on a single node of the Bridges-
2 machine at the Pittsburgh Supercomputing Center

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

799

0 10 20 30 40
IPM iteration

0

500

1000

#
P

C
G

it
er

at
io

n
s

ISC

ASC, τ = p/5

ASC, τ = p/10

ASC, τ = p/100

re-factorization

Fig. 4. Required PCG iterations using L-BFGS (ISC)
and ASC preconditioners (for varying τcg) at each
IPM iteration. Round markers indicate when re-
factorizations where performed.

(Brown et al. (2021)), using at most 64 cores. For the
L-BFGS preconditioner, m=50 PCG iterates were sam-
pled uniformly from the previous interior point iteration
to construct the preconditioner, as described in Morales
and Nocedal (2001). For the ASC preconditioner, different
values of τcg are investigated in Sec. 4.1, we chose τcg=p/10
in Sec. 4.2. We used parapint 1 , a Python package for
parallel nonlinear optimization (Rodriguez et al. (2023))
to implement the algorithms outlined above.

4.1 Comparison of PCG Preconditioners

First, we will highlight the difference in performance be-
tween the ISC and ASC preconditioners. We applied the
interior-point method to five instances (with different ran-
dom initializations for data generation) of the test problem
(26), with nC=256 and nP=64, resulting in p=2560 com-
plicating variables. Using either an L-BFGS preconditioner
or ASC for the Schur complement, we compare the average
number of PCG iterations needed to solve (23) at each iter-
ation of the interior point method. The results are shown in
Fig. 4. The L-BFGS preconditioner performs well initially,
however the performance deteriorates as the interior point
method progresses. This is likely due to the ill-conditioning
of the KKT system at later iterations, and the inability of
the iterates from previous steps to accurately capture this
development. For the ASC preconditioner, the number of
PCG iterations is dependent on the threshold τcg. A lower
threshold reduces the number of PCG steps, at the cost of
more frequent re-factorizations of the Schur complement
(as indicated by the round markers on the x-axis in Fig.
4).

4.2 Strong Scaling Tests

To investigate which of the proposed approaches achieves
better overall parallel performance on the test problem, we
solve the problem described above (nC=256) repeatedly
while increasing nP and observing the required solution
time, as well as the proportion of that time spent in
the different subroutines of the respective methods. In
this work, we use a naive partitioning of the 2D problem
structure, the properties of which are summarized in Table
1. Namely, for each number of partitions/processors nP
considered here, we denote the total number of complicat-
ing variables p, the maximum number of local complicating
variables across all partitions maxk pk, and the number of

1 https://github.com/sandialabs/parapint

Table 1. Partitioning statistics.

nP 2 4 8 16 32 64

p 320 960 2240 2560 2560 2560
maxk pk 320 640 640 480 250 140

nk 153,600 76,800 38,400 19,200 9,600 4,800

Fig. 5. Strong scaling profiles for XSC (top left), ISC (top
right) and ASC (bottom left).

local variables nk, which is equal for all partitions. These
statistics will help us to understand the scaling results of
the different methods. In Fig. 5, it is shown that although
the overall solution time of XSC is high initially, forming
the Schur complement scales well with nP . This agrees
with the relevant partitioning statistics from Table 1, as
maxk pk backsolves with Wk (size proportional to nk) have
to be performed in serial to form S – both eventually
decrease as nP increases. In the case of ISC, we observe
virtually no performance improvements up to nP=16, as
the number of PCG iterations increases with p, yielding no
performance gain even though the time required to apply
S̃(·) decreases with nk. As p stagnates for nP > 16, we

do observe the parallelization of S̃(·), as well as the serial
nature of H(·). Finally, ASC achieves the lowest overall
solution times up until nP=64, combining some of the
scaling qualities of both XSC and ISC. Again, the limiting
factor for high nP appears to be the serial preconditioner
(a backsolve with the S− in this case).

5. CONCLUSION

In this study, we introduced a general formulation for
structured nonlinear optimization problems, and outlined
a Schur complement decomposition approach to parallelize
the application of the interior point method to solve
such problems. Both explicit and implicit approaches to
solve the Schur complement system are discussed, and
for the latter, a preconditioner based on factorizations
from previous interior point iterations was introduced.
We compared these approaches on a parameter estimation
problem defined over a 2D grid, and show that the explicit
Schur complement approach spends the majority of time
forming the Schur complement, but scales well with the
number of problem partitions. The implicit approaches
suffer from the fact that the number of complicating
variables grows with the number of partitions, thus leading
to limited parallel scaling of applying PCG. Still, the

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

800

proposed adaptive Schur complement approach is able to
achieve lower absolute solution times than the explicit
approach on the test problems considered here.

5.1 Future Work

Several factors which affect the parallel performance of
the presented approaches, that were not discussed in this
work, deserve further attention. The analysis performed
here for problems defined over a 2D grid is likely to yield
very different results for differently structured problems.
The integration of methods to detect problem structure
and determine an appropriate partitioning for different de-
composition schemes automatically (Mitrai et al. (2022))
would improve the general applicability of the approaches
discussed here. Furthermore, our analysis offered some
indication that for the implicit schemes, the application
of the preconditioner is likely to become a bottleneck for
larger problems, as it cannot be applied in a distributed
manner in its current form. For some problem structures,
the use of preconditioners from the PDE literature, such
as balanced domain decomposition (e.g. Mandel (1993))
appears to be a promising way to address this issue,
especially in combination with more scalable methods to
form the Schur complement for structured problems (Petra
et al. (2014)).

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multi-mission labora-
tory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC (NTESS), a wholly
owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Se-
curity Administration (DOE/NNSA) under contract DE-
NA0003525. This written work is authored by an employee
of NTESS. The employee, not NTESS, owns the right, title
and interest in and to the written work and is responsible
for its contents. Any subjective views or opinions that
might be expressed in the written work do not necessarily
represent the views of the U.S. Government. The publisher
acknowledges that the U.S. Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this written work
or allow others to do so, for U.S. Government purposes.
The DOE will provide public access to results of federally
sponsored research in accordance with the DOE Public
Access Plan.

This work used Bridges-2 at Pittsburgh Supercomputing
Center through allocation MTH230029 from the Advanced
Cyberinfrastructure Coordination Ecosystem: Services &
Support (ACCESS) program, which is supported by Na-
tional Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

REFERENCES

Allman, A., Tang, W., and Daoutidis, P. (2019). Decode: a
community-based algorithm for generating high-quality
decompositions of optimization problems. Optimization
and Engineering, 20, 1067–1084.

Brown, S.T., Buitrago, P., Hanna, E., Sanielevici, S.,
Scibek, R., and Nystrom, N.A. (2021). Bridges-2: A

platform for rapidly-evolving and data intensive re-
search. In Practice and Experience in Advanced Re-
search Computing, 1–4.

Byrd, R.H., Nocedal, J., and Schnabel, R.B. (1994). Rep-
resentations of quasi-newton matrices and their use in
limited memory methods. Mathematical Programming,
63(1-3), 129–156.

Cummings, D., Hart, W., Garcia-Carreras, B., Lanning,
C., Lessler, J., and Staid, A. (2021). Spatio-temporal
estimates of disease transmission parameters for covid-
19 with a fully-coupled, county-level model of the united
states. Technical report, Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States).

Duff, I.S. and Reid, J.K. (1983). The multifrontal solution
of indefinite sparse symmetric linear. ACM Transactions
on Mathematical Software (TOMS), 9(3), 302–325.

Jalving, J., Shin, S., and Zavala, V.M. (2022). A graph-
based modeling abstraction for optimization: Concepts
and implementation in plasmo. jl. Mathematical Pro-
gramming Computation, 14(4), 699–747.

Kang, J., Cao, Y., Word, D.P., and Laird, C.D. (2014).
An interior-point method for efficient solution of
block-structured nlp problems using an implicit schur-
complement decomposition. Computers & Chemical
Engineering, 71, 563–573.

Mandel, J. (1993). Balancing domain decomposition.
Communications in numerical methods in engineering,
9(3), 233–241.

Mitrai, I., Tang, W., and Daoutidis, P. (2022). Stochastic
blockmodeling for learning the structure of optimization
problems. AIChE Journal, 68(6), e17415.

Morales, J.L. and Nocedal, J. (2000). Automatic pre-
conditioning by limited memory quasi-newton updating.
SIAM Journal on Optimization, 10(4), 1079–1096.

Morales, J.L. and Nocedal, J. (2001). Algorithm 809:
Preqn: Fortran 77 subroutines for preconditioning the
conjugate gradient method. ACM Transactions on
Mathematical Software (TOMS), 27(1), 83–91.

Nocedal, J. (1980). Updating quasi-newton matrices with
limited storage. Mathematics of computation, 35(151),
773–782.

Petra, C.G., Schenk, O., Lubin, M., and Gärtner, K.
(2014). An augmented incomplete factorization ap-
proach for computing the schur complement in stochas-
tic optimization. SIAM Journal on Scientific Comput-
ing, 36(2), C139–C162.

Rodriguez, J.S., Parker, R.B., Laird, C.D., Nicholson,
B.L., Siirola, J.D., and Bynum, M.L. (2023). Scal-
able parallel nonlinear optimization with pynumero and
parapint. INFORMS Journal on Computing, 35(2), 509–
517.

Saad, Y. (2003). Iterative methods for sparse linear
systems. SIAM.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106, 25–57.

Zavala, V.M., Laird, C.D., and Biegler, L.T. (2008).
Interior-point decomposition approaches for parallel so-
lution of large-scale nonlinear parameter estimation
problems. Chemical Engineering Science, 63(19), 4834–
4845.

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

801

