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Abstract: In this paper, we present a data-based monitoring approach designed for
industrial data classification, aiming to minimize misclassifications of normal operations
and to maximize the detection of anomalies and outliers. We make use of moving-
horizon approaches and regression methods. Through evaluation of various algorithms
on an industrial dataset, we showcase the effectiveness of the classification. As per our
findings, effective detection can only be realized in conjunction of moving-horizon estimator
with a regression model trained on historical measurements. The best prediction models
consistently achieve accurate detection within the approved process tolerance, highlighting
the efficacy of the proposed approach.
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1. INTRODUCTION

In the industrial sector, precision is essential for en-
suring efficiency, safety, and reliability. The critical
task of real-time monitoring and validating process
measurements relies heavily on anomaly detection to
identify deviations, signaling potential malfunctions.
As such, advanced algorithms are increasingly supple-
menting periodic laboratory measurements to uncover
these anomalies within large datasets, thus reducing
operational burdens and improving responsiveness.
Guided by established practices in anomaly detec-
tion (Wang and Liu, 2021), we process raw measure-
ments to identify crucial anomalies, enabling timely
interventions in operational settings. Our approach
targets both outliers (sudden changes) and anomalies
(deviating trends) to differentiate normal process vari-
ations from those altered by disturbances — a require-
ment for maintaining operational efficiency and safety.
In this paper, “outliers” refer to isolated data points or
clusters that appear and dissipate abruptly, breaking
the usual temporal patterns. “Anomalies”, however,
describe sequences of data points that form trends sig-
nificantly diverging from standard operations (Iglesias
Vázquez et al., 2023).
The application of data analysis in anomaly detection
across sectors, from industrial operations (Antonini
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et al., 2023; Inoue et al., 2017) to health monitor-
ing (Raza et al., 2023), has seen a surge in popular-
ity. Various methods, including filtering, deep learn-
ing, machine learning, regression, and clustering algo-
rithms have been explored for their potential to en-
hance anomaly detection capabilities (Schmidl et al.,
2022). Within this spectrum, filtering methods such
as threshold or standard deviation filters (Afanasyev
and Fedorova, 2019; Blázquez-García et al., 2021), and
regression approaches have shown promise in detecting
outliers in both univariate and multivariate time-series
data. These methods, including the use of exponen-
tially weighted moving averages (Carter and Streilein,
2012; Roberts, 1959) and autoregressive models, offer
nuanced insights into system dynamics, overcoming
the limitations tied to more straightforward univariate
approaches (Yoon et al., 2022).
Mathematical models empower a deeper grasp of com-
plex process dynamics. For example, a Kalman filter
can exploit the connection with a first-principles model
to estimate the state of a system and reduce the impact
of uncertainties, based on a series of observations. The
filter uses a recursive algorithm that minimizes the
mean squared error between the predicted and actual
state (Jin et al., 2022). Although powerful as a tool,
the uncertainty of prediction accuracy of the underly-
ing dynamic model must be reasonably well described.
Moreover, the availability of a dynamic model is not
common in industrial setup. A density-based clustering
algorithm, such as DBSCAN (Ester et al., 1996), is
recognized for its effectiveness in identifying outliers
that lie alone in low-density regions. However, its appli-
cation can be challenging in high-dimensional datasets
due to its effectiveness being significantly reduced. A
relevant approach could be the application of deep
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autoencoders, focusing on complex time-series data
from production processes. Evaluating multiple types
of autoencoders, the available research identifies long
short-term memory and convolutional neural network-
based models as particularly promising for enhancing
productivity (Tziolas et al., 2022).
Despite the various methodologies explored, a gap
remains in the application and integration of these
methods in real-time industrial settings. Our study
aims to bridge this gap by emphasizing simplicity and
practicality, crucial for industrial implementation. We
present a novel approach that integrates a moving-
horizon methodology with regression techniques to en-
hance the detection of anomalies in real-time industrial
datasets. This approach not only addresses the imme-
diate need for operational anomaly detection but also
contributes to the broader field of industrial digitaliza-
tion, pushing beyond traditional practices to leverage
extensive process data for real-time decision-making.
The paper is structured to describe the utilized
methodology, beginning with pre-processing the raw
industrial dataset (see Sec. 2.1), though application
of the moving-horizon approach (Sec. 2.2) to establish
effective outlier detection in process variables based on
recent measurements, to the use of regression method-
ologies (see Sec. 2.3) for anomaly monitoring. A case
study is introduced in Sec. 3 and results are shown in
Sec. 4.

2. METHODOLOGY

Our objective is to detect outliers and anomalies within
a one-dimensional (1D) process variable y(t) with real-
time streamed data. At time t, current and past values
of y are available, along with measurements of other
process variables x(t) ∈ Rn. This section details the
data treatment for 1D and multi-dimensional (nD)
data and the studied approaches for outlier/anomaly
detection.

2.1 Data Treatment

Identifying systematic errors through visual inspection
of time series is effective yet limited. To uncover errors
not immediately visible, we employ data treatment
methods designed to enhance error detection capabili-
ties.
Three-standard-deviations rule. Under the as-
sumption of normally distributed data, the sample
mean ŷ and standard deviation σ establish the 3-sigma
interval as:

T = ŷ ± 3σ. (1)
Data points outside this interval (y(t) /∈ T ) are deemed
outliers, with the expectation that 99.7% of data falls
within this range. This rule’s simplicity facilitates quick
identification of significant deviations from the normal-
ity.
Minimum Covariance Determinant (MCD). MCD
(Rousseeuw and Driessen, 1999) provides robust outlier
detection for nD data. It uses the Mahalanobis dis-
tance:

dMCD,i =
√

(x(ti) − x̂)⊺ S−1 (x(ti) − x̂), (2)

which evaluates the dissimilarity between a measure-
ment x and the underlying probability distribution.
Robustness is achieved by iteratively identifying sub-
sets of historical data with the minimum determinant
of the sample covariance matrix S, thereby mitigating
the influence of outliers. The core of the MCD algo-
rithm involves the iterative selection of data subsets
and calculation of x̂ and S. A new subset is formed
by selecting a specified number of observations with
the smallest dMCD. This process continues until the
stabilization of the determinant of S. An equivalent
of (1) reads as:

T = x̂ ± χ2
n,0.997S 1

2 e, (3)
which uses the matrix square root of S and unit vector e
and where χ2

n,0.997 is the quantile of the χ2 distribution
with n degrees of freedom and probability level of
99.7 %.
The techniques presented so far are global and may not
be effective in capturing local anomalies. We consider
the temporal aspect of the data in the following text.

2.2 Outlier Detection using Data Averaging

The idea is to capture the local behavior of the signal
y(t) over a window of size N . The choice of N deter-
mines whether the designed detector concentrates on
local, temporary, or global deviations. One can com-
pute the confidence interval within such a method as:

Tti = ŷ(ti) ± tN,0.997

√
σ2

N
, (4)

where tN,0.997 is the inverse of Student’s t distribu-
tion (Student, 1908) with N degrees of freedom and σ2

is the variance corresponding to the monitored window.
The calculation of the sample mean is the distinguish-
ing feature of the studied methods as described below.
Historical Mean. This involves calculating the his-
torical mean of y(t) (N is in order of months or years).
The detection rule consists in the use of (4).
Historical Mean of Differences. By calculating the
mean of the differences between consecutive data points
∆y(ti) = y(ti) − y(ti−1), we capture the instantaneous
variations in the measurements. Observations deviating
from the interval (1) are flagged as outliers.
Moving Average (MA filter). By considering only
a certain number of past data points, we compute
an average that dynamically adapts to changes in the
dataset. The filtered value is calculated as (Oppenheim,
1999):

ŷ(ti) = 1
N

N−1∑
j=0

y(ti−j). (5)

Measurements outside the interval (4) are identified as
outliers, i.e. potential recent data inconsistencies.
Centered Moving Average (MA smoother). The
centered moving average is calculated as:

ŷ(ti) = 1
N

⌊(N−1)/2⌋∑
j=−⌊(N−1)/2⌋

y(ti−j). (6)

While dealing with the streamed data, we do not posses
the knowledge of future measurements. Consequently,
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this approach cannot be used for detection. Yet, it can
be used to assess the past detection outcomes.
Moving Average with Prediction (MA predic-
tor). Our methodology extends the traditional moving
average to allow for a dynamic adjustment of the mov-
ing average, integrating additional information from
other process variables. Specifically, the moving aver-
age is modified to include the predicted measurement
difference at the current time step, as follows:

ŷ(ti) = 1
N

N−1∑
j=0

y(ti−j) + ∆ŷ(x(ti), x(ti−1)), (7)

where ∆ŷ(x(ti)), is derived from a regression model
trained to predict the change in the measurement based
on current and historical process variables. This model
accounts for the trends within the process variables
thereby enabling a more accurate prediction of future
states. This adjustment allows the moving average to
not only reflect past measurement trends but also to
adapt based on current (and near future) trends given
the process state indicated by process variables x.

2.3 Anomaly Detection using Regression Methods

Regression models can be used to identify anomalies
of the process variable based on the deviations of
measurements relative to the model predictions ŷ(x),
e.g., using a linear model ŷ(x) = β⊺x with parameters
β. The regression model can also predict the relative
change of the process variable (see Eq. (7)):

∆ŷ(x(ti), x(ti−1)) = β⊺
∆(x(ti) − x(ti−1)). (8)

Ordinary Least Squares. The approach estimates
model parameters by minimizing the sum of squared
differences between the observed and predicted values
as:

min
β

1
2

nt∑
i=1

(y(ti) − β⊺x(ti))2, (9)

where nt is the number of training data points.
Least Absolute Shrinkage and Selection Oper-
ator (LASSO). This method extends the regression
by incorporating a penalty term (Santosa and Symes,
1986). This encourages model sparsity, allowing to ef-
fectively identify and shrink less relevant variables by
solving:

min
β

1
2

nt∑
i=1

(y(ti) − β⊺x(ti))2 + λ∥β∥1, (10)

where λ is a weight between the accuracy of the model
training and the model overfitting. The magnitude of
the ℓ1-penalization element results in certain parame-
ters being equal to zero at the optimum. The resulting
model is then less complex, more robust and inter-
pretable.
Principal Component Regression (PCR). Prin-
cipal Component Analysis (PCA) can be applied to
large, multi-dimensional datasets to enhance their in-
terpretability (Pearson, 1901). By creating new uncor-
related variables (principal components) that maximize
the variance, PCA helps to reduce the dimensionality
of the data while minimizing information loss. Subse-
quently, OLS or LASSO can be applied to learn the

model parameters in the latent space. The combination
of PCA and LASSO (denoted further as PCA+LASSO)
can leverage the strengths of both methods. PCA re-
duces dimensionality and LASSO adds sparsity to best
represent the dependent variable prediction.
To evaluate the effectiveness of these approaches, we
employ the Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
nt

nt∑
i=1

(y(ti) − β⊺x(ti))2, (11)

as a quantitative measure. Substantial deviations from
RMSE value may signal the presence of anomalous
observations. Here, we suggest considering the ±2 ×
RMSE confidence interval over the 3-sigma counter-
part, owing to the historical process variability (similar
to historical mean approach for outlier detection) pre-
venting to capture process trends accurately using sim-
ple model structure. The use of ±3 × RMSE could lead
to minimal outlier detection, rendering the approach
nonviable.

3. CASE STUDY

Oil refineries represent industrial complexes integrated
with energy and material streams, where timely detec-
tion of anomalies improves the process sustainability
and prevents environmental hazards.

3.1 Process Description

The alkylation process is an important step in refining
operations, converting C3–C4 olefins into high-octane
isoparaffins through a reaction with isobutane. These
isoparaffins are critical for producing clean gasoline.
The process utilizes cooling and mixing of the reactants
before a catalytic reaction in the presence of sulfuric
acid as:

C−C−−C−C (olefin) H2SO4−−−−→ C−C−C+−C (12)
This operation spans various units, including reac-
tors, distillation columns, compressors, and heat ex-
changers, each maintaining precise conditions, such
as the isobutane-to-olefin ratio, for optimal reaction
efficiency and product quality (Speight, 2020; Hom-
meltoft, 2001). We monitor every measured variable
across all operational components. This extensive col-
lection captures the full spectrum of influences on the
process — mainly the concentration of isobutane y(t).
However, the intricacies of alkylation mean that up-
stream and downstream processes, as well as ancillary
operations, can exert significant, albeit less direct, im-
pacts on the measurements.

3.2 Problem Definition

In the current industrial practice, anomaly detection
heavily relies on laboratory sampling and the expertise
of the operating personnel. The integration of auto-
mated algorithms into the monitoring process presents
an opportunity to significantly reduce the operational
burden by alerting operators only when misbehavior
occurs.
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Fig. 1. An example of disruptions present on the
concentration of isobutane y(t).

We investigate a comprehensive industrial dataset com-
prising over 500 process variables. In the pre-processing
phase, we employed several steps to ensure data quality
and consistency: data cleaning, to identify and correct
or remove any errors, inconsistencies, or inaccuracies;
data standardization, to convert all data into a uniform
range, facilitating comparison and analysis; and vari-
able removal, to eliminate linear dependencies among
the variables, simplifying the model without sacrificing
its predictive power. These steps resulted in the selec-
tion of 377 independent entities each with 15,906 points
(defining process variables matrix X ∈ R377×15,906).
The variable of interest, y(t), is the concentration of
isobutane, measured by an online analyzer at 15-minute
intervals.
Within the dataset, we distinguish between two dis-
tinct disruptions: additive outliers, and slow gradual
drifts, and as illustrated in Fig. 1. Additive outliers
are characterized by abrupt, significant deviations from
the recent trend with the subsequent restoration within
the following observations. Slow gradual drifts repre-
sent a more subtle deviation, resulting in the most
challenging-to-detect series of disruptions. In the scope
of our work, we classify the sudden and isolated signal
changes (additive outliers) as “outliers” and measure-
ments that deviate from the main trend (slow gradual
drifts) are tagged as “anomalies”, due to their more
extended influence and potential to necessitate manual
sensor recalibration.

4. RESULTS

A fair assessment of anomaly detection methods de-
pends on the real occurrence of anomalies in the
dataset. As this knowledge is unavailable and plant
operators alone cannot reliably identify anomalous be-
haviour themselves even in historical data, we adopted
the MA smoother (6) of order 7 to derive the ground
truth (GT). This is grounded in the smoother’s ability
to reduce noise while preserving significant shifts in the
data, potentially indicative of anomalies. The 7th order
was determined empirically, balancing the need for
smoothing to capture genuine process variations with-

out overly diluting potential anomalies. This approach
identified 306 outliers among the 15,906 measurements.

4.1 Indicators Training

For outlier detection using filter-based approaches (Sec-
tion 2.2), we systematically compare the efficacy of
different window sizes applied to the signal — maxi-
mizing anomaly detection accuracy while minimizing
false positives due to normal signal variations. We
used cross-validation approach for this training, having
1,881 training and 750 testing measurements, respec-
tively. This approach resulted in selection of an order of
7 for the MA filter, as described in Eq. (5). This choice
aligns with the GT definition. Our analysis revealed
that approximately 7.07% of the data points were iden-
tified as outliers within the training dataset. Within the
testing set, containing 750 measurements, the outlier
detection rate slightly increased to 7.87%. In practice,
without the GT knowledge, the order would need to be
determined by stepwise tuning to optimize the filter’s
performance under varying process conditions.
Regression models were then applied, predicting isobu-
tane concentration ŷ(t) = β⊺x(t) and its time differ-
ence Eq. (8) after preprocessing the dataset, leveraging
all techniques discussed in Section 2.3, including the
MCD method (see Section 2.1) to ensure a clean basis
for model training. The partitioning of the dataset into
training and testing datasets followed a random index-
ing approach, maintaining an 80/20 split. The PCA,
used for dimensionality reduction, identified seven prin-
cipal components as the most informative, capturing
around 62% of the variance. Additional components
offered a minimal increase in total explained vari-
ance, indicating saturation in capturing dataset vari-
ability.Application of LASSO further refined our model
selection process, using a defined threshold value.
The trained prediction models resulted in RMSE
values spanning from 0.4031 (LASSO) to 0.6655
(PCA+LASSO), with OLS and PCR yielding inter-
mediate values of 0.5243 and 0.6322, respectively. All
methods achieved RMSE levels within ±5% of the
isobutane concentration, aligning with the industrial
standard for a representative prediction model. A de-
tailed examination of the variables selected by these
models highlighted the predictive superiority of fea-
tures chosen by LASSO — namely, the concentration
of n-butane in the recycle stream, the concentration
of olefins in the feed, and the pressures within the
olefin and recycle streams. Although OLS selected a
reasonable array of process variables, PCA’s selection
was deemed less appropriate due to its focus on less
informative features such as compressor discharge, vi-
brations, and ventilation, a conclusion further sup-
ported by discussions with the industrial partners. This
discrepancy could stem from PCA’s potential omis-
sion of relevant components, the nonlinear relationships
between variables, or the high noise levels in the re-
tained components. Thus, LASSO’s feature selection
methodology proved more suitable for the dataset at
hand, making it the preferred method for this analysis.
Moreover, a comparison of the prediction models with
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Table 1. Confusion matrix entries for imple-
mented outlier detection methods.

Method TP TN FP FN

Historical mean (HM) 15601 0 306 0
HM of differences 15431 61 245 170
MA filter 14553 122 184 1048
MA predictor 14590 125 181 1011
Regression model 15175 15 291 426

laboratory measurements revealed notable similarities,
warranting further investigation in future work.
For the model predicting the output difference, we
compared each regression method and selected LASSO
with the lowest value of RMSE = 0.037 (standardized
data), with OLS and PCA+LASSO both being close
second (RMSE = 0.038). The PCR approach resulted
in RMSE = 0.178. The key process variables selected
mostly align with those identified in prediction models
(previous paragraph), with a predominant focus on
variables measuring pressure and temperature differ-
ences.

4.2 Assessment of Applied Detection Methods

We assess the performance of trained outlier detectors
by means of a confusion matrice. The correctly classi-
fied non-anomalous measurements are labeled as true
positives (TP) while misclassifications as false positives
(FP). The outliers being correctly identified are labeled
as true negatives (TN) while misclassifications as false
negatives (FN). Based on the ratio between TP and
TN values in the GT labels, we deal with imbalanced
datasets. Consequently, calculating the standard per-
formance metrics (e.g., Recall, Precision, or Accuracy)
does not result in a conclusive assessment. The metrics
shown in Tab. 1 indicate the comparison of correctly
classified TN and TP measurements with regards to
the misclassifications (FP and FN).
The Historical Mean approach did not perform well,
as it failed to detect any outliers (TN = 0). This was
expected due to the varying range of the isobutane
concentration over multiple operation points within
the available data range. The Historical Mean of Dif-
ferences correctly detected 97 % of normal operation
points (TP = 15,431); however, in the case of outliers,
it failed to identify over 80 % of the GT values (TN =
61). Using the MA, we were able to detect 40 % of the
overall outliers (TN = 122); the filter has a more lim-
ited perspective and operates solely on historical data
without foresight into upcoming measurements. The
MA predictor increased the efficacy of outlier detection
compared to the MA filter while reducing false predic-
tions (FP from 1,048 to 1,011; FN from 184 to 181).
The TP and TN predictions improved as well (TP from
14,553 to 14,590; TN from 122 to 125). These subtle
adjustments achieved the best distribution of correctly
classified data and they reflect the improved utiliza-
tion of latent information, contributing to a marginal
increase in overall accuracy. To evaluate the efficacy of
the regression model, we used the ±2 × RMSE metric,
correctly identifying 15 outliers (TN). Unlike filter-
based approaches, the prediction model captures dif-
ferent dynamics, emphasizing its unique perspective on

Fig. 2. Comparison of the outlier detection (left) and
anomaly detection (right), where green circles rep-
resent the GT, red crosses/black squares represent
the classified outliers.

anomalies beyond the expected range of the dependent
variable. All identified outliers (TN+FN) indicate slow,
gradual drifts (defined as anomalies) that require sensor
calibration.
In Fig. 2, the performance of the MA filter and predic-
tor is visualized for a selected testing period (left-hand
plot). The MA filter’s mean and confidence interval are
depicted with black dashed lines ((5) and (4)), while the
MA predictor’s characteristics are shown in purple and
red dashed lines, respectively (Eqs. (7) and (4)). This
comparison highlights the MA predictor’s improved ac-
curacy in identifying anomalies (red crosses) compared
to the MA filter (black squares), as it holds additional
information about other independent variables X(t).
This method has the potential to identify outliers that
escaped detection by the MA smoother, however, it
may result in more FNs (instances where normal behav-
ior is flagged as anomalous), as indicated by green cir-
cles for the ground truth. The right-hand plot in Fig. 2
demonstrates the strength of regression models, specif-
ically LASSO (purple), in identifying broader, systemic
anomalies, such as slow gradual drifts in concentration
values. Importantly, the effectiveness of such anomaly
detection is dependent on the quality of the regression
model structure. This comparison reveals the potential
for each method in enhancing anomaly detection within
the dataset.

5. CONCLUSION

In our study, we aimed to enhance outlier and anomaly
detection in process variables by integrating moving-
horizon filters and regression-based prediction meth-
ods. The MA predictor emerged as particularly effec-
tive within our industrial dataset, identifying 40 % of
outliers. This approach capitalized on incorporating
additional process variables and their time-differenced
relationships during model training, showcasing its util-
ity in complex industrial environments. However, the
detection rate also highlights the challenges in cap-
turing the full spectrum of outliers, underlining the
need for further methodological advancements. While
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the MA predictor method demonstrated its merit, re-
gression models revealed their strength in identifying
long-term anomalies. Our future research will explore
the potential of regression approaches in detecting
anomalous measurements, including long-term level-
shifts and slow gradual-shifts. Understanding static
and dynamic aspects, considering linear and potentially
non-linear sensor behaviours, will be crucial for further
advances. We will focus on non-linear transformations
and dynamic sensor characteristics, contributing to the
development of a comprehensive and robust anomaly
detection framework.
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