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Abstract: Exploiting natural symbioses to enhance productivity of bioprocesses is an emerging
trend. For optimizing such complex associations of microorganisms, a model of symbiotic
interactions is vital. This challenging task has attracted much attention. Here, a reduced
metabolic model describing a symbiotic interaction between bacteria E. coli, overproducing
vitamin biotin (B7), and microalgae Chlorella is developed. The symbiosis involves B7 exchange,
impacting lipid synthesis regulation in microalgae. Our model shows a trade-off between light
availability and biotin production, leading to an optimization problem for lipid production. We
numerically determine the optimal conditions, demonstrating the feasibility of this strategy to
enhance microalgae cultivation.
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1. INTRODUCTION

Symbiotic interactions between microalgae and bacteria
are gaining increasing attention due to their significant role
in natural ecosystems (Ashraf et al., 2023). Once tamed,
the complex relationships between algae and bacteria is
seen as a way for improving algae based bioprocesses
design and efficiency (Nagarajan et al., 2022). Growing
bacteria together with microalgae is interesting, since some
molecules necessary for algal growth can be produced by
the bacteria. Essential vitamins are required by all living
cells, but not all microalgae can synthesize them, making
them auxotroph (Cooper et al., 2019). In some cases, the
algae is not completely dependent on a vitamin, but an
external supply can benefit biomass growth. This is the
case of C. reinhardtii when it grows in the presence of
an external supply of cobalamin (B12), which enables a
B12-dependent pathway for the synthesis of methionine
that has a higher reaction rate (Kazamia et al., 2012). The
exogenous supply of vitamins from bacteria to microalgae
plays a key role in designing more sustainable cultivation
systems (Tandon et al., 2017) which will not need that
addition of external expensive vitamins.
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(ANR), France with the reference numbers ANR-15-IDEX-0001, and
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Modeling of algae-bacteria interactions can guide the de-
velopment of more robust and environmentally friendly
processes with reduced need for external nutrients or
micronutrients. This model-based approach can lead to
improvements in the design of the cultivation system
and offers the possibility to set up optimal strategies to
increase the overall efficiency of the process. A model
can also be a useful tool to guide metabolic and genetic
engineering. Advances in the modeling of these complex
symbiotic interactions will help to decipher the dynamics
of the ecosystem and eventually will pave the way for more
efficient and sustainable processes.
Recent research has explored metabolic and genetic engi-
neering approaches to enhance lipid production in microal-
gae. These efforts have primarily focused on overexpressing
genes associated with lipid synthesis, such as genes asso-
ciated with the enzyme acetyl-CoA carboxylase (ACCase)
(Sun et al., 2019). Biotin (vitamin B7) is a necessary co-
factor in lipid biosynthesis for all organisms because it
acts together with ACCase to promote the transformation
of acetyl-CoA into malonyl-CoA, which is the primary
building block for the synthesis of fatty acids (Huerlimann
and Heimann, 2013).
According to Croft et al. (2006) few microalgae species are
biotin auxotrophs, and usually, they are also auxotrophs
for thiamine or cobalamin. The necessity of biotin for
lipid production is well established by our knowledge of
metabolic pathways, but most works focused on genetic
engineering trying to over synthesize the enzyme ACCase
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without considering the influence of biotin. The variety of
contradictory results in the literature (Sun et al., 2019),
regarding the effect of ACCase in lipid accumulation,
demonstrates the complexity of the lipid synthesis path-
way and its regulation. Also, little attention has been paid
to the actual concentration of biotin, and its effect on lipid
accumulation. Furthermore, biotin is a costly vitamin to
produce and its biological synthesis has only recently been
understood (Wei et al., 2021).
In this work, we consider this possible pathway of reg-
ulation of lipid production via biotin, by considering a
co-culture of a biotin over-producer E. coli (Wei et al.,
2021) and of Chlorella. We adapt the metabolic model
from Pessi et al. (2023) by including the lipid content of
Chlorella and by considering its dependency on the biotin
availability. We assess, via simulations, whether the model
supports our strategy at the steady-state and in dynamical
conditions, considering diurnal changes in light intensity.

2. METHODS

2.1 Metabolic model

Here, we consider a reactor containing the bacterial species
E. coli (E) and the microalgal species Chlorella (B). The
bacteria grow heterotrophically, consuming glucose (GLC)
and producing vitamin B7, which catalyzes the produc-
tion of lipids (PA) in the algae. While microalgae grows
autotrophically, using the light energy. Fig. 1 presents a
simplified scheme of the symbiotic model.
The proposed model is partially based on the metabolic
model of Chlorella from Pessi et al. (2023). Here, we only
consider the autotrophic growth of Chlorella and detail the
lipid synthesis pathway. The model for Chlorella is derived
from a metabolic network after a step of dynamical reduc-
tion, following the DRUM approach (Baroukh et al., 2014),
which initially had 188 reactions and 173 metabolites.
Briefly, in the DRUM framework, a metabolic model with
nr reactions and nm metabolites, represented by a stoi-
chiometric matrix S ∈ RnmXnr is reduced by dividing the
metabolic network into subnetworks which are at steady
state and are connected by metabolites that are allowed
to accumulate. Therefore, the metabolites at steady state
do not impact the dynamics of the system, and it is not
necessary to represent them in the new reduced network.
Macro reactions are derived from the subnetworks, rep-
resenting the overall biochemical transformation taking
place in the subnetwork. Here, we consider four subnet-
works. Three subnetworks for Chlorella - Lipid Synthesis,
Chloroplast and Biomass Synthesis - and one subnetwork
for E. coli. The accumulation variables are glyceralde-
hyde 3-phosphate (GAP ), and phosphatidic acid (PA),
with PA representing lipid accumulation in our metabolic
model. Both are expressed in cellular concentration (grams
per grams of biomass).
For E. coli, we consider a biotin over-producer as described
in Wei et al. (2021) and an initial metabolic model con-
taining 2251 reactions and 1136 metabolites (Orth et al.,
2011). It is reasonable to assume for bacteria that all
internal metabolites are at steady state, not requiring the
creation of subnetworks. Therefore, the macroscopic reac-
tions can be derived directly from the list of elementary

flux modes of the system. Since, enumeration of the whole
list of elementary flux modes is computationally very bur-
densome, we reduce the considered reactions by perform-
ing Flux Balance Analysis when the objective function is
the biomass reaction and when it is the synthesis of B7.
Following the selection of the elementary flux modes with
the highest yield for the two cases, we end up with two
macro reactions: one for biomass production and the other
for the synthesis of B7.
The concentration dynamics for intracellular molecules
within a metabolic network in a continuous stirred-tank
reactor can be represented as follows:

dM

dt
= Sv(M)B + (Min −M)D (1)

Here, M ∈ Rnm represents a vector of the concentration of
metabolites, Min ∈ Rnm is a vector of the concentrations
at the inlet of the reactor, S ∈ RnmXnr is the stoichiomet-
ric matrix, v ∈ Rnr denotes the vector of reaction kinetics,
B is the functional biomass, and D is the dilution rate
(influent flow rate divided by the reactor volume). In the
DRUM framework, total biomass, X, is the sum of B and
the accumulating metabolites. The concentration of the
internal metabolites (c) can be represented as a fraction
of the biomass, in this case the dynamical equation is:

dc

dt
= Sv(M)− cµ (2)

where µ is the growth rate.
The dynamical metabolic model is formulated by the sub-
system of ordinary differential equations described below,
for a continuous reactor. The values and descriptions of
the parameters are shown in Table 1.

dE

dt
= µEmax

GLC

GLC +KE
E − (D +mE)E (3)

Here, E is the E. coli biomass concentration, and GLC
denotes the glucose concentration. The equation represents
heterotrophic growth of E, using glucose as a carbon
substrate.

dGLC
dt = −γEµEmax

GLC
GLC+KE

E
+(GLCin −GLC)D

(4)

In the above equation, GLCin signifies the influent glucose
concentration. GLC is consumed only by E. coli and it is
supplied in the influent.

dB7

dt
= µB7max

GLC

GLC +KB7
E − (mB7 +D)B7 (5)

B7 is the biotin concentration in the reactor, produced by
E. coli at a maximum rate of µB7max

, following a Monod
relation dependent on glucose concentration, with a decay
rate of mB7.

dGAP
dt = µGAP (I,X + E) + µPA−1

max
PA− γGAPµB

−µPAmaxGAP B7/B
B7/B+KPA

− µBGAP
(6)

In Equation 6, GAP denotes the cellular fraction of Glyc-
eraldehyde 3-phosphate in Chlorella, PA is the cellular
fraction of lipids (Phosphatidic acid) in Chlorella, B is
the Chlorella functional biomass, µGAP denotes the rate
of GAP production via the photosynthetic pathway, µB is
the growth rate of Chlorella. GAP is utilized as a reactant
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Fig. 1. A simplified representation of the metabolic network, showing the 6 state variables and reactions. E: bacteria
E. coli, B: microalgae Chlorella functional biomass, B7: biotin, GLC: Glucose, PA: lipids, GAP : glyceraldehyde
3-phosphate.

for functional biomass production and lipid production,
at a rate regulated by B7. Its concentration is diluted
by the growth of Chlorella. Besides being produced by
photosynthesis, GAP can be produced via the reverse
reaction of lipid synthesis.

dPA
dt = γPAGAP

µPAmax
GAP B7/B

B7/B+KPA

−γPAGAP
µPA−1

max
PA− µBPA

(7)

Lipids (PA) serve as a carbon reserve, produced by a
reversible reaction from GAP , with consumption back to
GAP regulated by its own concentration.

dB

dt
= (µB −D)B (8)

Here, µB = µBmax
GAP , indicating the regulation of

Chlorella biomass production rate by the internal con-
centration of GAP . The total (or dry weight) microalgal
biomass, X, is calculated by the following equation:

X =
B

1− PA−GAP
(9)

The rate of synthesis of GAP from photosynthesis,
µGAP (I,X+E), is given by the average growth in the reac-
tor, which depends on the light intensity reaching the re-
actor and turbidity effects because of the particles present
in the medium (Béchet et al., 2015):

µGAP (I,X+E) =
µGAPmax

σ(X + E)L
ln(

KI + σI0
KI + σI

) (10)

Here, the light attenuation due to biomass absorption and
scattering is given by the Beer-Lambert equation:

I = I0exp(−σ(X + E)L) (11)
where I0 denotes the light intensity at reactor surface, L is
the depth of the reactor, and σ is calculated as the average
of E. coli and Chlorella extinction coefficients:

σ =
aX1−b + σEE

E +X
(12)

2.2 Parameter calibration

Model parameters related to biotin production and decay,
namely µB7, KB7 and mB7, are calculated using data

Parameter Value Unit Description

µEmax 10.6 d−1 Bacteria maximum
growth rate

KE 0.04 g.L−1 Half-saturation constant
for glucose consumption

mE 0.33 d−1 Mortality rate of bacteria

γE 1.84 gGLC
gE

Yield of glucose to
bacteria biomass

µB7 0.05 d−1 Maximum production rate
of biotin (vitamin B7)

KB7 3.8 g.L−1 Half-saturation constant
of biotin production

mB7 0.38 d−1 Decay rate of vitamin B7

µPAmax 23.3 d−1 Maximum production rate
of lipids

KPA 10−5 gB7
gB

Half-saturation constant
of lipid production

γPAGAP 3.87 gPA
gGAP

Yield of lipid production
from GAP

γPAB
0.31 gPA

gB
Yield of lipids to B

µPA−1 2.75 d−1 Maximum GAP production
rate from stored lipids

KI 182 µmol
g·s Light half-saturation constant

σE 285 m2g−1 E. coli extinction coefficient
a 117.2 - Light extinction coefficient

b 0.2 - Light extinction
power coefficient

µGAPmax 1.15 d−1 Maximum GAP synthesis rate
from photosynthesis

γGAP 3.79 gGAP
gB

Yield of GAP to
microalgae biomass

µBmax 3.64 d−1 Maximum growth rate of
microalgae biomass

L 0.15 m Depth of the reactor
Table 1. Parameters calibrated for the model.

reported by Wei et al. (2021) for the growth of an E.
coli biotin over-producer. That work presents the growth
of E. coli together with glucose and biotin concentration
over time. The parameters are determined by minimiz-
ing the error between the model predicted and experi-
mentally measured biotin concentration in the medium
over time, using the Differential Evolution optimization
algorithm. This algorithm is chosen for its capacity for
global optimization, and efficient utilization of multiple
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computer threads (Storn and Price, 1997). Fig. 2 shows
the calibration results, by comparing the simulations to
the experimental data.
The parameters related to lipid synthesis for Chlorella
were adapted from Baroukh et al. (2014) to represent
internal cellular concentrations. All other parameters are
the same as considered in Pessi et al. (2023). The half-
saturation constant of biotin regulating the synthesis
of lipids, KPA is the only undetermined parameter of
the model. We consider as a first guess the value of
10−5gB7/gB, based on the experimental conditions of
Magdouli et al. (2020).

Fig. 2. Model calibration for biotin production. Experi-
mental data points from Wei et al. (2021)

2.3 Steady-state optimization

Here we analyze the lipid productivity (P ) in the re-
actor outlet, considering constant light intensity (I0 =
300 µmol/(m2.s)). The objective is to determine the opti-
mal conditions for maximizing the lipid production rate at
steady state, varying the dilution rate D and the influent
glucose concentration GLCin:

max
D,GLCin

: P (·) = PA ·X ·D · L (13)

The values of GLC, E, B7, and GAP at steady state can
be directly computed from equations 3, 4, 5 and 8, respec-
tively. The value of B at steady state is determined nu-
merically from the root of the equation 6, using Newton’s
algorithm. Finally, PA is derived from the value of B with
Equation 7. The values of D and GLCin maximizing P at
steady state are obtained using the Differential Evolution
optimization algorithm (Storn and Price, 1997).

2.4 Dynamical optimization

We consider the case of a day/night cycle, where the light
fluctuates according to the following equation:

I0(t) = max(300cos(2πt), 0) (14)
The productivity equation must be integrated over the
considered time period to deal with the system dynamics:

max
D,GLCin

Pdyn :=

∫ tf

0

PA(t).X(t)D(t)Ldt (15)

For the control variables (u), D and GLCin, we consider a
suboptimal approximation of the optimal control problem.
Drawing from insights obtained from previous optimized
controlled microalgae systems (Martínez et al., 2022; De-
Luca et al., 2019), and after preliminary tests using control

vector parameterization, we adapt the shape of the optimal
control in line with the pattern of light fluctuation, by the
following piecewise control function:

u =

{
umax|cos(2π(t∗ − τ)/T )| ; τ − T/4 < t∗ < τ + T/4

0 ; otherwise
(16)

where t∗ = 24t mod 24. The parameters umax, τ and T
are calculated for each control variable, setting Pdyn as
the objective function, with a time range (tf ) of 100 days.

3. RESULTS AND DISCUSSION

3.1 Model dynamical behavior

Fig. 3 shows the dynamical behavior at two different values
of GLCin, at constant light intensity of 300 µmol/(m2s).
The value of D is chosen to be close to the optimum
(see Fig. 4). It shows that the concentrations of E. coli
and biotin rapidly reach their steady state, due to the
faster heterotrophic growth rate. The response of Chlorella
is different, due to the slower growth in autotrophic
conditions. Several days are needed for the microalgal
biomass to reach its steady state. The lipid content is
dependent on the light availability, since lipids constitute
a way to store carbon. Under normal day-night conditions,
microalgae store carbon during the day in the form of
lipids, and later consume them during the night.
For a low glucose concentration (0.1g/L), Chlorella biomass
increases over time, reducing light availability, and as a
consequence, the lipid content decreases over time. When
GLCin equals 0.5 g/L, a higher concentration of E. coli
is reached at the beginning of the cultivation and, as a
consequence, reducing the light transmitted to the culture.
The microalgal biomass concentration thus decreases over
time. It is important to note also, that since we consider an
equilibrium between external and internal concentration
of biotin, as the biomass decreases the internal biotin is
higher (B7/B), and thus the internal lipids per biomass
unit, PA, increases. This factor aggregates with the dy-
namics of light availability, since internal concentration of
biotin will also determine the content of lipids at steady
state.
This analysis highlights one of the most important behav-
iors of the model, the trade-off between light availability
and biotin production. A higher glucose influent concen-
tration increases the concentration of bacteria which re-
duces the transmitted light, and thus the average light
intensity. Because of this behavior, as the production of
biotin increases, there is eventually a loss of productivity
due to reduced light availability. This is an important lim-
itation of the co-culture when considering the autotrophic
growth of microalgae. Given the probable range of KPA, a
concentration of E. coli moderately impacting light avail-
ability could be reached, while supplying the minimum
required biotin to enhance lipid accumulation. The trade-
off between light and biotin is also highlighted in Fig. 4.
It shows how the lipid productivity changes with D and
GLCin. Furthermore, it demonstrates the existence of a
wash-out line, where for a fixed GLCin an increase in D
results in an abrupt loss of productivity.
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Fig. 3. Dynamics of the system at constant dilution rate (D = 0.23d−1) and light intensity (I0 = 300µmol/(m2s)), for
two different influent concentrations of glucose. GLCin : 0.1g/L (blue) and 0.5g/L (orange).

Fig. 4. Contour lines showing how lipid productivity at
the steady state (P) changes as a function of the
dilution rate (D) and the concentration of influent
glucose (GLCin).

3.2 Day/night cycle optimization

Fig. 5 illustrates the response of the system to the subop-
timal control strategy under fluctuating light conditions.
The calibrated strategy consists in harvesting the system
near the peak of total lipid concentration (X.PA), towards
the end of the light cycle, allowing biomass replenishment
during the first half of the light cycle. As growth does not
occur during the night, harvesting only happens during
daylight. Interestingly, although microalgal concentration
appears to follow a 24h-cycle, the bacterial concentration
progressively increases over the days, until it reaches a
threshold concentration. At day 3, this threshold concen-
tration leads to the absence of glucose in the medium,
causing a rapid decline in the E. coli population. It is
important to notice, that even under constant dilution
rate and light intensity, because of the interactions be-
tween species, complex behaviors can emerge, such as the
existence of limit cycles (Martínez et al., 2022).

Fig. 5. Response of the system under fluctuating light,
considering a suboptimal control strategy. a - Total
lipid concentration (X ·PA) and bacterial concentra-
tion (E). b - Glucose (GLC) and biotin (B7) con-
centrations. c - Control variables: dilution rate (D)
and influent glucose (GLCin). Light intensity at the
surface of the reactor (I0).

3.3 Model limitations and perspectives

The main uncertainty of the model is the relationship
between the lipid content and the internal concentration
of biotin. According to our model, the content of lipids
at steady state is regulated by the internal concentration
of biotin. We did not represent the internal production of
biotin by Chlorella. It is reasonable to assume that the
production of biotin by Chlorella is negligible compared
to the quantity produced by the E. coli mutant. Also,
it would be important to determine experimentally if
the external biotin will down regulate the production of
internal biotin by Chlorella. As seen in Kazamia et al.
(2012), the gene expression of a vitamin B12 optional
C. reinhardtii was regulated in the presence of a B12-
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producing bacteria. Since biotin synthesis is costly, we
could hypothesize a secondary effect where the growth of
Chlorella would improve, which is not considered in the
current state of the model.
Lipid accumulation is linked with limitations in the supply
of nitrogen, which is not described in the kinetics of the
model. Since there could be upregulation of ACCase in
Chlorella in nitrogen deplete conditions, it is likely that
supplementation of biotin will have a greater effect on the
accumulation of lipids (Giridhar Babu et al., 2017). Adding
vitamins enhanced lipid accumulation, but to different
extents depending on if the culture is nitrogen depleted
or replete (Fazeli Danesh et al., 2018).

4. CONCLUSIONS

This metabolic model is the first, to our knowledge, to
include the dynamical influence of biotin in the accumu-
lation of lipids. Additional experiments are now necessary
to further validate the model and adapt it to the case of
nitrogen limitation. It demonstrates the usefulness of the
DRUM framework in modeling the dynamics of complex
metabolic interactions, even in the case of a multi-species
culture. Here we considered the interaction between two
organisms through a particular vitamin, but in nature,
this interaction is due to a large palette of chemical com-
pounds. Representing such interactions, which are for most
of them still unknown, will be a difficult challenge in
the future. Being able to correctly model the metabolic
interactions between bacteria and microalgae will make
possible not only the optimization of current processes
but also open new possibilities and new designs of bio-
processes.
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