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Abstract: The present paper introduces an innovative approach integrating recurrent neural networks, static 

models, and signal decomposition into base and residual behavior components for system nonlinear 

dynamic modeling and identification. The proposed methodology divides a nonlinear single-input single-

output gas-lift oil production system into base response and residual components, assessing the first with a 

first-order dynamic model with variable gain and the latter with an Encoder-Decoder (E-D) GRU model. 

The study evaluates the methodology under various conditions, including noiseless and noisy data and 

scenarios with unmeasured disturbance. The percentage of stationary residues and the normalized root-

mean-squared error (NRMSE) are applied to assess the model's performance. Overall, the proposed 

methodology demonstrates significant effectiveness, with NRMSE lower than 5% and percentages of 

stationary residues ranging from 90 % to 100 % across the study scope. The results stand out when 

compared to the direct application of E-D GRU model without decomposition, where the percentage of 

stationary residues was equal to 83%, and the training mean squared error was 10 times higher than that of 

noiseless scenarios. 
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1. INTRODUCTION 

Nonlinear systems are typically characterized as systems that 

do not satisfy the superposition principle (Billings, 2013). This 

category of systems englobes cases among numerous fields of 

knowledge, especially process modeling and control (Xie et 

al., 2011, Badillo-Hernandez et al. 2019). Regarding oil and 

gas production, these systems are found to be crucial processes 

in different steps of their chain, such as crude oil extraction 

and oil cracking (Ray and Villa (2000), Diehl et al. (2018), 

Yang et al. (2004)). Considering that the oil and gas market 

size alone represents approximately 7% of global GPD, with a 

CAGR of nearly 5% from 2022 to 2023 (The Business 

Research Company, (2023), World Bank (2022)), efficiently 

controlling these processes is crucial. 

Generally, there are two main categories of approaches by 

which nonlinear systems can be assessed: phenomenological 

and empirical models. The first are based on mass and energy 

balances, usually described by PDE and ODE models, while 

the latter consists of system identification from data. When 

conceptually applied jointly, a hybrid approach is obtained 

(Henson, 1998). Fundamental models, although presenting 

many advantages compared to empirical models, require 

extensive process knowledge and may present dynamics too 

complex to be applied, resulting in the need for reduction 

techniques. System identification, on the other hand, applies to 

any system, regardless of its underlying causes and internal 

processes (Henson (1998), Billings (2013), but depends highly 

on available and trusted data – these risks, however, are 

currently being increasingly mitigated, due to the widespread 

adoption of Industry 4.0 technologies, increasing the 

application range of empirical approaches (Jagatheesaperumal 

et al., 2022). 

Within empirical methodologies, machine learning algorithms 

have gained significant prominence, experiencing substantial 

application growth, mainly propelled by advancements in 

computational power (notably in the case of deep learning 

models) (Sharifani and Amini, 2023). It is noteworthy to 

emphasize that despite being already integrated into the 

routine of the oil industry for decades (Alkinani et al., 2019), 

these algorithms, as noted by Sharifani and Amini (2023), are 

still in the early phases of development, harboring untapped 

potential. In system identification, the theoretical utilization of 

these algorithms has been extensively discussed as an 

alternative to established NARX models, with a specific focus 

on recurrent neural networks (refer to Section 2) (Pham and 

Liu, 1995). The practical implementation of these discussions 

is becoming increasingly viable due to the aforementioned 

technological advances. 

Hybrid methodologies have been designed by combining 

neural networks and fundamental models to mitigate potential 

naïve data-driven results and boost model performance in 

general. Among them, physics-informed neural networks 

stand out, as highlighted by Raissi et al. (2019). Essentially, 

these models leverage neural networks' significant function 

approximation capabilities (Haykin, 1999) and prior 

knowledge of the system incorporated through differential 

equations. Despite the increasing popularity of this approach, 

it is essential to note that it has limitations when applied to 
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specific systems and may encounter challenges in accurately 

capturing their dynamics (Dwivedi et al., 2021). 

A viable approach to handling a complex system involves 

dividing it into smaller, and consequently simpler, subsystems 

and addressing them individually. The stratification or 

decomposition of a problem is a fundamental aspect of 

Cartesian problem-solving analysis as proposed by the 

philosopher Descartes (Campos, 2010). While this rationale is 

frequently employed in time series analyses to independently 

examine trend, seasonal, and noise components (Brockwell 

and Davis, 2016), it also proves beneficial in diverse 

applications, including optimizing large-scale plants (Zhang 

and Zhu, 2000). 

This paper proposes a hybrid methodology combining system 

decomposition and neural network system identification for 

predicting the dynamics of a nonlinear gas-lift oil production 

system. This system consists of applying natural gas injection 

to reduce the column weight of oil in deepwater oil wells, 

enhancing productivity by reducing production column 

pressure through the expansion of injected gas. As offshore oil 

sources represent around 30% of the industry production 

nowadays, and gas-lift systems are heavily nonlinear, with 

limit-cycle behavior in certain operation conditions, this 

system is an excellent option for model validation (Diehl, 

2018). The decomposition aims to split the system's original 

data into two components: a base response component, that is, 

an approximation obtained by a given model, and its residual, 

containing the characteristics of the system not englobed by 

the first model. The first component is based on a first-order 

response for the present study, while the latter corresponds to 

the system's damping characteristics. This paper will focus 

mainly on the residual analysis, as, for the case study, it 

represents the system's damping characteristics. 

The rest of this paper is structured as follows. Section 2 

provides necessary definitions regarding the applied neural 

network architectures. Section 3 explains the proposed 

methodology, and Section 4 details the case study. Section 5 

presents the results, and to sum up, Section 6 capitulates the 

key conclusions and lists the extended possibilities of the 

proposed approach.  

2. BACKGROUND 

Recurrent Neural Networks (RNN) consist of a class of neural 

networks that essentially consider the sequence or order of 

input data, rendering them particularly advantageous for 

analyzing sequential data, such as time series (Aggarwal, 

2018). 

As the input window size increases to achieve a satisfactory 

predictive model, the number of units required in the neural 

network must also increase. However, as input window size 

grows, so does the likelihood of issues such as exploding or 

vanishing gradients. These phenomena consist of error 

backpropagation malfunction, and both scenarios can 

compromise the model's accuracy. To prevent these problems, 

the LSTM (Long Short-Term Memory) network was 

developed, introducing the concept of network state (or 

memory), as well as adding input, output, and forget gate 

layers as new units (Aggarwal, 2018). 

While LSTM networks occasionally mitigate vanishing or 

exploding gradient issues, their application may demand 

significant computational memory due to their intricate 

architecture (Salehinejad et al., 2018). Consequently, utilizing 

Gated Recurrent Unit (GRU) networks, a simplified version of 

LSTM, emerges as a viable solution to overcome this potential 

barrier. The primary distinctions between these architectures 

lie in the absence of an explicit cell state and utilizing only two 

internal gates within the GRU network: the reset gate (rt) and 

the update gate (zt). Equations (1) to (4) and Figure 1 delineate 

the components of the GRU network (Aggarwal, 2018). W and 

b are the weights and the bias, xt is the input data, ht and ht-1 

are the input and output hidden states, and ⊙ corresponds to 

the Hadamard product. The activation functions described are 

sigmoid (σ) and hyperbolic tangent (tanh) functions. 

 

 

𝑧𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑧) (1) 

𝑟𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟)  (2) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ[ 𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡] +  𝑏ℎ)  (3) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡 (4) 

In addition to the architectures mentioned above, many 

variations have been proposed to improve RNN performance 

in diverse problems. One such configuration involves 

including a backward copy of the input sequence through an 

additional layer. This arrangement is called Bidirectional 

RNN, or BRNN (Graves and Schmidhuber, 2005). 

In problems where both network input and output are 

sequential data, commonly referred to as sequence-to-

sequence, simple recurrent networks are typically not 

employed. Instead, the Encoder-Decoder neural network 

structure emerges as an alternative (Lyu et al., 2020). As its 

name suggests, this network consists of two primary 

components: the encoder, tasked with extracting information 

from the input sequence, and the decoder, which transforms 

the encoder's hidden state (ht) into output data. A state vector 

interconnects these components. 

3. METHODOLOGY  

This study introduces a hybrid methodology that combines 

Encoder-Decoder neural networks, regression models, and 

time series decomposition to forecast the behavior of nonlinear 

systems. The proposed model aims to predict the response of 

a given system to a disturbance (step or set-point changes 

response) by utilizing only the current values of the variables 

(yt and ut) and the future disturbance information (ut+h or set-

point value) as input. To achieve this goal, the variable of 

Figure 1. GRU cell unit. 
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interest undergoes decomposition into two distinct 

components: the first one derived from a first-order transfer 

function with a fixed time constant (base component), and the 

corresponding residual, representing the system's deviation 

from a first-order response (referred to as the residual 

component).  

Two distinct models are employed in this process: an Encoder-

Decoder neural network model that integrates GRU and 

Bidirectional GRU structures, with the residual component 

designated as the desired output (referred to as the dynamic 

model – due to the residuals representing the damping 

characteristics of the system); and a first-order transfer 

function model with a fixed time constant of τ =10 min and 

variable gain tasked with forecasting the future stationary state 

value of the controlled variable (referred to as the base 

response model – B). The model's gain is obtained by the 

difference from the output variable value at time t = 0 y0 and 

its stationary value yss correspondent to ut+h, obtained by a 

polynomial regression model. The base response component 

transfer function is given by:  

𝐵(𝑠) =
𝑦𝑠𝑠(𝑢𝑡+ℎ)−𝑦0

10𝑠+1
 (5) 

The proposed decomposition involves individually designing 

models to effectively capture variations in both the system's 

damping and nonlinear gain. Figure 2 provides a detailed 

illustration of the decomposition approach. For the depicted 

example, the first response's base response component transfer 

function (at time = 10h) was obtained with a gain constant of 

K1 = yss – y1, with yss ≈ y2 ideally. Analogously, the same 

proceeding is repeated to predict the second response, with K2 

= yss – y2, with yss ≈ y3 and so on. 

 

The dynamic model consists of an Encoder-Decoder network 

with a two-layered encoder (a GRU layer followed by 

bidirectional GRU layer) and a single GRU layer decoder, 

trained by MSE minimization with Adam (Kingma and Ba, 

2015) and Glorot weight initialization (Glorot and Bengio, 

2010).  

The performance of the dynamic model is evaluated using two 

key metrics: the normalized root mean squared error 

(NRMSE), which measures the disparity between the 

validation data and its corresponding prediction, and the 

percentage of stationary residues determined by the 

Augmented Dickey-Fuller (ADF) test. If the test's null 

hypothesis is rejected (i.e., p-value < 0.05), indicating 

statistical significance, the analyzed residual is considered 

stationary (resembling white noise). This outcome suggests 

that the model has effectively captured the deterministic aspect 

of the system (Brockwell and Davis, 2016). 

4. CASE STUDY 

As mentioned, this paper study focuses on a gas-lift oil 

production system. Gas-lift is an oil production technique 

involving natural gas injection to alleviate the column weight 

in a deepwater oil well production system. Natural gas is 

injected into the production column through annular pipes, 

sourced from surface facilities via a gas lift supply line to the 

wellhead at Christmas Tree. The injection causes the gas to 

expand, reducing the specific mass of the extracted mixture. 

These effects decrease production column pressure, enhancing 

well productivity (Lea et al., 2008; Diehl et al., 2018). 

However, as previously mentioned, this system can exhibit 

limit cycles under specific operating conditions, leading to 

persistent oscillations in system pressures and flows. This 

situation poses potential risks to equipment integrity and may 

diminish well productivity. Therefore, a precise understanding 

and prediction of the system are crucial for risk mitigation. 

Stable operation and limit cycles are determined by a Hopf 

bifurcation, with limit cycles potentially occurring at low gas 

lift flow rates and/or high topside choke valve openings (Diehl 

et al., 2018). 

This paper considers a Single-Input-Single-Output (SISO) 

approach to this system, ranging from stable to near Hopf 

bifurcation states. The study focuses on a constant gas lift flow 

rate of 165,000 Sm³/day, with the choke valve opening as the 

input variable and PDG pressure as the output variable. The 

proposed methodology undergoes evaluation in distinct 

scenarios. For the first one, PDG pressure response to open-

loop choke valve variation is predicted, as for the second one, 

both open-loop and closed-loop variations are assessed. 

Closed-loop data was obtained with a Proportional-Integral 

(PI) controller. In addition, a new Boolean input variable is 

incorporated into the dynamic model (0 for open-loop, 1 for 

closed-loop), and the ut+h input variable for the closed-loop 

state is derived from the set-point values using the static 

model. The evaluation metrics for the model include the 

percentage of stationary residues generated. 

Furthermore, the open-loop analysis encompasses two 

additional scenarios. The first scenario involves evaluating the 

proposed methodology in the presence of noise and 

unmeasured disturbance on the gas lift flow rate within the 

system. The second scenario assesses the model's performance 

using validation data characterized by shorter and more 

frequent variations in the input variable, hinting at potential 

applications for predictive control. In this case, the output 

variable considered is the output flow rate, and the evaluation 

metric is the Normalized Root Mean Squared Error (NRMSE). 

Table 1 provides a summary of the paper's scope. 

Table 1. System analysis scope 

ID Scenario Output variable Metrics 

1 Open Loop 

PDG pressure 

Percentage 

of stationary 

residues (%) 

2 Open and closed loop 

3 Open loop (noise and disturbance) 

4 Open loop (multistep model) Output flow rate NRMSE 

The data used for this paper was simulated using FOWM 

model developed by Diehl et al. (2017). 

Figure 2. Example of the proposed decomposition approach. 
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5. RESULTS 

This section is divided into 6 parts. Firstly, we present the 

results of directly applying the dynamic model to the studied 

system without the decomposition process. Section 5.2 

provides a general view of the results obtained from applying 

the methodology for scenarios 1 to 4 (see Table 1). Sections 

5.3, 5.4, 5.5, and 5.6 cover the results for scenarios 1, 2, 3, and 

4, respectively. 

5.1 Non-decomposed system results 

In order to fully understand the benefits of applying system 

decomposition through base response modeling, we applied 

the exact same E-D GRU network to the original output data. 

The results, described in Figure 3, show that the model fails to 

capture the system's dynamics for most responses and the 

nonlinear gain variations. The training mean squared error 

obtained was 6,8 x 10-4, and only 83% of the prediction 

residues presented stationarity according to ADF test. The 

following sections show that this problem is not found in 

undisturbed scenarios when output data is segregated into two 

distinct components.  

 

Figure 3. Prediction results for non-decomposed system. 

5.2 General view of results 

Table 2 summarizes the general hyperparameter settings for 

dynamic model training, the training mean squared error, and 

the percentage of stationary residue identified in the validation 

response prediction for each scenario.  

Table 2. General results for dynamic model training and 

validation for gas-lift oil production system. 

                                Scenario 

Parameter 
1 2 3 4 

Units on Encoder Layer 1 (GRU) 20 24 20 20 

Units on the Encoder Layer 2 (BGRU) 40 48 40 40 

 Units on the Decoder layer (GRU) 20 24 20 20 

Number of trainable parameters 10,221 14,641 10,221 10,221 

Training mean squared error x 10-5 4.8 6.1 4.8 170 

NRMSE (%) - - - 4.7% 

Percentage of stationary residues (%) 92% 90% 100% - 

All open-loop models were configured with an identical 

number of neurons across all layers (20, 40, and 20 for the 

encoder first layer, encoder second layer, and decoder layer, 

respectively) and were trained for an equal number of epochs 

(600), except for the open and closed-loop models. Due to the 

anticipated higher complexity, the number of hyperparameters 

for each layer in these models was increased by 5%. 

Every noiseless data scenario exhibited a notably low training 

error, with the scenario model for the output flow rate 

demonstrating the lowest value (approximately 20% lower 

than the PDG pressure models). Upon analyzing validation 

data predictions, the open-loop results for PDG pressure 

showed a percentage of 92% for the open-loop-only scenario 

and 90% for the multi-loop scenario model. Despite the 

varying levels of complexity in the PDG pressure cases, the 

results were deemed satisfactory for both scenarios. 

Additionally, the results of residue stationarity for noisy and 

disturbed data were excellent – all residues obtained were 

stationary. In terms of training error, the error was 

approximately 100 times higher than that of other models. 

However, a high error value is not necessarily undesirable in 

this context. It suggests that the model effectively rejected 

noise and unmeasured disturbance as deterministic 

components of the system. The rest of this section is divided 

into four parts, each describing a scenario. 

5.3 Open loop PDG pressure prediction 

The training set for open-loop pressure models (as well as for 

the output flow rate) comprised a 42-day time series, 

equivalent to 30 continuous 33-hour-long step changes, as 

illustrated in Figure 4. The validation dataset (depicted in 

Figure 5) encompasses an approximately 7-day-long sequence 

of input variable alterations with randomized magnitudes and 

durations. 

 
Figure 4. Training data set for open loop scenarios. 

 
Figure 5. Validation data and prediction for open loop PDG 

pressure. 

It can be concluded that the model excels in predicting the 

PDG response to choke valve step variations. Figure 5 

indicates that the model's performance remains satisfactory 

even for the highest step in the input variable (around time = 

10 hours). 

5.4 Open and closed loop PDG pressure prediction 

For the open and closed-loop models, the training dataset was 

developed using half of the data employed for the training of 
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the open-loop model (see Figure 4) and closed-loop data, 

simulated by an analog similar approach (Figure 6), resulting 

in approximately 42 days of data for each case. The validation 

dataset (depicted in Figure 7) spans 21 days and was obtained 

analogously to that described in Section 5.3.  

 

Figure 6. Closed loop training data. 

 

Figure 7. Multi-scenario validation data and prediction. 

It is evident that the model, for most responses, effectively 

captured variations in the degree of damping with consistent 

precision. The exception is observed during the transition of 

the loop state at approximately time 170 hours, which is 

anticipated given that the training set did not encompass this 

particular switch. 

5.5 Noise and unmeasured disturbance effect for PDG 

pressure prediction 

The same method for defining training and validation datasets 

was used in sections 5.1 and 5.2, with a training set (Figure 8) 

that was 42 hours long and a validation set (Figure 9) that 

consisted of 16 days of random responses. 

 

Figure 8. Training data for open loop scenario with noise and 

unmeasured disturbance. 

As shown in Figure 9, the dynamic model unequivocally 

dismissed noise as a deterministic component of the analyzed 

system. Furthermore, predictions often exhibited deviations in 

instability values. It is crucial to emphasize that the stability 

value is directly linked to the implemented static model (in this 

case, polynomial regression). The model proved itself 

incapable of adjusting for the impact of unmeasured 

disturbances on pressure; these results, however, are expected, 

since static model tuning and robustness, although crucial to 

overall model performance, do not constitute the primary focus 

of this paper – the decomposition strategy and dynamic model 

structure. 

 

Figure 9. Validation and prediction for noisy data and unmeasured 

disturbance scenarios. 

5.6 Open loop output flow rate prediction 

The dataset used for this scenario is depicted in Figure 3. 

Similarly, the validation dataset (Figure 9) comprises an 

approximately 8-day-long sequence with shorter and more 

frequent step alterations in the choke valve opening. 

 

Figure 10. Multistep validation data and predictions for output flow 

rate (open loop). 

An analysis of the prediction results depicted in Figure 10 

shows that the proposed methodology predicts the output 

effect of sequential steps in the input variable. This conclusion 

suggests that the developed method is well-suited for practical 

application in predictive control strategies. Furthermore, using 

the output flow rate as an output variable instead of the PDG 

pressure has not compromised model performance. 

6. CONCLUSIONS 

In this paper, we have examined the results obtained from 

applying a proposed hybrid methodology for predicting the 

behavior of a nonlinear gas-lift oil production system across 
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various scenarios. The method is deemed satisfactory, 

demonstrating promising results for all evaluated scenarios. 

Our study makes a significant contribution to the field by 

introducing an innovative approach to address the challenges 

of nonlinear systems modeling and control. The methodology 

presented in this study provides fresh perspectives and 

opportunities that extend beyond individual processes or 

sectors, holding the potential for application in various 

scenarios. Thus, this contribution extends to the broader 

domains of process modeling and control, providing valuable 

insights and tools for practitioners and researchers. 

It is worth noting that the proposed methodology may have its 

limitations. Despite demonstrating robust performance for the 

system analyzed in this study, the number of hyperparameters 

set for each case was not uniform, and the precise tuning of 

these hyperparameters may influence future applications. 

Moreover, the overall performance relies on the static model's 

high quality, making the methodology's application feasible 

only when fundamental knowledge or a comprehensive static 

data history is available. As this is a novel approach, there is a 

possibility that the methodology is susceptible to other factors 

or impacts not explicitly addressed in this study. 

The applicability of the methodology in even more challenging 

and complex scenarios can be explored. Additionally, there is 

potential for real-world application in nonlinear model 

predictive control strategies for the cases studied in this paper.  
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