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Abstract: This paper examines the construction of a parameter-dependent voltage prediction
model for a primary Zinc-air cell prototype, focusing on its response time when subjected to
multiple step-wise discharge current levels. Laboratory tests have revealed that the dynamic
response’s time constant varies with discharge current, a phenomenon not adequately addressed
in previous analyses. The current research aims to contribute to the existing knowledge
by employing a piecewise current profile during a single cell discharge and conducting an
identification-type analysis of the relationships between the system’s time constants and other
state and input variables. The findings presented in this paper hold significant potential for
integration into Battery Management Systems and, in the long term, for addressing the inverse
problem of State-of-Charge estimation.
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1. INTRODUCTION

There is a growing global awareness of the need to reduce
carbon emissions from human activity as their environ-
mental and socio-economical impact becomes louder with
the years. To enable this, research is underway in various
energy-related fields, such as production, transmission,
and distribution. Developing renewable energy sources
and technologies is crucial for responding to the increas-
ing energy demand (Qazi et al., 2019), with solar and
wind sources sharing the most significant growth potential
(Kebede et al., 2022). However, due to their intermittent
nature and demand, energy storage is an essential part of
the system, as it improves grid efficiency (Olabi et al.,
2021), helps with voltage regulation and improves the
reliability and quality of the grid (Boicea, 2014).

Batteries are the most commonly used Energy Storage
Systems (ESS). In addition to the established technolo-
gies, ongoing research explores emerging materials and
configurations, aiming to uncover promising alternatives
to conventional Li-ion batteries. Metal-air batteries are
one of the attempts at safer and more efficient batteries.
Multiple scientific areas are mobilized to advance the ef-
fective design of batteries, from chemistry engineering to
control engineering. Zinc-air and Zinc-air flow batteries are
examples of promising technologies thanks to the metal’s
availability and safety.

From a control perspective, it is crucial to have a suitable
model of the cell’s behavior to develop a Battery Man-
agement System (BMS) that meets the requirements of a
particular system. In that regard, studies have approached
the cell from its intrinsic properties, such as electrolyte
concentration and reaction rates (Lao-Atiman et al., 2019),
to characterize its behavior. Although this approach has
shown promising prediction results, it is impractical for
BMS integration since it requires knowledge of particular
physical/chemical properties that are not always available.

In contrast, model-based techniques have been used to
analyze the cell’s operation, allowing prediction mech-
anisms to be embedded in BMS and thus to optimize
battery life, performance, and safety (Gabbar et al., 2021).
The steady-state response of single-cell Zinc-air battery
to input currents has been studied in previous research
(Olaru et al., 2019) as well as non-linear state space mod-
els that use Hammerstein-Wiener approaches to describe
the general cell operation (Lao-atiman et al., 2019; Lao-
Atiman et al., 2020). These black-box models are useful
for predicting the cell’s voltage response to multiple input
currents with a sufficient charge. However, there is still
insufficient exploration of the relationship between the
cell’s time constant and discharge current, as well as the
utilized capacity, particularly as the cell approaches its
End-of-Discharge (EoD) voltage, which can cause changes
to internal parameters.
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The present paper seizes the cell differently and studies the
system’s time-constant behavior in response to different
current levels. The model is evaluated using a grey-box
approach, where previous works have already character-
ized the steady-state behavior (Rodriguez et al., 2023),
and a first-order system captures the transient behavior of
the cell. A piece-wise discharge current profile is used to
analyze the time-constant dependence on the current. The
approach discussed here provides a more physically mean-
ingful interpretation of the coefficients within the identified
model, allowing for a deeper understanding of the overall
system. However, a primary challenge associated with this
approach is the inherently sluggish nature of the system.
The extended time required to reach steady-state voltage
values constrains the number of useful transitions before
the cell reaches its EoD state, which impacts data col-
lection for calculating time constants and the subsequent
model construction. Furthermore, as the cell approaches
near-complete discharge, its transient characteristics un-
dergo a shift in behavior.

With this in mind, the physical operation of the cell and its
chemical reaction are described in Section 2.1. Then, the
block diagram representation of the system focusing on its
transitory is defined in Section 2.2. Section 3 describes the
test methodology, assumptions, and the tools used. The
model validation and the results analysis are presented in
Section 4.

2. SYSTEM DESCRIPTION

2.1 First principles of operation

Zinc-air batteries (ZABs) are a promising type of energy
storage system due to their high energy density and spe-
cific energy compared to the commercialized lithium-ion
batteries (Olabi et al., 2021; Liu et al., 2022). These bat-
teries rely on a redox reaction between oxygen, which acts
as a cathode, and zinc, which serves as an anode. Zinc is
oxidized, forming zincate ions and releasing electrons to an
electrolyte medium, facilitating their transfer between the
electrodes. By the end of the reaction, the zincate becomes
zinc oxide. The appeal of ZABs lies in the abundance
of zinc, making them cheaper, safer, and more stable to
operate. Furthermore, using oxygen as a cathode makes
them lighter and smaller, reducing the materials needed
to build them. Electrolytes can be aqueous or non-aqueous
(Olabi et al., 2021). For this study, an aqueous potassium
hydroxide (KOH) electrolyte with a concentration of 7M
is used. The reaction is as follows:

• Anode:
Zn + 4OH− ←→ ZnOH2−

4 + 2e−

ZnOH2−
4 ←→ ZnO + 2OH− +H2O

(E0 = −1.25 V vs SHE)

• Cathode:
1

2
O2 +H2O+ 2e− ←→ 2OH−

(E0 = 0.401V vs SHE)

where E0 is the corresponding standard electrode potential
versus standard hydrogen electrode (SHE) (Lao-Atiman
et al., 2020). The overall reaction is summarized as

Zn +
1

2
O2 ←→ ZnO
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Fig. 1. Structure of the Zinc-air battery (Lao-Atiman et al.,
2019).

(E0
cell = 1.65V ).

The theoretical open-circuit voltage is 1.65 V; however,
upon measurement, it exhibits a distribution around 1.4
V for this particular study. The cell consists of a primary
(non-rechargeable) prototype developed at Chulalongkorn
University in Bangkok, as depicted in Fig. 1.

2.2 Dynamical model description

Complex physical systems require modeling to understand
better how they respond to various inputs and internal
or external variables. Since the chemical reaction alone
does not provide enough information to characterize the
macroscopic behavior of these systems, a model of the
system’s dynamic operation, conceived using abstractions
and interconnections to represent the system’s behavior,
is represented on the block diagram in Fig. 2. This model
is based on the following assumptions:

Dynamic model

Static non-linearity

. . .

Fig. 2. Block diagram describing the system.

• A static dependency between the output voltage
and discharge characteristics, accounted for by a
sigmoidal function, denoted as f(C, i), of the form:

f(C, i) =
A(C, i)

1 + eC1(i)(C−Cin(i))
. (1)

The parameters A, C1, and Cin were identified us-
ing experimental data, and their values correspond
to those reported in (Rodriguez et al., 2023). This
function characterizes the cell’s internal structure and
serves as an indicator of the cell’s proximity to com-
plete discharge. In practice, it describes the evolution
of the cell’s voltage during the discharge period, which
changes as a function of the current (due to inter-
nal impedances) and the discharged capacity (due to
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the nature of the chemical reaction). The sigmoid’s
inflection point Cin marks the approach to full cell
discharge.

• A first order differential equation g(i, Vs) portray-
ing the cell’s transient dynamics with a current-
dependent time constant τ . This parameter is the
main element of study in the present work.

The overall system input is a piecewise constant load
current ī, which is integrated to obtain the cell’s discharged
capacity C(t) (also known as discharged coulombs). The
output is the cell’s voltage V (t), and Vs is the steady-state
voltage obtained for ī. Two main variability sources can
alter the cell’s response to currents. First, a parameter
vector θj that includes variables such as temperature, zinc
disposition inside the tube, quality of the electrolyte, etc.
Since this study is based on a primary type cell that
has to be changed after every discharge, θ is different
for every realization j (thus denoted θj). For this study,
the whole vector θj is considered a disturbance affecting
the voltage response and is not directly measured. Sec-
ond, despite being a primary battery, the mesh cylinder
and the separator are reused for every discharge process;
hence, an aging parameter σ embodies the cell’s material
degradation through time and use. This study does not
consider the latter, as the tests were performed with a
small time separation. The analysis of this parameter could
be included in further studies concerning the cell’s State-
of-Health (SoH).

This study focuses on finding an appropriate character-
ization of the time constant evolution as a function of
the discharge current that provides a convenient transient
response of the cell. Therefore, a method for predicting
end-of-discharge points needs to be analyzed in detail.

3. METHODOLOGY

3.1 Data obtention and treatment

To identify the transient response of the cell, it is necessary
to draw a consistent and stable load current from it to
avoid noise that can affect the measurements. The battery-
testing device used is a BTS-4000 from Neware, consist-
ing of an 8-channel device connected to a server. This
device allows the programming of the desired reference
discharge/charge profiles in the form of constant voltage,
current, or power. In the present work, the device is set
to a constant current discharge with a 100 ms sampling
time (Ts) and a cut-off voltage of 0.01 V. A cycle of
constant current steps, from 100 to 900 mA in 100 mA
steps as shown in Fig. 3, was drawn. Each step lasts 2.5
minutes, allowing the cell to reach its steady-state voltage.
Four-minute rest states are included at the end of each
cycle to study the cell’s return to the open-circuit voltage.
Moreover, the voltage behavior during these states allows
us to analyze the evolution of the time constant with
respect to the input current and the discharged capacity. It
is important to note that the peaks on the voltage response
in Fig. 3 result from parasitic phenomena from the test
equipment and not from the cell dynamics. This cycle
was repeated until the cell’s voltage was below the cut-
off voltage. After this point, the cell’s voltage dynamics
change, indicating that it is reaching its end of discharge
(or State-of-Charge reaching 0).
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Fig. 3. Output voltage obtained for a pyramid cycle
discharge current profile.

The dynamics that start to show nonlinear behavior are
not relevant to this study; however, they constitute a
compelling continuation for describing the entire system.

3.2 Transitory

The monotone transitory discharge dynamics displayed by
the cell can be modeled in terms of a simple first-order
system:

V̇ (t) = −
1

τ
V (t) +

1

τ
Vs(t). (2)

The system’s observed time constant (τ) shows a depen-
dence on the input current’s amplitude. A set of τn is
considered, with n = {1 . . . 9}, where n represents the
current step. The aim is to express τ as an explicit function
that can describe a continuous evolution of the current,
such as τ = τ̂(i), and then identify the function τ̂(i). The
time constant was calculated and recorded at every change
in the current step to identify this function. To avoid erro-
neous calculation of τ , the peaks introduced by the testing
equipment into the voltage response were post-processed
by considering the steady-state value of the voltage one
sample before the current change. A least-square curve-
fitting is used to identify the function’s parameters on the
form:

τ̂(i) = ae−bi + c. (3)
To validate the model binding the steady-state voltage and
the transient response, it was implemented on a Simulink
block diagram, depicted in Fig. 4. Due to the nature of the
data, the blocks were implemented in their discrete-time
form. The first-order discrete-time system is obtained with
the Euler discretization and the sampling time Ts:

V (k + 1) = (1−
Ts

τ
)V (k) +

Ts

τ
Vs(k). (4)

I_T V

Current Profile

Discrete integrator

Steady-state voltage f(.)

Tau Calculation

Discrete dynamical system g(.)

Cell output voltage

K Ts

z-1
Capacity

Current

Steady Voltage Steady Voltage

Ts/Tau
Voltage

Current Ts/Tau

Fig. 4. Simulink block diagram.

4. RESULTS

4.1 Validation of the time constant

The response of a multistep current profile showed that
the system’s time constant τ varies depending on the
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Fig. 5. Estimation voltage profile and τ200 values calcu-
lated for a 200 mA current setpoint in function of the
capacity.

reference current amplitude. However, the values of τ for
a given current change around a given current setpoint in
remain relatively constant as long as the output voltage
dependence to capacity is linear (i.e., before the cell’s
inflection point or cut-off voltage). In contrast, the τ
value rises exponentially as the cell approaches its End-
of-Discharge (EoD), as portrayed in Fig. 5, meaning a
longer time to reach a steady voltage state. The values
of τī slightly change as well depending on the direction
of the setpoint change, whether it is a rising or falling
edge of discharge current. Consider a reference current in;
the cell takes longer to reach a steady state voltage when
discharged towards a higher current setpoint (in−1 < in)
and less when reducing the reference current (in−1 > in).
This could be caused by the nature of the chemical reaction
inertia and available electrons. This paper focuses on the
dependency of τ on the discharge current; therefore, the
values of the time constant nearing EoD (dependency on
the cell’s State-of-Charge, SoC) were not considered for
constructing the function for τ . The observed dependency
of τ on the discharged capacity and the direction of
the current change constitute starting points for future
experiments with richer data.

Three τ subsets were obtained from the current step
changes in the estimation profile portrayed in Fig. 7a, to
fit a function for τ (equation (3)). The coefficients of the
three functions are summarized in Table 1 and consist of:

• The values of τ calculated at the beginning of the
discharge test (the first 9 steps going from 100 to 900
mA, therefore, 9 values of τ). The obtained function
is called τf (i).

• The average values of τ for step changes around a
given nominal current. This means the time constant
is recorded every time the cell changes to a current
step amplitude in. When the test is over, the mean of
the τ values for each current in is calculated. τa(i) is
the fitted function using this data set.

• The median values of τ for step variations around a
given nominal current. The median values are then
used to fit the function τm(i), as they reduce the
influence of outlier values of τ coming from noisy
data, in contrast to the mean values.

Table 1. Coefficients of the fitted τ functions

a b c

τf 31.28 11.75 1.67
τm 26.36 12.01 1.74
τa 25.47 13.31 1.84
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Fig. 6. τ values calculated for all current setpoints in a.
the estimation data and b. the validation set of Fig.
7b.

All the raw τ calculated values can be seen on Fig. 6a
along with the fitted functions τf (i), τa(i), and τm(i). This
figure includes the values of time constants computed close
to the EoD. These particular values are shifted vertically
to higher values. Once the functions τ̂(i) are constructed,
they can be analysed on different validation datasets. It
is the case with respect to the profile in Fig. 6b, which
exhibits an important shift according to a different profile
of the discharge steps.

To assess the fitted τ̂(i) functions, a comparison has been
made using two performance indices, according to the
equations (5) and (6).

Ja =

∑
k

(τk − τ̂(i))2∑
k

(τk − τ̄)2
< 1 (5)

Jl =

∑
k

(τk − τ̂(i))2∑
k

(τk − τ̌(i))2
> 1 (6)

where τk is every calculated τ for a given setpoint current i,
τ̂(i) is the respective τ(i) function being analyzed (τf , τa
or τm), τ̄ is the mean value of all the calculated time
constants (independently of the current) and τ̌(i) is the
mean value of the time constant for a given reference
current i. The performance index values for each fitted
function related to each data set are resumed in Table 2.

Table 2. Performance indices for each fitted
function

Ja Jl
τf (i) 0.978 1.34
τm(i) 0.964 1.32
τa(i) 0.974 1.33

According to Table 2, the closer Ja is to 0, the better
the fit of the function, whilst the closer Jl is to 1, the
more accurate the function is for predicting a value of τ .
With this in mind, the function fitted with the median
values τm(i) is the best at predicting the behavior of
the system’s time constant. However, despite the fitting
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performances, the validation of the transitory model needs
to be extended to complex input signal excitation. A
comparison is provided between the simulation model in
Fig. 4 and the effective cell data as follows:

• The curve on Fig. 7a is the set used for the dynamical
model parameter identification (estimation set).

• The profile in Fig. 7b starts with a similar profile
to the one in Fig. 7a. However, another section is
included to study the rest periods on the cell, which
allowed to calculate the time constant for the system
returning to the open-circuit voltage (i = 0). It also
includes longer steps at the end to study the influence
of longer periods under discharge, which showed no
effect on the time constant’s value.

• Fig. 7c aims to study the cell’s response to stronger
changes in the discharge current (i.e., larger step
amplitudes ∆i). No obvious effect has been observed
on the value of τ for higher variations ∆i.

The validation needs key indicators for the quality of
identification. The RMS error and a third performance
index given by equation (7) were calculated for each one
of the curves in Fig. 7, as shown in Table 3.

J =

∑
t

(y(t)− ŷτ̂ (t))
2∑

t

(y(t)− ŷτ̄ (t))2
< 1 (7)

Table 3. RMSE and J values for datasets

τf τm τa

Estimation set (Fig. 7a)
RMSE 0.042 0.042 0.042

J 0.938 0.938 0.936

Fig. 7b
RMSE 0.090 0.088 0.087

J 0.984 0.934 0.927

Fig. 7c
RMSE 0.037 0.035 0.035

J 0.946 0.871 0.861

Fig. 7d
RMSE 0.072 0.072 0.071

J 0.966 0.966 0.965

Fig. 8
RMSE 0.014 0.014 0.014

J 0.971 0.912 0.889

The profiles portrayed in Fig. 7 show a good approxima-
tion of the system’s transient response. The slight differ-
ences between the actual steady-state voltage values and
those predicted by the identified model come from parame-
ter variation across experiments (θn). These variations are
not considered as the parameters of the static nonlinear
function f(.) were identified from the estimation set shown
in Fig. 7a. This can be more clearly seen in Fig. 7d,
where a large offset is observed between the estimated and
measured outputs. Fig. 8 shows a preliminary correction of
the estimated output by rectifying the cell’s open-circuit
voltage considered in the function f(.), which improves the
prediction’s RMSE and J values. The values of J in Table
3 being inferior to 1, and Fig. 9, underlines the interest
in using a current-varying time constant compared to a
unique, constant value for τ . Nonetheless, it reveals in the
same time that a steady-state error between the model and
the real values influences the performance index J (as this
latter relies on this ”steady” error). Further improvement
can be brought to the model with parameter adjustment
(online or offline) for fine-tuning the cell steady-state volt-
age estimation, which constitutes an interesting analysis
for future developments.
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Fig. 7. Simulation and experimental results to multiple
profiles.

Regarding the time constant estimation, Table 2 points
τm(i) as the best option for predicting this aggregate
value along the evolution of the discharge current. Yet, the
RMSE and J values in Table 3 put light on τa(i) as a better
candidate for estimation when using the τ̂ function in the
global model presented in Fig. 4. Nonetheless, there is a
significant setback on this estimation method, considering
that obtaining a τ̂(i) function based on its average values
(or even its median values) along the entire discharge
profile implies performing a complete discharge. Such an
extensive test is impractical in Battery Management Sys-
tems (BMS). A possible approach to this question in future
studies could be an estimation along a defined window so
that a complete discharge is unnecessary. This is where the
τ̂ functions are particularly interesting. Finally, let us re-
call that including the dependency on the cell’s SoC in the
analysis may also improve the prediction’s accuracy and
extensive discharges need to be further performed in order
to put the current analysis in a statistical perspective.
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Fig. 8. Adjusted cell voltage prediction.
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Fig. 9. Focus on two areas of the validation set of Fig. 7b
showing the comparison between the model using a
varying τ(i) and a constant τ̄ .

4.2 Time constant measurement for EoD anticipation

In addition to providing a more accurate model whilst
including the transient response of the system, the time
constant’s value monitoring may prove itself very useful for
anticipating the cell’s End-of-Discharge (EoD). As seen in
Fig. 5, the τ values calculated for current changes slightly
before the voltage drop point cease to have a constant
tendency. A τ value threshold can be defined within a
Battery Management System (BMS) to detect when the
cell is approaching depletion. Further studies with richer
data on the transitory behavior of the cell can assist in
defining this threshold, by deepening the analysis of the
capacity dependency of the time constant. This will aid in
enhancing the EoD prediction by a BMS.

5. CONCLUSIONS

Studying the transitory behavior of the zinc-air cell is im-
portant to build a reliable model. This work aims to have
a deeper insight into the dynamic behavior of a particular
construction of a primary zinc-air cell. To do this, an in-
depth analysis of the system’s time constant, which had
yet to be previously conducted, is carried out. Real-time
measurements allowed to contribute in this regard by com-
plementing the model for the steady-state behavior with
an expression for the dynamical performance of the cell
with a current-dependent time constant. This was achieved
by using the piecewise constant discharge currents that
provided information on the variability of the time con-
stant using a single cell. The results obtained in this work
will serve as a basis for future procedures, enabling richer
data to improve the parameter fitting process. Also, two
main continuations might be of interest to go further with
this topic. First, a deeper examination of the time con-
stant’s dependence on cell degradation or SoH and State-
of-Charge, as it might constitute an insightful method for
estimating them. Second, an adaptive procedure could be

integrated into the system to adjust the parameters of the
model based on the different realizations of the cell as
well as changes in external or internal parameters that are
not taken into account, such as temperature or electrolyte
concentration, to give an example.
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