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Abstract: The industrial cultivation of microalgae has increased substantially over the past
two decades. These microorganisms have the ability to adapt their photosynthetic pigments in
response to the amount of light they experience. Herein, we investigate a dynamic model that
describes pigment adaptation and its effect on microalgal productivity in a photobioreactor
where light is shone onto the surface and attenuated as it traverses the culture medium. We
consider two controls – the light irradiance and the dilution rate of the photobioreactor under
continuous operation and constant volume – and analyze strategies for maximal production
of microalgal biomass using Pontryagin’s maximum principle. We also conduct a numerical
investigation of turnpike properties in this context and discuss how self-shading within the
culture could be exploited to increase productivity.
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1. INTRODUCTION

Microalgae are microorganisms that convert carbon diox-
ide (CO2) into biomass via photosynthesis. They are in-
creasingly used for food and feed production, and in the
cosmetic or pharmaceutical industries [Vázquez-Romero
et al. 2022]. A wide range of phenomena affects the
metabolism and growth of microalgae and, ultimately,
their productivity. The main focus in this paper is on
photoinhibition and photoacclimation, the combined ef-
fect of which has not been studied extensively thus far.
Photoinhibition is triggered by an excess of light, causing
damage to key photosynthetic proteins and thereby affect-
ing cell growth. Photoacclimation, on the other hand, is a
protective mechanism to mitigate photoinhibition through
adjusting the amount of cellular pigments in response to
light intensity variations. These phenomena take place
on different timescales [Hartmann et al. 2014, Bernardi
et al. 2017]. While photoinhibition acts on a timescale of
minutes, photoacclimation takes place on a timescale of
days which is slower than the growth dynamics.

An optimal control problem for maximizing microalgae
production was recently studied by Fierro U. et al. [2023],
with a focus on the fast dynamics of photoinhibition in
⋆ This project has received funding from the Digitalgaesation project
within the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement No.
955520

a culture medium where the cells experience a gradient
of light along their advection. Herein, the objective is
to complement this work through bringing the slower
photoacclimation dynamics into the analysis. When both
the light and the dilution rate can be controlled, a key
question is how to avoid loss of productivity in early stages
when the culture density is low. This loss is even more
severe when an innoculum pre-acclimated at low light is
used, for instance a high density inoculum where light
seldom penetrates. This leads to a new control problem
that we formalize and then analyze to understand how
photoacclimation can impact the optimal strategy.

The rest of the paper is organized as follows. Section 2
introduces the dynamic model of biomass growth in the
photobioreactor, based on a model by Nikolaou et al. [2016]
that integrates both photoinhibition and photoacclima-
tion. Section 3 formulates the optimal control problem,
before conducting a formal analysis based on Pontryagin’s
maximum principle in Section 4. A numerical investigation
is conducted in Section 5 to validate and complement the
theoretical results. Finally, Section 6 discusses the main
insights, in particular the role played by both timescales
and the benefits of self-shading on process productivity.

2. DYNAMIC MODEL FORMULATION

We consider a planar photobioreactor operated in continu-
ous mode and illuminated by shining an artificial light onto
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the plane. The biomass concentration, x [gC L−1] follows
the dynamics:

ẋ = µx−Rx−Dx, (1)
where µ [s−1] is the specific gross growth rate, R [s−1]
the specific maintenance rate [Blanken et al. 2016], and
D [s−1] the dilution rate of the reactor (ratio between the
feed rate and the volume of the reactor).

The photobioreactor is illuminated with a light irradiance
I [µmolm−2s−1]. This irradiance is attenuated by the
biomass concentration x and the amount of chlorophyll xθ,
where the chlorophyll quota θ [gChl g

−1
C

] is the amount of
chlorophyll per unit of biomass. The average light that the
microalgae perceive along their advection in the reactor
can be approximated using the Beer-Lambert law: 1

Ī(I, x, Ig) = I
1− e−(EC+EChlθ)xL

(EC + EChlθ)xL
, (3)

where L [m] is the depth of the photobioreactor (the
distance between the illuminated surface and the bottom),
EChl [g−1

Chl
m−1L] and EC [g−1

C
m−1L] are constants that

account for light absorption by the pigments and the
biomass, respectively.

The chlorophyll content in microalgae, and more gener-
ally their pigment composition, changes in response to
variations in the light irradiance. In the model developed
by Nikolaou et al. [2016], the chlorophyll quota θ depends
on the growth irradiance Ig [µmolm−2s−1], which corre-
sponds to the light at which the microalgae are acclimated:

θ(Ig) = ψ
kI

Ig + kI
, (4)

with parameters ψ [gChl g
−1
C

] and kI [µmolm−2s−1]. The
dynamics of the growth irradiance Ig are given by:

İg = δµ(Ī − Ig), (5)
where δ [–] is a scaling constant, and the specific growth
rate µ depends on the average perceived light Ī according
to the reduced Han model [Han 2002, Hartmann et al.
2014, Fierro Ulloa et al. 2023]:

µ(I, x, Ig) =
KσĪ

1 + τσĪ + kd

kr
τ(σĪ)2

, (6)

with K [−] the growth rate coefficient, σ [m2µmol−1] the
effective cross-section, τ [s] the turnover time (time needed
to harvest one photon), and kd [−] and kr [s−1] the damage
and repair rates, respectively. The maximal growth rate,

µmax =
K

2
√

kd

kr
τ + τ

, (7)

is achieved under the following condition:

σĪ =
1√
kd

kr
τ
. (8)

Finally, the dependence between the effective cross-section
and the chlorophyll quota is assumed to follow a power law
relationship with constants β and κ [Nikolaou et al. 2016]:

σ = βθκ. (9)
1 For simplicity, we denote

ε(x, Ig) =
1− e−(EC+EChlθ)xL

(EC + EChlθ)xL
, (2)

as the average attenuation factor. In particular, we have Ī = Iε.

3. OPTIMAL CONTROL PROBLEM STATEMENT

The goal is to speed up the reactor’s start-up phase or,
equivalently, to maximize the total biomass production
over the start-up horizon [0, Tf ], defined as:

JTf
(D, I) =

∫ Tf

0

x(t)D(t)dt . (10)

The controls are the dilution rate D and the artificial irra-
diance I, within the following sets of admissible controls:

D := {D : [0,+∞) → [0, Dmax] ; D(·) ∈ L∞
loc(R+)},

I := {I : [0,+∞) → [0, Imax] ; I(·) ∈ L∞
loc(R+)},

(11)
where L∞

loc(R+) denotes the set of locally integrable func-
tions on every compact set in [0,∞). In particular, the
upper bounds Dmax and Imax on the controls are as-
sumed to be large enough to drive biomass washout—
e.g., Dmax > µmax with µmax as defined in Eqn. (7)—and
photoinhibition, respectively.

The resulting optimal control problem can be stated as:

max
D∈D,
I∈I

J[0,Tf ](D, I) =

∫ Tf

0

x(t)D(t)dt,

s.t. ẋ = µ(I, x, Ig)x−Dx−Rx,

İg = δ µ(I, x, Ig)
[
Ī(I, x, Ig)− Ig

]
,

x(0), Ig(0) given.

(OCP)

4. FORMAL ANALYSIS

To apply Pontryagin’s maximum principle (PMP) [Clarke
2013, Hocking 1991] to the optimal control problem (OCP),
we define the Hamiltonian function H as:
H(x, Ig, D, I, λx, λg) := λx(µ−R−D)x+δλgµ(Ī−Ig)+xD .

(12)
The dynamics of the co-states λx and λg are given by:

λ̇g = −λx
∂µ

∂Ig
x− δλg

(
∂µ

∂Ig
(Ī − Ig) + µ

(
∂Ī

∂Ig
− 1

))
λ̇x = −λx

(
∂µ

∂x
x+ µ−R−D

)
− δλg

(
∂µ

∂x
(Ī − Ig) + µ

∂Ī

∂x

)
−D.

(13)
Since the terminal states are free, the terminal co-states
are given by:

λx(Tf) = λg(Tf) = 0. (14)
The optimal control trajectories D∗(t), I∗(t) are those
maximizing the Hamiltonian function for almost all t ∈
[0, Tf ]:
(D∗(t), I∗(t)) ∈ argmax

D∈[0,Dmax],
I∈[0,Imax]

H(x∗(t), I∗g (t), D, I, λ
∗
x(t), λ

∗
g(t)) .

(15)
Based on condition (15), the optimal dilution rate can take
three different values depending on the value of the co-
state λx, as summarized in Proposition 1 below.
Proposition 1. For almost all t ∈ [0, Tf ], the optimal
control D∗ satisfies
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D∗(t) =


0, if λx > 1,

Dmax, if λx < 1,

Dsing(t), if λx(t) = 1,

(16)

where Dsing is a singular arc.

Likewise, the optimal irradiance I∗ is a solution to the
following problem almost everywhere:

I∗(t) ∈ argmax
I∈[0,Imax]

ϕ(I) := λxµx+ δλgµ(Ī − Ig). (17)

The KKT conditions for this problem are given by:
∂ϕ(I)

∂I
− ν = 0, (18)

ν(Imax − I) = 0, (19)
ν ≥ 0. (20)

In particular, the stationarity condition (18) expands as:

λxx
∂µ

∂Ī

∂Ī

∂I
+ δλg

∂µ

∂Ī

∂Ī

∂I
(Ī − Ig) + δλgµ

∂Ī

∂I
− ν = 0. (21)

Since ∂Ī
∂I ≥ 0, it follows from the dual feasibility condi-

tion (20) that

Ψ := λxx
∂µ

∂Ī
+ δλg

[
∂µ

∂Ī
(Ī − Ig) + µ

]
≥ 0. (22)

The switching function Ψ is such that I∗(t) = Imax

whenever Ψ > 0. Next, we seek an expression of I∗(t)
when Ψ = 0:

λxx
∂µ

∂Ī
+ δλg

[
∂µ

∂Ī
(Ī − Ig) + µ

]
= 0. (23)

In the case that δλg = 0, the previous condition simplifies
to:

λxx
∂µ

∂Ī
= 0, (24)

then dismissing the case λx = 0, the optimal solution
corresponds to:

σĪ∗ =
1√
kd

kr
τ
. (25)

In the other case that δλg ̸= 0, the condition (23) can be
rewritten as:

∂µ

∂Ī

[
λxx+ δλg(Ī − Ig)

]
+ δλgµ = 0, (26)

then replacing the definition of µ, leads to the following
quadratic equation:(

λxx

δλg
− Ig

)(
1− kd

kr
τ(σĪ)2

)
+ 2Ī + τσĪ2 = 0 . (27)

Candidate roots are of the form:

Ī∗ =
−1±

√
1− τσ

(
λxx
δλg

− Ig

)
+ kd

kr
τσ2

(
λxx
δλg

− Ig

)2

τσ
[
1− kd

kr
τσ

(
λxx
δλg

− Ig

)] ,

(28)
of which only the positive roots are admissible.
Proposition 2. For almost all t ∈ [0, Tf ], the optimal
control I∗ satisfies

I∗(t) =

{
Imax if Ī∗ > ϵImax,
Ī∗/ϵ otherwise. (29)

with Ī∗ > 0 as in Eqn. (28).

The function Ψ, combined with the transversality condi-
tions, is also useful to estimate the final arc of the optimal

control D∗. From the terminal condition (14) and by con-
tinuity of λx, there is a time interval on which λx(t) < 1;
it follows from Proposition 1 that D(t) = Dmax on this
interval.

To estimate the corresponding switching time Tharv, we
rewrite the dynamic of the co-state λx as

λ̇x = −Ψ
∂Ī

∂x
− λx(µ−R−D)−D, (30)

with Ψ as defined in (22) and noting the chain rule ∂µ
∂x =

∂µ
∂Ī

∂Ī
∂x . Since ∂Ī

∂x = I ∂ε
∂x is non-positive (as more biomass

decreases the average light in the photobioreactor), the
condition (22) can be rewritten as:

λ̇x ≥ −λx(µ−R−D)−D,

≥ −λx(µmax −R−Dmax)−Dmax.
(31)

Multiplying both side by e(µmax−R−Dmax)(t−(Tf−Tharv)) and
integrating over time gives:

λx(Tf)e
(µmax−R−Dmax)Tharv

−λx(Tf − Tharv) ≥
−Dmax(e

(µmax−R−Dmax)Tharv − 1)

µmax −R−Dmax
,

(32)
After replacing the transversality condition and λx(Tf −
Tharv) = 1, we obtain:

µmax −R

Dmax
≥ e(µmax−R−Dmax)Tharv . (33)

We summarize this insight in Proposition 3 below.
Proposition 3 (Final harvest time). There exists Tharv >
0 such that D∗(t) = Dmax for all t ∈ [Tf − Tharv, Tf ]. If
λx(T − Tharv) = 1, then

Tharv ≤ 1

µmax−R−Dmax

ln

(
µmax −R

Dmax

)
. (34)

5. NUMERICAL INVESTIGATIONS

We solve the optimal control problem (OCP) using the
direct sequential method, as implemented in the software
BOCOP [Bonnans et al. 2017] with the NLP solver IPOPT
[Wächter and Biegler 2006]. Figure 1 displays the results of
the states and the controls with Imax = 1000 µmolm−2s−1,
Dmax = 0.001 s−1, and Tf = 20.8 d together with the
corresponding model parameter values.

The optimal dilution rate control in the numerical solution
presents a clear bang-singular-bang structure, in agreement
with Proposition 1. The optimal light irradiance control
also comprises three main arcs. Along the first arc, the
optimal dilution control remains at zero in order for the
biomass to grow at maximal rate, while the optimal irradi-
ance control is chosen to minimize the effect photoinhibi-
tion. Then, soon after the irradiance control has reached its
maximum value Imax, the singular arc of dilution stabilizes
the biomass to a certain value that does not depend on the
initial condition of the growth irradiance (see Fig 2). The
final arc is activated around t = Tf − Tharv, in agreement
with Proposition 3, where the optimal dilution control is
set at its maximum value Dmax.

We refine the insight derived form the numerical solution
below, with a focus on characterizing the optimal solution
structure and approximating the optimal dilution rate
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K 1.00× 10−6 –
τ 5.50× 10−3 s
kd 5.00× 10−6 –
kr 1.50× 10−4 s−1

δ 2.30× 10−1 –
ψ 3.10× 10−1 gChl g

−1
C

kI 4.40× 102 µmolm−2s−1

R 1.45× 10−5 s−1

Ec 8.00× 101 g−1
C
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Echl 4.00× 101 g−1
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κ 1.00 –
β 5.48 (µmol,m, g)
L 5.00× 10−2 m

Fig. 1. Left: Numerical solution with initial conditions x(0) = 1 and Ig(0) = 200. Red lines: optimal dilution rate and
irradiance controls. Blue lines: optimal biomass concentration and growth irradiance states. Black dotted lines:
value of µ − R (D plot) and approximate feedback control in Eqn. (39) (I plot). Vertical gray dotted lines: final
harvest time Tharv. Blue dotted line: solution of Eqn. (40). Right: Model parameter values [Nikolaou et al. 2016].

along the singular arc and the optimal irradiance during
the initial growth phase.

Since λx is a continuous function and according to Propo-
sition 1, the optimal dilution rate profile is necessarily a
concatenation of arcs, either D∗(t) = 0, D∗(t) = Dmax,
or D∗(t) = Dsing(t). Our computational investigations
suggest that the structure of the optimal dilution rate
follows a similar pattern presented in [Grognard et al.
2014, Theorem 2], where structures are possible for the
optimal dilution rate:

(1) Constant control with D∗(t) = Dmax;
(2) Bang-Bang with D∗(t) = 0, and single switch to

D∗(t) = Dmax;
(3) Bang-Singular-Bang with D∗(t) = 0 or D∗(t) =

Dmax, a switch to D(t) = Dsing(t), followed by a
single switch to D∗(t) = Dmax.

The presence of the singular arc depends on the final time
Tf , where the turnpike property appears; while the case
D∗(t) = 0 or D∗(t) = Dmax in the initial bang of the bang-
singular-bang structure depends on the initial biomass
concentration [Fierro U. et al. 2023]. Next, we focus on the
more interesting case where Tf is large enough to trigger
the singular arc and the initial biomass concentration is
small enough for D∗(t) = 0 along the first arc. If the
singular arc takes place in the interval [t1, t2], then λ̇x = 0
for every t ∈ (t1, t2) and, from (30), we have:

−Ψ
∂Ī

∂x
= µ−R. (35)

Recalling that ∂Ī
∂x is non-positive, and Ψ is also non-

negative, we conclude that µ − R ≥ 0. Numerical simula-
tions confirm that µ−R > 0 and, consequently, I∗ = Imax

along the singular arc. We can always ensure that I∗ =

Imax along the singular arc by assuming the existence of a
strictly positive lower bound µ on the growth rate µ that
satisfies

µ > R. (36)
This condition is common in photobioreactor optimiza-
tion [Masci et al. 2010, Bernard and Lu 2022], where it is
assumed that microalgae keep growing when continuously
exposed to light. This condition is not easy to establish,
since it depends on the model parameters and on the
choice of Imax. However, we can notice that I∗ ̸= Imax

only when µ = R. This equation has two solutions when
R < µmax, one related to a photolimited condition and in
a photoinhibited condition. If we rule out the case when
this equality occurs in photoinhibition conditions (which
imposes a condition over Imax), then I∗ < Imax does not
fulfil the condition (15).

5.1 Approximate Feedback Control on Light Irradiance

Eqn. (26) can be rewritten as

λxx
∂µ

∂Ī
+ δλg

[
∂µ

∂Ī
(Ī − Ig) + µ

]
= 0. (37)

Since δ is relatively small, the quantity δλg itself is small
enough to approximate its value to zero. We could confirm
this through numerical simulations. Consequently, the
optimal average irradiance Ī∗ can be approximated using
Eqn. (25), instead of the complex expression in Eqn. (28):

Ī∗(t) ≈ 1

σ
√

kd

kr
τ
, (38)

whenever Ī∗(t) ≤ ϵ(x∗(t), I∗g (t))Imax. The optimal light
irradiance control, therefore, can be approximated using
the following closed-loop feedback control law:
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Fig. 2. Optimal trajectories for the initial concentration
x(0) = 1 g L−1 and different initial growth irradi-
ance Ig(0) = 1000, 600, 400, 200 µmolm−2s−1. The
dotted lines represent the solution of the Eqn. (40),
which correspond to the approximation of the optimal
biomass.

Icl(x
∗(t), I∗g (t))

:= min

 1

σ(I∗g (t))ϵ(x∗(t), I∗g (t))
√

kd

kr
τ
, Imax

 .
(39)

Refer to Figure 1 for a comparison showing excellent
agreement between the feedback control Icl (black dotted
line) and the numerically optimized I∗ (red solid line).
Also note that the optimal control in (29) converges
pointwise to Icl as δ approaches 0.

5.2 Approximate Optimal Biomass Concentration

Numerical simulations show that the biomass concentra-
tion x is constant along the singular arc, suggesting that
the optimal dilution rate is adjusted to fulfill the condition
Ds = µ−R. Together with the approximation Ψ ≈ λxx

∂µ
∂Ī

for sufficiently small δ, the optimal biomass concentration
along the singular arc can then be approximated using (35)
with λx = 1:

−x∂µ
∂x

≈ µ−R. (40)

This approximation matches the first-order optimality
condition of the unrestricted, static problem maxx x(µ −
R) for a fixed Ig and I = Imax. Refer to Figure 1 for
a comparison between the solution to Eqn. (40) (dot-
ted blue line) and the numerically optimized response x∗

Fig. 3. Phase diagram of the net biomass productiv-
ity (µ(x, Ig) − R)x and turnpike-like behavior. Dot-
ted black lines: dynamic trajectories of biomass
concentration x and growth irradiance Ig under
the feedback control Icl. Solid black line: maxi-
mal biomass concentration in terms of the growth
irradiance Ig. Solid blue lines: selected trajecto-
ries from the initial biomass concentration x(0) =
1 g L−1 and different initial growth irradiance Ig(0) =
1000, 600, 400, 200 µmolm−2s−1.

(solid blue line). Moreover, Figure 3 shows a plot of the
net biomass productivity, defined by (µ(x, Ig) − R)x for
different biomass concentrations x and growth irradiance
Ig. This phase diagram illustrates the turnpike property,
whereby a range of optimal trajectories from different
initial growth irradiance (blue solid lines) approach the
maximal biomass concentration (black solid line), and
ultimately the maximal net productivity. The same trajec-
tories are shown in Figure 2 where, after the initial phase
that is dependent on the initial conditions, the optimal
dilution rate maintains a biomass density for which (at
maximum irradiance) the average irradiance in the reactor
leads to an optimal photoacclimation state and maximal
growth rate.

6. DISCUSSIONS

6.1 On the Effect of Time Scales

Fierro U. et al. [2023] showed that the optimal dilu-
ation rate control D follows a turnpike strategy when
considering the fast dynamics of photoinhibition in the
growth model. Our results show that the turnpike prop-
erty remains unchanged when accounting for the slower
dynamics of photoacclimation. Upon combining the rapid
protein damage and recovery dynamics with the gradual
adaptation of pigments (photoacclimation), we can thus
anticipate consistent results. In neither of these scenarios,
however, are we in a position to formally establish the
turnpike property, for instance using the results in Trélat
and Zuazua [2015], due to the singularity of the Hessian
matrix ∂2H

∂D2 .

6.2 On Exploiting Self-Shading

One of the key features of the optimal strategy identified
when accounting for both photoinhibition and photoac-
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climation relies on exploiting self-shading to enhance the
biomass growth by allowing the maximal light irradiance
to be shone onto the photobioreactor. Typically, a small in-
oculum of microalgae is initially introduced into the photo-
bioreactor. During the initial growth phase, the irradiance
can be carefully adjusted to ensure that the average light
intensity does not trigger significant photoinhibition. This
initial phase of the optimal strategy cannot be applied in
photobioreactors that use natural light, unless an external
apparatus is used to dim light. Throughout this initial
phase, the optimal dilution rate remains at zero. Then,
once the optimal irradiance reach its maximum value and
the optimal biomass level is attained, the optimal dilution
rate is adjusted to keep this biomass concentration con-
stant until the final harvesting time is reached.

7. CONCLUSIONS

We studied the optimal control problem of reactor startup
considering photoinhibition, light gradient in the photo-
bioreactor and photoacclimation dynamics, by combining
a formal analysis with a numerical investigation. The rate
of photoacclimation induces dynamics that are consider-
ably slower than microalgal growth —as dictated by the
time-scaling constant δ ≪ 1. This timescale difference
translates into a magnitude difference in the co-states, in
turn making it possible to formulate an approximate close-
loop optimal control law for the light irradiance.

The optimal dilution rate presents a more challenging
behavior for deriving a feedback control law, since it
depends on the time horizon Tf . Nevertheless, its value
can be approximated along the singular arc, which takes
the values necessary to uphold optimal biomass levels to
maximize net productivity.

Once the biomass is dense enough, self-shading enables
operating the photobioreactor using the maximal irradi-
ance to maximize biomass growth and the net produc-
tivity. This effect was previously studied, but only in the
scenario where photoinhibition is negligible due to strong
self-shading [Gerla et al. 2011]. Our analysis furthermore
remains valid for average irradiance taking the form of
Ī = εI, making the results transportable to other pho-
tobioreactor geometries such as tubular photobioreactors
[Molina Grima et al. 1997, Grima et al. 1996].
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