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Abstract: In scenarios where high-fidelity physical models are either unavailable or are
impractical due to their high complexity, data-based models offer a viable solution to obtain the
system model necessary for predictive control. However, the accuracy of the predictions obtained
by data-based models is limited. We propose to use neural networks with Bayesian last layer to
obtain information about the uncertainty of the predictions. This paper demonstrates the use of
Bayesian last layer surrogate models in a robust nonlinear model predictive control setting. The
nonlinear model predictive control problem is adapted by considering the predicted uncertainty
of the surrogate model, which can be efficiently computed using the Bayesian last layer method,
in the cost function. The controller thus takes model uncertainty explicitly into account and by
its formulation also avoids areas of extrapolation. The proposed method is applied to a mixed-
suspension, mixed-product-removal crystallizer and simulation studies show that it outperforms
a standard data-based model.

Keywords: model predictive control, uncertainty quantification, neural networks, robust
control.

1. INTRODUCTION

Advanced control techniques such as nonlinear model pre-
dictive control (NMPC) have been applied to a broad
spectrum of fields and are especially useful for challenging
control tasks (Rawlings et al., 2017; Lopez-Negrete et al.,
2013). The key element of most modern control methods
is the model. Building a high-fidelity model using first-
principle equations is usually the preferred and most accu-
rate approach. In practice, however, this type of modeling
can prove to be complicated. Some phenomena are hardly
possible to model because they are too complex and some-
times stochastic in nature, such as fouling in crystallization
(Zhang et al., 2015) or climate modeling (Kashinath et al.,
2021). For other systems it may be possible to build a
model, but the model can become computationally expen-
sive, which might prohibit any online optimization.

For issues of modeling difficulties and of computational
complexity, data-based models can provide a solution to
enable the use of advanced model-based control techniques
(Bhat and McAvov, 1989). However, data-based models
are generally only valid for the domain in which they
were trained. In practice, it must therefore be ensured
that data-based models are only used in the area of
training data, that is, for interpolation. However, even the
description of interpolation is for high-dimensional data
no longer entirely clear (Balestriero et al., 2021). The
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challenge is therefore to ensure that data-based models
are only used in regions where they can make predictions
with sufficient certainty. This is particularly important for
safety-relevant processes, as seen in Hewing et al. (2020);
McKinnon and Schoellig (2019).

Standard feedforward neural networks are a possible data-
based solution to model nonlinear dynamic models. Un-
fortunately, these typically do not provide any information
regarding the uncertainty of their predictions. One possible
solution to enforce operation into high-certainty regions is
to constrain inputs within the training data bounds. The
prerequisite for this, however, is for the training data to
completely cover the space within the constraints, which
can be challenging for high-dimensional data (Balestriero
et al., 2021). A more appropriate solution is therefore to
use a data-based model that indicates how certain the
prediction is. A prominent example of a model that is
capable to give a measure of uncertainty are Gaussian
processes (GPs) (Rasmussen and Williams, 2006). GPs
are non-parametric models in which predictions are made
directly on the basis of training data. Predictions are Gaus-
sian distributed, and the variance of the prediction can
be interpreted as the uncertainty of the prediction. Due
to the time-consuming evaluation of the model (Lázaro-
Gredilla and Figueiras-Vidal, 2010), GPs are typically only
of limited use for online optimization. Another example of
probabilistic models is Bayesian linear regression (BLR)
(Bishop, 2006). For BLR, the weights of the regression
model are determined as distribution functions. As it
is typical for linear regression, the disadvantage lies in
the necessary and nontrivial manual selection of features.
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Bayesian neural networks (BNNs) represent a probabilistic
method in which the features do not have to be selected
manually (Jospin et al., 2020). As with BLR, the weights of
the model follow distribution functions, although the non-
linearity of the activation function of the neural network
prohibits an analytical solution of the posterior distribu-
tion (Jospin et al., 2020). Hence, approximate methods
such as approximate inference or sampling methods must
be used to train a BNN (Jospin et al., 2020).

Bayesian last layer (BLL) offers a compromise between
BLR and BNNs (Fiedler and Lucia, 2023). Here, neural
networks are trained whereby only the weights of the last
layer are assumed to follow a distribution function. By
choosing a linear activation function for the last layer of
the network, the simple methods from BLR can be applied.
Hence, an analytical solution of the posterior distribution
of the weights of the last layer can be obtained. However,
the features do not have to be chosen manually, but are
learned by the hidden layers of the neural network. To
approximate a full BNN, the weights of the hidden layers
are interpreted as hyperparameters (Fiedler and Lucia,
2023) and can be determined by marginal likelihood max-
imization (Bishop, 2006). The uncertainty information of
the predictions can be used to modify an NMPC controller
based on a data-based model, for example by defining
trust regions for areas where the predicted uncertainty is
low and constraining the optimization problem accordingly
(Fiedler and Lucia, 2022). However, this requires that the
data-based model approximates reality sufficiently well in
these areas. If the system identification is not sufficient in
the trust regions, for example when only a limited amount
of data points are available, the uncertainty of the data-
based model should be explicitly considered by employing
robust NMPC approaches as for example the multi-stage
robust NMPC presented in Lucia et al. (2013).

The main contribution of this work is the proposal of a
robust multi-stage NMPC method for which the required
scenario trees are constructed and adapted online based
on the prediction uncertainty given by the Bayesian last
layer approach. We show in a simulation of a crystalliza-
tion case-study that the proposed approach leads to an
improved performance when compared to the naive use of
a data-based model within a standard NMPC controller.

This work is structured as follows. The background on
NMPC and system identification is presented in Section 2.
The formulation of the BLL framework and the robust
data-based NMPC are then presented in Section 3. The
results for a mixed-suspension, mixed-product-removal
(MSMPR) crystallizer system are presented in Section 4
and the paper is concluded in Section 5.

2. NONLINEAR MODEL PREDICTIVE CONTROL
AND DATA-BASED MODELS

2.1 Nonlinear model predictive control problem

We consider discrete-time nonlinear dynamic systems of
the form:

sk+1 = f(sk, uk), (1)

where sk and uk represent the states and inputs of the
system at the discrete time step k. The optimization

problem that needs to be solved to control the system (1)
via NMPC is:

min
uk

N−1∑
k=0

l(sk, uk) + Vf (sN ), (2a)

s.t. sk+1 = f(sk, uk), (2b)

sk ∈ S, (2c)

uk ∈ U, (2d)

s0 = sinitial, (2e)

where the prediction horizon is denoted by N . The objec-
tive function is split into stage cost l(sk, uk) and terminal
cost Vf (sN ). The constraints include the system model
f(sk, uk) and the initial state of the system sinitial. Ad-
ditionally, the state constraints and the input constraints
are denoted by S and U.

2.2 Generation of a data-based model

The system model is the core element of the NMPC
problem. If a first principle model is difficult to obtain or
too complex to solve problem (2) in real-time, a data-based
model can enable the development of an NMPC controller.

Inferring a dynamic model from data is referred to as
system identification (Ljung, 2017). This is typically for-
malized with the following mathematical setting:

t = y(x) + ϵ, (3a)

ϵ ∼ N (0, β−1), (3b)

where t represents the targets, which are assumed to be
generated by some unknown function y with some additive
noise ϵ. Here, x denotes the inputs of the hidden function.
For the setting shown in (1), x corresponds to sk and
uk. It is assumed that ϵ is distributed as white Gaussian
noise governed by the precision parameter β. The goal of
regression is to determine the unknown function y.

As a first step, we choose y to be a linear model. Incorpo-
rating a Bayesian perspective to linear regression results
in additional uncertainty information of the predictions
leading to a Bayesian linear regression (BLR) approach.
To achieve this, we introduce a prior probability of the
weights:

p(w|α) = N (w|0, α−1), (4)

where α is the precision of the distribution. The weights w
are the parameters of the model. The posterior distribution
can be computed by applying Bayes’ Law:

p(w|t, α, β) = p(t|w, β)p(w|α)
p(t|α, β)

, (5)

where we have omitted the inputs x to keep the notation
uncluttered. The term p(t|w, β) represents the likelihood,
and p(t|α, β) is referred to as the marginal likelihood since
the weights w have been marginalized. It represents the
probability over all possible values for the weights. Using
properties of normally distributed variables, it is possible
to determine the mean value and the covariance of the
posterior as:

C = αI + βΦTΦ, (6a)

w̄ = βC−1ΦT t, (6b)
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where C represents the covariance of the posterior and w̄
the mean of the posterior. The feature matrix is given by Φ
which is an N ×M dimensional matrix. The hyperparam-
eters α and β are generally not known and must therefore
be determined.

3. ROBUST NMPC WITH BAYESIAN LAST LAYER
MODELS

3.1 Bayesian last layer models

Bayesian last layer (BLL) provides a method to calcu-
late the uncertainty information as shown in the previous
section for Bayesian linear regression. However, a neural
network is used to identify the nonlinear features. In con-
trast to full Bayesian neural networks, only the weights
of the last layer of the network are assumed to follow a
distribution. Additionally, the activation function of the
output layer of the network is chosen as a linear activation
function. The subsequent absence of a nonlinear transfor-
mation of the last layer allows the analytical computation
of the posterior distribution for the weights of the last
layer, as shown for BLR.

For BLL, the approximation of a full BNN is desired,
therefore, in addition to α and β, the weights and biases of
the hidden layers W are treated as hyperparameters of the
model. A method where hyperparameters are determined
exclusively on the basis of the given data is marginal like-
lihood maximization (Bishop, 2006). The marginal likeli-
hood is represented by the denominator in (5) for BLR
and must be extended by W for BLL. After performing
the marginalization of the parameters on the last layer w,
the log marginal likelihood is given by (see Fiedler and
Lucia (2023) for more details):

log p(t|α, β,W ) =
M

2
log α+

N

2
log β − β

2
|t− y|22

− α

2
|w̄|22 −

1

2
log |C| − N

2
log 2π, (7)

where the number of features is denoted by M . The
covariance of the posterior C and the mean of the posterior
w̄ are given by (6a) and (6b). The distributions for additive
noise and prior of the weights were both selected as
Gaussian distributions. Hence, the posterior distribution
from (7) is also Gaussian distributed. The predictive
distribution is given by:

p(tpred|t, α, β,W ) = N (tpred|µpred, σ
2
pred), (8a)

with

µpred = w̄Tϕ(x), (8b)

σ2
w = ϕ(x)TC−1ϕ(x), (8c)

σ2
pred = β−1 + σ2

w. (8d)

The variance σ2
w represents the uncertainty of the model

in the weights. The derivation of the equations for the
multivariate case of Bayesian last layer can be seen in
Fiedler and Lucia (2023).

3.2 Robust multi-stage NMPC using model uncertainty

Robust multi-stage NMPC is a method to incorporate
uncertainties on the model into the controller (Lucia et al.,

2013). A scenario tree is developed based on possible
realizations of the uncertainty. Thus, in addition to the
nominal prediction of the model, the predictions for the
different scenarios are also computed and taken into ac-
count in the NMPC problem formulation. The incorpora-
tion of the possible scenarios in the optimization problem
leads to constraint satisfaction for the considered scenarios
and the tree structure enables the introduction of feedback
in the predictions to avoid overly conservative solutions.

While traditionally different parameter or disturbance
values are used to define different scenarios, we propose
in this paper to consider the predictions of the states of
the data-based model as uncertain. The magnitude of the
uncertainty is computed by the standard deviation given
by the BLL approach: s1k

s2k
s3k

 =

(
µpred,k + 3diag(Σw)

µpred,k

µpred,k − 3 diag(Σw)

)
(9)

where µpred,k corresponds to the mean of the prediction of
the data-based model from (8b) for the k-th time step.
The matrix Σw is a diagonal matrix originating from
the multivariate case, containing the variances σw of the
individual states, given by (8c). The superscript indicates
the respective realization of the uncertainty at the time
step k. To build the scenario tree used for robust NMPC,
we employ the concept of a robust horizon as shown in
Lucia et al. (2013) to avoid the exponential growth of the
optimization problem. Branching is performed according
to (9) for the time steps inside of the robust horizon. If
the prediction horizon is larger than the robust horizon no
further branching is performed at the following time steps
and the NMPC problem is solved for all scenarios of the
scenario tree.

4. CASE STUDY FOR A MSMPR CRYSTALLIZER

4.1 MSMPR model

The presented methodology is applied to a continuous
crystallization model. The model includes a stirred tank
that can be cooled with a cooling jacket. The crystallizer is
assumed to be ideally mixed, with the stirrer providing no
energy input and not influencing the crystals. The model
equations of the continuous phase are derived by material
and energy balances, and are obtained as follows:

dc

dt
=

1

m
(−ṁcryst + ρFfeed(cfeed − c)), (10a)

dT

dt
=

1

mcp
(−∆Hcrystṁcryst + ρFfeedcp (10b)

(Tfeed − T )− UA(T − TJ)),

dTJ

dt
=

1

mJ cp,J
(ρJFJcp(TJ,in − TJ)− UA(TJ − T )),

(10c)

where the states are the concentration c, the temperature
of the crystallization medium T , and the temperature of
the cooling jacket TJ . The mass of the crystallization
medium is m and the specific heat capacity of the crys-
tallization medium is cp which are both assumed to be
constant. Similarly, the mass in the cooling jacket is mJ

and its specific heat capacity is cp,J . The densities of the
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crystallization medium ρ and of the cooling medium ρJ
are also considered as constant. The properties of the
inlet streams include the volume flow of the crystallization
medium Ffeed, the temperature of the crystallization inlet
flow Tfeed, the volume flow of the cooling medium FJ , and
the temperature of the cooling inlet flow TJ,in. The heat
transfer between crystallization medium and cooling jacket
is computed by the heat transfer coefficient U and the area
of heat transfer A. The mass removed by crystallization is
ṁcryst and the heat of crystallization is ∆Hcryst.

The change of the disperse phase, i.e. the crystals, is
modeled by the method-of-moments (Hulburt and Katz,
1964). For this method, the crystal size distribution is
tracked by its moments. For the crystallization model, we
consider the first three moments µ0, µ1, and µ2 as states.
The model equations of the disperse phase are given as
follows:

dµ0

dt
=

ρFfeed

m
(µ0,in − µ0), (11a)

dµ1

dt
= Gµ0 +

ρFfeed

m
(µ1,in − µ1), (11b)

dµ2

dt
= 2Gµ1 +

ρFfeed

m
(µ2,in − µ2). (11c)

The inlet flow is assumed to contain seed crystals. The k-
th moment of the seed crystal distribution is denoted by
µk,in. Crystal growth is considered to be the mechanism
that can influence the crystal size distribution. The size-
independent growth rate is presented by G. Phenomena
such as crystal birth, agglomeration or breakage are ne-
glected.

The model includes 6 states c, T , TJ , µ0, µ1, and µ2.
The volume flows of the two inlets Ffeed and FJ , as well
as the temperature of the cooling flow TJ,in are selected
as inputs of the system. In addition, characteristic values
can be calculated from the moments which can be part
of the cost function of the NMPC problem. This allows
an average crystal size to be calculated from the first two
moments:

L10 =
µ1

µ0
. (12)

The used parameters and auxiliary equations needed for
the model are shown in Table A.2

4.2 Results

For a thorough analysis of the proposed method we evalu-
ate for training data sets of different sizes, 10 data-based
models for each size. For each data set we train a standard
NN and a NN with BLL. For the generation of the training
data sets the system was excited by changing the inputs.
Values for the inputs were randomly uniformly sampled
from the range shown in Table A.1 and subsequently
kept constant for a random time. The training data was
gathered at time steps of 5 seconds. For the simulation of
the model the tool do-mpc (Fiedler et al., 2023) together
with CasADi (Andersson et al., 2019) and the solvers from
SUNDIALS (Hindmarsh et al., 2005) were used.

We choose the same architecture for both types of data-
based models of two hidden layers with 30 neurons per
layer and a tanh activation function with an additional

subsequent linear transformation. Keras (Chollet et al.,
2015) and Tensorflow (Abadi et al., 2015) were used for
model training. For the training of the standard neural
network models the mean-squared-error was used as loss
function. The method presented in (Fiedler and Lucia,
2023) was used for the training of the neural network
models with BLL.

The model with standard NN is used in a nominal NMPC
scheme because no uncertainty quantification is provided.
The models with BLL are used as shown in Section 3.2
with the inclusion of uncertainty for the construction of
the uncertain scenarios. In both cases, the simulator uses
the physical model from (10). We choose N = 6 for the
prediction horizon and in case of multi-stage NMPC, a
robust horizon of 1. We choose the temperature as an
uncertain state and construct the scenario tree according
to (9), leading to 3 scenarios. As a control objective, we
choose the maximization of the crystal size L10. Thus, for
the stage and terminal cost we define:

l(sk, uk) = −L2
10,k +∆uT

kWu∆uk, (13a)

Vf (sN ) = −L2
10,N , (13b)

where Wu represents the diagonal weighting matrix of
the penalization of the change of the inputs ∆uk. The
weighting matrix was chosen as Wu = diag( 10, 100, 0.1 ).
Additionally, the input constraints for the NMPC problem
were chosen equal to the ranges used for the generation of
the training data shown in Table A.1. For the setup and
solution of the robust multi-stage NMPC, do-mpc, CasADi
and the solvers from SUNDIALS and IPOPT (Wächter
and Biegler, 2006) were used. All code to reproduce the
results is openly available. 1

To simplify the comparison, we perform the evaluation of
each case for the same initial state:

s0 =

(
c0
T0

TJ,0

)
=

(
0.226
350
350

)
. (14)

To maximize the crystal size, the temperature in the
crystallizer must be kept as low as possible. A lower
bound constraint for this state should therefore inevitably
be active for optimal operation. We add a lower bound
constraint for the temperature in the crystallizer at T =
320K.

Figure 1 shows the obtained crystal size L10 after a closed-
loop simulation of 300 time steps (25 minutes) when a
standard NN and the proposed NN with BLL are used
as models inside of the respective controller for differ-
ent numbers of data points. Since the data generation is
random we computed the results for 10 different models
for each size of the training data. As expected, system
identification improves with more data. This is reflected in
the increasing trend of the values achieved for L10. For very
small data sets, the data sets may be insufficient in some
cases to describe the relevant dynamics of the system. The
performance of both methods therefore varies greatly for
different data sets. Nevertheless, even for small data sets
it is clear that the control performance for the proposed
method with BLL works better than a standard NN. This
is primarily due to the fact that training by marginal

1 https://github.com/collinj2812/multistageNMPC_BLL
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Fig. 1. Results for the attained crystal sizes at the end
of a closed-loop NMPC simulation with data-based
models trained with data sets of different sizes. The
results for the NN without BLL are shown in red
in the top and for the proposed method in blue in
the bottom. Constraint violations in the course of the
respective simulation are indicated by ×.

likelihood maximization leads to a more accurate model on
average. As the size of the data sets increases, the system
identification of the standard neural networks also im-
proves. However, the performance of the proposed method
is still superior due to the consideration of uncertainty
in the multi-stage NMPC. Although for both methods
a larger diameter L10 is achieved, the standard neural
network consistently violates the constraints. This can also
be seen in Table 1. The standard neural network violates
the constraints for larger data sets in up to 90% of cases.
Although the maximum and average constraint violations
are not as high as constraint violations that can occur with
both methods due to a too small and too sparse data set,
the standard NN cannot avoid constraint violations even
when larger amounts of data are used. It can be seen that
the proposed method achieves better results on average for
all data set sizes. In some cases, the average achieved L10

for the standard neural network can be larger than that for
the trajectories of the proposed method, but the standard
neural network violates the constraints in most of the 10
cases. Therefore, the performance of the proposed method
should be preferred.

Figure 2 shows an example of the trajectories for data sets
with a size of 900 data points. On average, the performance
is significantly more consistent for the proposed method.
Although there is also one trajectory for the proposed
method that does not obtain a good control performance,
it can be seen that for the rest the system identification
is better and no constraint violation occurs. With the
standard neural network, either the system identification
is poor or the constraints are violated.

5. CONCLUSION

Data-based surrogate models allow the application of
model-based control methods to systems where first-
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NN Constraint BLL

Fig. 2. Temperature and average crystal size for 10 models
generated with a different set of 900 data points using
a standard NN (red dashed line) and the proposed
approach (blue solid line).

principle models are not available. An uncertainty descrip-
tion of the predictions is vital for safe operation when using
uncertain models. For the surrogate model, we propose
to train a NN with Bayesian last layer using marginal
likelihood maximization. We propose a method to utilize
the predicted uncertainty of the Bayesian last layer by
constructing uncertain scenarios in a robust multi-stage
NMPC framework. We show that this controller has bet-
ter performance than using NMPC with a standard NN
irrespective of the size of the training data set. A sim-
ulation example of continuous crystallization shows that
system identification using marginal likelihood maximiza-
tion leads to more accurate models on average and the
use of uncertainty in the controller results in fewer or no
constraint violations.
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Appendix A. TRAINING AND MODEL
PARAMETERS

Table A.1. Input ranges.

TJ,in FJ Ffeed

Training 300 350 0.1 0.5 0.1 0.3
Testing 300 350 0.1 0.5 0.1 0.3

Table A.2. Equations and parameters used in
the MSMPR model. Parameters for model-
ing the chemical system of L-Alanine/Water
are from (Wohlgemuth, 2012) and (Hohmann

et al., 2018).

V 10 [m3]

cp 4.2 [kJ kgK−1]

cp,J 4.2 [kJ kgK−1]

VJ 1 [m3]

ρ 1043 [kgm−3]

ρcryst 1432 [kgm−3]

µ0,in 1.0292× 108 [−]

µ1,in 4.1177× 104 [m]

µ2,in 1.7501× 101 [m2]

A 10 [m2]

kV
π
6
[−]

U 1000 [Wm−2 K]

G = 5.857× 10−5∆S2tanh
(
0.913
∆S

)
(Hohmann et al., 2018)

c∗ = 0.11238e9.0849×10−3T (Wohlgemuth, 2012)

∆S = c−c∗

c∗

ṁcryst = 3V kV ρcrystGµ2
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