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Abstract: Fault estimation is crucial for ensuring reliability and safety throughout industrial
processes. However, the increased nonlinearity and complexity in modern systems, as well as
their feedback control logic, multiply the challenges when estimating faults. Health monitoring in
today’s systems may impact the overall cost substantially. To address such challenges, we present
a hybrid fault estimation scheme for nonlinear systems, by incorporating an Extended Kalman
Filter along with inferential sensors. These fault-sensitive sensors are developed using symbolic
regression combined with information theory, to be cost-effective supplements to the existing
hard sensors. The proposed method was applied to open-loop and closed-loop architectures of
a plate-fin cross-flow heat exchanger dynamic model toward estimating the fault severity at
various levels of measurement noise. To showcase the robustness of the inferential sensors, we
compared the performance of the proposed framework to an Extended Kalman Filter designed
solely with information from hard sensor measurements.
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1. INTRODUCTION

Preventing system faults and failures may lead to signifi-
cant cost savings. Early fault detection enables organiza-
tions to optimize maintenance planning, leading to cost-
effective preventive measures and minimizing the necessity
for costly emergency repairs. Thus, the demand for ad-
vanced system health monitoring algorithms is on the rise.
Many research efforts aim to improving fault estimation in
complex and nonlinear systems using more sophisticated
and cost-efficient algorithms (Mu et al., 2022; Livera et al.,
2017; Tan et al., 2021).

Extensive research has been conducted over the years in
the field of model-based fault detection methods, which
are designed to identify system faults, by leveraging fun-
damental knowledge of the physical principles governing a
system. Kalman filters, for instance, constitute a widely
used and robust approach in the field of fault estima-
tion (Glavaški and Elgersma, 2001; Maybeck, 1999; Jihani
et al., 2023). Other model-based approaches are proposed
in Bokor and Szabó (2009) and Boskovic et al. (1999). In
the former the authors used a multiple hypothesis testing
method, while in the latter they recommended a method-
ology that relies on multiple models, switching strategies,
and tuning techniques. The effectiveness of these tech-
niques is based on a profound grasp of the underlying
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physical phenomena, but one of the primary drawbacks
is their sensitivity to model uncertainty.

Lately, the increased computational capabilities of mod-
ern systems turned the research focus to more advanced
techniques, like data-driven and deep learning approaches.
These approaches require large quantities of data, from
where they derive statistical relationships. Clustering
methods and principal component analysis are some of
the well-established data-driven approaches for fault iden-
tification; see e.g., Lemos et al. (2013); Harmouche et al.
(2014). Deep learning schemes, on the other hand, as
Neural Networks (NN), have been proven very effective
tools in estimating system faults. In Masdoua et al. (2023),
Convolutional Neural Networks (CNN) and Long Term
Short Memory (LSTM) neural networks were proposed for
detecting the faults in Air Handling Unit (AHU) systems,
while Sun in Sun et al. (2019) developed an improved Neu-
ral Network for fault identification in closed-loop systems.
A big challenge of these methods, however, is the absence
of a clear understanding of the physical aspects, given that
they do not rely on pre-existing knowledge of the system
in question.

In this paper, we introduce a framework that merges data-
driven and model-based approaches for the purpose of
fault estimation, in both open and closed-loop systems.
It has been shown that this fusion efficiently harnesses
the advantages of both methods while mitigating their
individual drawbacks. In detail, we developed an Extended
Kalman Filter (EKF) for estimating the fault in the sys-
tem. Herein, the EKF incorporates data from inferential
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sensors, which have been created through the fusion of
symbolic regression and information theory techniques.
These sensors are designed to provide rich and informa-
tive measurements, specifically tailored to enhance the
detection of system faults by maximizing sensitivity and
neglecting the impact of uncertainty; see e.g., Safikou and
Bollas (2021). For method verification, we conducted a
performance comparison between the EKF using inferred
sensor measurements and the EKF using direct hard sen-
sor measurements.

The paper is structured as follows: in Section II, we present
the open-loop and the closed-loop system model, as well
as the framework for the creation of the inferential sen-
sors for both structures. The mathematical formulation of
fault severity estimation using an Extended Kalman Filter
(EKF) is also provided in detail. Section III contains a
description of a cross-flow plate-fin heat exchanger system,
which we used to apply and test the proposed methodol-
ogy. In Section IV, we show results on fault estimation,
along with comparisons between the existing system sen-
sors and the obtained inferential sensors. Finally, Section
V concludes this study.

2. METHODS

2.1 System Model: An open-loop and a closed-loop structure

Open-loop structure: In this study, the system model Σ
comprises a set of differential-algebraic equations, which
essentially encompass all physical knowledge of the non-
linear system:

ẋ(t) = f(x(t),u(t),θ, t), (1)

where f denotes the system governing equations, while
x(t) and ẋ(t) correspond to vectors of the state variables
and their derivatives with respect to time, t, respectively.
The inputs of the system, u(t), include the controllable
system inputs, up(t), and the uncertain inputs, uq, while
the measured outputs of the system, ŷ, are given by
ŷ = h(x(t),u(t),θ, t). The vector θ consists of the model
parameters that represent (i) the faults, θf , (ii) the system
uncertainty, θq, as well as (iii) the system design, θp. Note
that faults, uncertain parameters, and uncertain inputs
are usually the parameters of interest in a fault detection
problem. In this regard, we combine them into a new
vector, ξ, and separate them into the parameters that
declare faults, ξf , and uncertainty, ξq: ξ = [θf ,θq] ∪
[uq] = [ξf ,ξq].

   

 

    
-

Fig. 1. Schematic of the closed-loop system model.

Closed-loop structure: Fig. 1 schematically shows a sim-
ple closed-loop system, where Σ denotes the model of a
nonlinear system (see Eq. 1). For the feedback control
logic, we employed a proportional-integral (PI) controller,
which estimates the deviation, e, of the measured data
y from a desired target value y∗, and then corrects the

control input, up, in such a way that y remains equal to
y∗; see e.g., Switzer et al. (1988); Shamsuzzoha (2013). The
formulation of the PI controller is given by the following
relation:

up(t) = KP e(t) +KI

∫ t

0

e(t) dt, (2)

where, KP and KI are the non-negative coefficients for the
proportional and integral terms, respectively.

For the efficient and accurate estimation of the term∫ t

0
e(t) dt, we augmented the system model of Eq. 1 by

adding the error term as a differential equation, i.e.,
ẋe(t) = e. Thus, by integrating the system, we esti-

mate directly the term xe(t) =
∫ t

0
e(t) dt. This can be

achieved easily by transforming the system into symbolic
form toward leveraging automatic differentiation (AD) to

efficiently construct the sensitivity matrices, Q
[l]
i (see Eq.

3). AD was implemented here using CasADi, an open-
source tool for nonlinear optimization and algorithmic
differentiation, which allows the user to construct symbolic
expressions (Andersson et al., 2012).

2.2 Information Theory

In a fault detection problem, our interest is to gather as
much information as possible for faults or other parameters
that affect fault identification (such as uncertainty and
noise). An effective approach can be based on information
theory, and specifically on the Fisher Information Matrix
(FIM) (Bar-Shalom et al., 2001). Here, the FIM was
employed as a measure of the information related to the
parameters of interest ξ.

For the estimation of the FIM, we conducted a sensitivity
analysis, which reflects the sensitivity of a sensor, s, with
respect to the different values of ξf and ξq. For Nsp

timesteps during a timespan, τ, the sensitivity matrix of
the ith sensor with respect to ξ is given as follows:

Q
[l]
i =


∂ŝi(t1)
∂ξ1

∣∣∣∣
ξ̃
[l]
,t1

. . . ∂ŝi(t1)
∂ξNξ

∣∣∣∣
ξ̃
[l]
,t1

...
. . .

...
∂ŝi(tNsp )

∂ξ1

∣∣∣∣
ξ̃
[l]
,tNsp

. . .
∂ŝi(tNsp )

∂ξNξ

∣∣∣∣
ξ̃
[l]
,tNsp

 , (3)

where,Nξ is the total number of the parameters of interest,

and ξ̃
[l]

contains the anticipated values of the fault and
uncertain parameters for the lth fault scenario, denoted as

ξ̃
[l]

f and ξ̃
[l]

q , respectively.

For all Nl studied fault scenarios, ξ̃
[l]

q comprises the mean
values of its individual components. On the other hand,

a different fault level was adopted for ξ̃
[l]

f in each fault
scenario l. Specifically, the fault level is known beforehand
from past system operation or can be estimated from

historical data. Given Q
[l]
i , the FIM is derived as shown

below:

H
[l]
ξ (ξ̃

[l]
) =

Ns∑
i=1

σ−2
i Q

[l]
i

T
Q

[l]
i

Ns
, (4)

where, Ns is the total number of the incorporated sensors
and σ2

i is the measurement variance of the ith sensor.
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The development of various optimality criteria are founded
on the FIM. Such criteria include the A-optimality, D-
optimality, as well as the Ds-optimality; see also Atkinson
(2011). For this study, the Ds-optimality criterion was the
most appropriate, as a subset (i.e., ξf ) of ξ needs to be
estimated. The Ds-optimality criterion achieves fault isola-
tion by eliminating the covariance between the parameters
related to faults and uncertainty, while simultaneously
providing improved detection outcomes by neglecting the
covariance between the elements that identify uncertainty;
see Palmer and Bollas (2019). It is formulated by partition-
ing the FIM into three sub-matrices, as follows:

H
[l]
ξ (ξ̃

[l]
) =

[
H

[l]
ff H

[l]
fq

H
[l]
qf H

[l]
qq,

]
(5)

H
[l]
ff ∈ RNf×Nf , H

[l]
fq ∈ RNf×(Nξ−Nf ),

H
[l]
qf = (H[l])Tfq, H[l]

qq ∈ R(Nξ−Nf )×(Nξ−Nf ),
(6)

where Hff , Hfq, and Hqq represent the relation between
faults, the relation between faults and uncertainty, and the
relation between system uncertainty, respectively, while
Nf is the number of fault parameters in the system.
Finally, the criterion is given by:

ΨDs (Hξ) = N−1
l

Nl∑
l=1

log

∣∣∣∣H[l]
ff −H

[l]
fq

(
H

[l]
qq

)−1

H
[l]
qf

∣∣∣∣1/Nξ

. (7)

2.3 Inferential sensing

Inferential sensors gather and combine information from
other available system variables (or parameters) toward
estimating a parameter of interest. Herein, they were
designed to be particularly sensitive to faults and neglect
the impact of uncertainty, thus granting superior detection
capabilities.

We derived inferential sensors for the case of the closed
loop system. These sensors combine information in ŷ and
up, to estimate the system fault level regardless of the
existing uncertainty: ẑc = g(ŷ, up(t)). For scaling purposes,
we normalize ẑc with their nominal values, ẑc,nom =
g(ŷnom, unom): z̄c = ẑc/ẑc,nom. The term ŷnom denotes
the nominal value of the system outputs, while unom is
the value of the system input when the system is in a
healthy state.

To develop inferential sensors we conducted symbolic re-
gression, by means of a genetic programming (GP) algo-
rithm. The latter consists of a user-defined number of gen-
erations, in each of which a large number of relationships
(i.e., population size) between y and up is generated. Then,
the individual relationships were evaluated based on the
Ds-optimality criterion as fitness function, which incorpo-
rates the sensitivity matrix of the inferential sensors Qz.

Based on the the principles of chain rule, it can be proved
that the sensitivity matrix, Qz, for the inferential sensors
is given by:

Qz =
∂z̄

∂ξ
=

∂z̄

∂ŷ

∂ŷ

∂ξ
−KP

∂z̄

∂up

∂ŷ

∂ξ
+KI

∂z̄

∂up
[
∂(
∫ t

0
e dt)

∂ξ
]. (8)

Given that xe(t) =
∫ t

0
e(t) dt, Eq. 8 can be written

differently as follows:

Qz =
∂z̄

∂ξ
=

∂z̄

∂ŷ

∂ŷ

∂ξ
−KP

∂z̄

∂up

∂ŷ

∂ξ
+KI

∂z̄

∂up

∂xe

∂ξ
. (9)

The initial population in GP was generated randomly
based on functions defined through knowledge of the gov-
erning physical processes and fault mechanisms. In the
subsequent generations, the population underwent evolu-
tion, with fractions devoted to reproduction, crossover,
and mutation. In the first generation, the individual with
the maximum Ds-optimality criterion value was selected
and maintained until a better one was obtained in the
succeeding iterations. When the process was concluded,
we obtained the optimal inferential sensor and employed
it for fault detection.

In previous work (see Safikou and Bollas (2021)), we
derived an inferential sensor for the open-loop system
(i.e., the hard sensor ŷ) through a Genetic Programming
(GP) algorithm using symbolic regression. Again, the GP
algorithm optimized the Ds-optimality criterion for the
system model augmented with a symbolically regressed
equation (i.e., the so-called inferential sensor); for further
details, the reader is referred to Safikou and Bollas (2021).
Note that, the derived soft sensor is a function of the hard
sensors only, as z̄o = m(ŷ). In this work, we adopt this
optimal inferential sensor to assess its capability to provide
real-time fault estimation in an open-loop system when
combined with an EKF.

2.4 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an iterative method
for estimating the states of a dynamic system based on
a sequence of imprecise measurements. It represents an
expansion of the classical Kalman Filter and is especially
valuable when addressing systems with nonlinear charac-
teristics.

In the field of fault detection, we augment the derivative
state vector with auxiliary states that represent the fault
parameters and we set their derivatives to zero. In this
regard, the EKF performs state and fault estimation
based on the measurements of the inferential sensors. The
formulation of the EKF is provided in Table 1, where qk

and rk are the covariances of the process and observation
noises respectively. More details for the explanation and
the formulation of the EKF can be found in Bar-Shalom
et al. (2001).

3. CASE STUDY

We applied the proposed framework in a plate-fin cross-
flow heat exchanger (PFHE) system described analytically
in Palmer et al. (2016). The system input is the the
mass flow rate of the hot stream, up = ṁh,i (in kg/s),
while the system outputs (i.e., the hard sensors) are
the temperatures and pressures of the outlet streams,
y = [Tc, Th, Pc, Ph]. In this work, the studied fault is the
thermal fouling resistance in the cold stream, ξf = Rf .

For the development of the inferential sensors, we assumed
four fault scenarios: (a) a fault-free scenario (i.e., Rf =
0.4), (b) 20% blocked fouling (i.e., Rf = 1.6), (c) 50%
blocked fouling (i.e., Rf = 4), and (d) 80% blocked fouling
(i.e., Rf = 6.4).

The parameter related to system uncertainty correspond
to the cold air inlet stream moisture content, ωH2O. Table 2
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Table 1. EKF mathematical formulation

Initialization Correction/Update

x̂k−1|k−1 = E[x(k − 1)] Kk = Pk|k−1Hk
T (HkPk|k−1Hk

T + rk)
−1

Pk−1|k−1 = E[(xk−1|k−1 − x̂k−1|k−1)(xk−1|k−1 − x̂k−1|k−1)
T ] x̂k|k = x̂k|k−1 +Kk(ẑk − g(ŷk|k−1, up,k|k−1))

State Prediction Pk|k = [(I−KkHk)Pk|k−1

˙̂xk|k−1 = f
(
x̂k−1|k−1,up,k,θp, ξq , ξf , tk

)
Hk = ∂g

∂x

Ṗk|k−1 = FkPk−1|k−1 +Pk−1|k−1Fk
T + qk

Fk = ∂f
∂x

shows the probability distributions of system parameters,
inputs, and outputs.

Table 2. System inputs, outputs and parame-
ters, with their corresponding distributions.

Uncertainty and Noise Distribution

Cold Temperature, Tc [C] N (100, 0.052)
Hot Temperature, Th [C] N (95, 0.052)
Moisture Content, ωH2O N (6, 0.52)
Input Space, Up [0.1, 1]

For the case of the closed-loop system, the PI controller
given by Eq. 10 aims to control the y = [Tc] at the desired
set value y∗ = 100 oC by manipulating the up = ṁh,i.

up(t) = 0.001e(t) + 0.0001

∫ t

0

e(t) dt. (10)

Note that the parameters KP and KI were tuned by using
the trial and error method, until we reach a desirable
controller performance.

The time series of the data corresponding to the fault
scenarios provided to the GP algorithm, toward deriving
an inferential sensor, are shown in Fig. 2. At the beginning
(t = 1500 sec), the system is at steady-state in a healthy,
fault-free, state without the existence of uncertainty. At
t = 2000 sec, after the system has reached steady state,
a step change can be noticed in the fault level to: i) 20%
blocked, ii) 50% blocked, and iii) 80% blocked fouling. Note
that, a case where the system remained in a healthy state
was also included in Fig. 2.

Fig. 2. The system responses, as well as the actuating
signal performance, for the different fault scenarios.

For the fault scenarios of Fig. 2 and the timespan τ =
[2001, 4000] sec, we trained the inferential sensor with the
GP algorithm of Section 2.3. For the needs of symbolic re-
gression, we employed the GPTIPS-2 toolbox; see Searson
et al. (2010).

In the case of open-loop system, on the other hand, the
inferential sensor was derived by incorporating in the
GP the hard sensor model outputs, temperatures and
pressures, at each fault scenario; see analytically in Safikou
and Bollas (2021).

Two types of fault detection (FD) tests are examined in
this work: i) Open-loop system FD test with duration of
300 sec, where two stepwise changes in up and ωH2O are
observed at times 100 sec and 200 respectively; see Fig.
3(a-b), and ii) Closed-loop system FD test which lasts 1000
sec and a step change in ωH2O can be noticed at time 50
sec as shown in Fig. 4(a), which led to manipulating up

as shown in Fig. 4(b). In both applications the fault level
in the system is 50% blocked fouling (i.e., Rf = 4) and
remains constant for the entirety of the test.

a)

b)

c)

d)

Fig. 3. Open-loop system FD test: a) the system input, b)
the system uncertainty, c) the hard sensor data, and
d) the inferential sensor data.

4. METHOD VERIFICATION AND COMPARISONS

Initially, we derive the inferential sensors by GP for both
FD tests described in Section 3. The inferential sensor for
the case of the open loop system is a function of both
system temperatures that are provided in Fig. 3(c) and is
given by Eq. 11. The response of zo for the timespan of
300 sec is presented in Fig. 3(d).

zo = (−190.8Tc + 178.7Th − 2Tc(−Tc + Th + 6.6)

+1139.9)/(−1488.7)
(11)
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Table 3. Estimates of the thermal fouling resistance obtained with EKF for the Open-loop and
Closed-loop FD tests.

FD Test Fault Parameter: Thermal
Fouling Resistance

Initial
Guess

EKF Estimate with
Hard Sensors

EKF Estimate with
Inferential Sensors

True
Value

Open loop system Rf × 103 m2 K/W 6.4 4.26 4.18 4
Closed-loop system Rf × 103 m2 K/W 6.4 4.66 4.63 4

a)

b)

c)

d)

Fig. 4. Closed-loop system FD test: a) the system input,
b) the system uncertainty, c) the hard sensor data,
and d) the inferential sensor data.

The function of the obtained sensor for the closed-loop
system, on the other hand, combines up and Tc and is
expressed as follows:

zc = [up + log(up)]
4
[(up − Tc)

2
+(up log(up)

2
] + 1 (12)

As we can see in Fig. 4(a,c), any system disturbance, i.e.
a change in ωH2O that took place at t = 50, affects the
controlled variable, Tc. To maintain and adjust Tc to the
desired set value of 100 oC, up was manipulated by the
PI controller as indicated in Fig. 4(b). Fig. 4(d) shows the
performance of zc.

Then, we implemented an EKF for the estimation of
system fault level based on the inferential sensor data
(see Figs. 3(d) and 4(d)). For comparison purposes, we
provided also the EKF estimates by incorporating the hard
sensor measurements. (see Figs. 3(c) and 4(c)). The EKF
performances during the timespans are shown in Figs. 5
and 6. In both figures, the EKF is able to estimate the
fault level. One can notice that in the case of the open-loop
system, the EKF estimates, either using the hard sensor
or inferential sensor data, are closer to the true fault level,
Rf = 4, (see Fig. 5) compared to the case of the closed-
loop system (see Fig. 6).

Table 3 demonstrates in detail the initial guess, the true
values of fault, as well as the estimates given by the EKF.
The fault level for the open loop system is estimated
at 4.18 considering the inferential sensor and at 4.26
by taking into consideration the hard sensor data. The
estimated deviations of the true fault levels are 0.18 and
0.26 respectively. Along these lines, the inferential sensor
provides a 8% improvement in fault estimation compared
to the existing hard sensors in the case of the open loop
systems.

In the case of the closed-loop system, on the other hand,
the EKF with the inferential sensor data provided a fault
estimate closer to the true value (i.e., 4.63), compared
to the hard sensor data (i.e., 4.66). We observe that the
estimate was improved by 3% with the use of the zc instead
of the Tc.

Table 3 demonstrates that the accuracy of the EKF esti-
mates significantly improves when incorporating the open-
loop system compared to using closed-loop data, whether
it’s from inferential sensors or hard sensors. Notably, when
integrating open-loop hard sensor data, we observed an 4%
enhancement in fault estimation accuracy. Additionally,
incorporating closed-loop inferential sensor data improved
the estimates by 5%. This is reasonable, as in closed-loop
systems the fault detection is more challenging, due to the
controller masking the evidence of the fault.

Fig. 5. The performance of the EKF when integrated
with an open-loop system incorporating: a) the hard
sensor measurements and b) inferential sensor mea-
surements.

Fig. 6. The performance of the EKF when integrated
with an closed-loop system incorporating: a) the hard
sensor measurements and b) inferential sensor mea-
surements.

5. CONCLUSION

We applied inferential sensing techniques and information
theory to develop fault-sensitive soft sensors for both open-
loop and closed-loop configurations in a PFHE (Plate
Fin Heat Exchanger) system. By incorporating hard sen-
sor data into a genetic programming algorithm, we cre-
ated soft sensors, which were evaluated based on the Ds-
optimality criterion, a measure derived from the Fisher
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Information Matrix that quantifies fault information inde-
pendently of system uncertainty and sensor noise. These
soft sensors were then used to implement an Extended
Kalman Filter (EKF) for fault level estimation in the
PFHE system.

To assess the performance of the inferential sensors, we
also estimated fault levels using the EKF with the existing
hard sensor data. Our findings indicate that the inferential
sensors provided more accurate estimates of the true
fault level when compared to the existing hard sensors.
Furthermore, when considering the open-loop system over
the closed-loop system, regardless of the sensor data, the
EKF estimates exhibited a notable 5% improvement.
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