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Abstract: Reinforcement learning (Rl) has attracted considerable attention from both industry
and academia for its success in solving complex problems. However, the performance of Rl
algorithms often decreases in environments characterized by uncertainties, unmodeled dynamics,
and nonlinearities. This paper presents a novel robust Rl algorithm designed to ensure closed-
loop stability for industrial processes. The algorithm considers a wide range of potential scenarios
across various operating conditions and different ranges of parameter uncertainties. Using the
multiple-model adaptive control methodology, the algorithm evaluates all scenarios and ranks
them based on their likelihood of accurately characterizing the actual process. The validity of
the results is demonstrated using a benchmark continuous stirred tank reactor (CSTR) problem.
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1. INTRODUCTION

Real-Time Optimization (Rto) and Advanced Process
Control (Apc) are standard tools used in complex pro-
cess control industries, including chemical plants, refiner-
ies, and power generation facilities (Kadam et al., 2003;
Adetola and Guay, 2010; De Souza et al., 2010). Rto relies
on static mathematical models to optimize efficiency, pro-
ductivity, and profitability in response to dynamic factors
like market fluctuations, energy costs, and demand shifts.
On the other hand, Apc employs advanced methods, such
as model predictive control, to improve the performance
and stability of the process while aligning it with the set-
points computed by Rto. Although both Rto and Apc
have solid theoretical foundations that provide closed-loop
guarantees, their applicability for any given process is
limited by challenges associated with adapting to various
operating conditions, handling model uncertainties, and
addressing issues related to operator acceptance and train-
ing (Campos et al., 2009).

Artificial Intelligence (Ai), particularly Reinforcement
Learning (Rl), offers a promising alternative to address
these limitations. Rl algorithms can learn control poli-
cies through interaction with a process, allowing them
to adapt to the system’s behavior using training data.
This adaptability enhances their performance when deal-
ing with complex or poorly understood processes (Lewis
et al., 2012; Recht, 2019; Bertsekas, 2019). However, when
it comes to learning policies for real-world applications
involving processes characterized by uncertainties and un-
modeled dynamics, Rl algorithms often face significant
challenges related to sample complexity and safety (Garcıa
and Fernández, 2015). In such cases, Rl methods struggle
with taking a long time to learn and the need to avoid
many potentially dangerous tasks automatically. Uncer-

tainties and unmodeled dynamics represent aspects of the
process that remain partially or entirely unknown during
the training phase.

To guarantee robustness and stability, specific Rl algo-
rithms prioritize worst-case scenarios (Tamar et al., 2014;
Derman et al., 2020; Wang and Zou, 2021). Their main
goal is to find control policies that excel in the most
adverse operating conditions. However, this strong focus
on extreme situations can lead to unnecessary caution,
causing the system to miss opportunities for improved
performance under normal or less severe conditions. This
excessive caution can also result in system slowdowns
and reduced adaptability to changes. Conversely, some Rl
algorithms attempt to balance between aggressiveness and
robustness without being overly conservative for worst-
case scenarios, see for example (Morimoto and Doya, 2005;
Tessler et al., 2019; Panaganti et al., 2022). This balance
is achieved through using interpolation techniques or a
probabilistic interpretation of model uncertainties. While
these methods perform effectively on average, they may
fall short in scenarios requiring an exceptionally robust
controller. Moreover, since these algorithms are frequently
calibrated based on predefined uncertainty distributions,
their performance often becomes sub-optimal in practice.
To address these drawbacks, (Rajeswaran et al., 2016)
developed an ensemble policy optimization algorithm for
learning control policies that are robust to model mis-
matches. Although this method exhibits good general-
ization performance, its computational time can become
impractical, especially for processes with a large number
of parameters.

This paper presents a novel algorithm for training an Rl
agent, using a set of low-fidelity models. The main objec-
tive is to ensure process stability in the presence of an-
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ticipated events, disturbances, and nonlinearities, thereby
reducing the need for manual intervention and promoting
increased autonomy. To achieve this goal, the proposed
algorithm considers a wide range of potential scenarios
that can arise across various operating conditions, includ-
ing normal and worst-case situations. It also accounts for
varying bounds on uncertainties and disturbances. In each
scenario, a model serves as an approximation of the un-
derlying process, allowing the algorithm to learn effective
policies that can adapt to different operating modes and
a range of parameter uncertainties. Throughout its oper-
ation, the algorithm assesses these approximated models
and ranks them based on their likelihood of accurately
characterizing the actual process, prioritizing the most
suitable models for consideration.

The proposed approach draws inspiration from ensemble
robust control methods, often referred to as Multiple-
Model Adaptive Control (Mmac) (Murray-Smith and Jo-
hansen, 2020). Specifically, Mmac with Rl is combined to
leverage actual data and engineering knowledge of a given
process. In contrast to traditional methods that either
focus only on learning from worst-case scenarios or rely
on simple averaging of scenarios, our algorithm selects the
most suitable model or combination of models. It assigns
weights based on the models’ relevance to the current
system behavior, ensuring that control solutions remain
within process boundary limits.

2. PROBLEM FORMULATION

Consider nonlinear dynamic systems on the form:

xk+1 = f(xk) + g(uk). (1)

Here, xk ∈ X is the state vector measured at discrete
time k ∈ N, uk ∈ U is the input vector (referred to as
manipulated variables), and f and g represent the state
transition and control input functions respectively. The
sets X and U define feasible states and control inputs.
Note that linear systems are a special case of (1) when
f(x) = Ax and g(u) = Bu.

We differentiate between the target domain, characterized
by unknown system functions (f, g), and the source do-
main, which consists of M models{(

f1, g1
)
,
(
f2, g2

)
, . . . ,

(
fM , gM

)}
.

These models are derived from first principles. Ideally, we
aim for the target domain to align with one of the models
from the source domain and use the control policy πθ :
X → U specific to that model for the process. However, in
practical scenarios, unmodeled dynamics and uncertainties
are likely to exist. To address this, we employ a weighted
combination of the models in an adaptive manner.

Rl centers around solving an optimal control problem
to find the control policy πθ : X → U . The objective
is to maximize the value function V∞, representing the
discounted sum of the reward function over an infinite time
horizon:

V∞(k) =

∞∑
i=0

γir(xk+i, uk+i) (2)

In this paper, we select the actor-critic structure to find the
optimal policy. This choice is made since it combines as-
pects of both policy-based (actor) and value-based (critic)

Fig. 1. Structure of the actor-critic Rl algorithm.

methods. The actor is responsible for making decisions,
determining the optimal actions based on the current
state. It learns and refines the policy through exploration
and by assessing the outcomes of its actions. The critic, on
the other hand, plays the role of an evaluator. It provides
feedback on the actions taken by the actor, assessing their
effectiveness and guiding the actor towards more reward-
ing choices. Figure 1 visualizes the overall learning process
in the actor-critic structure.

The network configuration of the actor-critic algorithm
is well studied in literature, see for example (Konda and
Tsitsiklis, 1999; Peters and Schaal, 2008; Grondman et al.,
2012). In the following section, we will explore a new
method for robustifying an Rl agent trained on a set
of inaccurate models of the actual process. We will show
how to parameterize the Rl training process in order to
train an agent on feasible observation-action sets. This is
a necessary condition to guarantee that the final trained
agent is not only optimal for the weighted combination of
the ensemble models, but also has high performance across
all models within the source domain in terms of feasibility
and optimality.

3. ROBUST RL ALGORITHM

Up to this point, we assume that the actual process
equations and parameters are not available. Therefore, a
first-principle model of the process, hereafter named as
base-model, is serving as the environment on which the
Rl agent will be trained. This enables us to address the
challenges associated with real-world applications where
such detailed knowledge may not be readily accessible.

Starting from the base-model and incorporating the do-
main knowledge captured from the process documents, one
can construct and tune several models by introducing var-
ious formulations of uncertain equations and parameters.
For example, these parameters might pertain to reaction
kinetics in a chemical reactor, material properties like ther-
mal conductivity or mechanical strength, or performance
models for renewable energy systems, among others. These
models are then assessed based on their importance and
the probability of their occurrence within the actual pro-
cess. Once the models are scored, the Rl agent undergoes
training by interpolating between the scenarios introduced
by each model, with weights assigned according to their
corresponding scoring rates.

There are two different approaches to interpolate these
scenarios, each with its own set of pros and cons:

(1) Aggregation on observations. In this approach,
the Rl agent is trained on the interpolation of the
collected observations from the ensemble of models
(see Figure 2). This is computationally efficient as
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Fig. 2. Robust Rl architecture with the Mmac algorithm:
Aggregation on observations.

Fig. 3. Robust Rl architecture with the Mmac algorithm:
Aggregation on actions.

we only learn from one environment hosting M mod-
els. However, performance of the obtained agent is
extremely dependent on the quality of the historical
data. As long as the actual process falls within the
domain of historical data, meaning that the actual
process operates in the vicinity of the interpolated
observation set, the Rl agent performs well.

(2) Aggregation on actions. In this method, it is
assumed that an optimal Rl agent exists for each
individual model, but this does not necessarily guar-
antee optimal performance for the actual process. The
ultimate action will be determined by interpolating
the proposed actions from each model’s Rl agent,
enabling us to compute the optimal combination of
these policies for deployment in the actual process
(see Figure 3). While this method may be computa-
tionally more expensive, it can ensure performance
and provide the most accessible sub-optimal solution
under given circumstances (see Lemma 1).

Lemma 1. Suppose that there are M models described as

xi,k+1 = fi(xi,k) + g(ui,k) , i ∈ {1, ..,M}. (3)

Assume that there is a separate controller for each model
such that for ui,k ∈ U and xi,k ∈ X , we have xi,k+1 ∈ X .
Assume also that g is a convex function and the sets X
and U are convex. If xi,k = xk for each i and there exists

a vector wk with
∑M

i=1 wi,k = 1 such that

f(xk) =

M∑
i=1

wi,kfi(xk),

then the control input

uk =

M∑
i=1

wi,kui,k

guarantees the feasibility of the actual process (1).
Proof. The control vector uk is a convex combination of

Fig. 4. The Mmac architecture.

u1,k, . . . , uM,k. Since U is a convex set and each ui,k ∈ U ,
it follows that uk ∈ U . From (1), we have

xk+1 =

M∑
i=1

wi,kfi(xk) + g

(
M∑
i=1

wi,kui,k

)

≤
M∑
i=1

wi,kfi(xk) + wi,kg(ui,k)

=

M∑
i=1

wi,k (fi(xk) + g (ui,k))

=

M∑
i=1

wi,kxi,k+1,

where the inequality follows from the convexity of g. Each
xi,k+1 ∈ X and X is a convex set. Thus, xk+1 as a
convex combination of x1,k+1, . . . xM,k+1 belongs to X .
This completes the proof.

According to Lemma 1, when a process is approximated
as a weighted average of M models, using the weighted
average of control actions from each model ensures the
feasibility of both state and control vectors of the process.
In other words, the controllers of the these models collab-
orate effectively to control the process.

3.1 Multiple-model Adaptive Control

Multiple-model Adaptive Control (Mmac) is a method
applied in the fields of control theory, signal processing,
and filtering (Magill, 1965; Baram and Sandell, 1978;
Aguiar et al., 2008; Murray-Smith and Johansen, 2020).
It proves especially valuable in scenarios where a single
model falls short in accurately capturing the complex
dynamics of a process. Such limitations often arise due to
factors like uncertainties, or transitions between different
operating modes. The core concept behind Mmac involves
employing a set of M distinct mathematical models, as
shown in Figure 4. Each of these models is tailored to
capture the dynamics and behaviors of the process within
specific operating modes or predefined ranges of parameter
uncertainties.
At each time step k ∈ N, the predicted outputs of all
M models, denoted as y1,k, . . . , yM,k, are computed using
the same control input uk as the process. The difference
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between the output of each model and the actual process
output, represented by yk, allows for the derivation of
model errors as follows:

ei,k = yk − yi,k, i = 1, . . . ,M.

These errors are then used to calculate the likelihood
of each model accurately characterizing the process. The
resulting likelihood values provide guidance for the assign-
ment of suitable weights to individual models, with models
having lower probabilities receiving proportionally lighter
weights. This weighting strategy enables the selection of
a model or a combination of models that most effectively
represents the input-output behavior of the process at time
step k ∈ N.

Mmac performs two primary tasks at each time step:
firstly, it computes probabilities through a Bayesian ap-
proach, and secondly, it assigns weights based on these
probabilities. The Bayes theorem is used in the iterative
computation of the current probability associated with
each model being the true representation of the process.
Specifically, at the kth iteration, the probability for the
ith model is calculated as

pi,k =
exp

(
−e⊤i,kΛei,k

)
pi,k−1∑M

j=1 exp
(
−e⊤j,kΛej,k

)
pj,k−1

. (4)

Here, the matrix Λ is a tuning parameter for adjusting the
convergence rate of the probabilities. Larger values of Λ
magnify the impact of model errors, thereby accelerating
convergence toward a single model. Note that the recursion
in (4) is initialized with equal probabilities 1/N assigned
to all the models. One of the key advantages of this
algorithm is its computational efficiency. Moreover, it
has the capability to systematically reject poor models.
This feature allows for a diverse range of models without
significantly compromising performance, even during the
initial stages (Yu et al., 1992).

Using the probability calculated for individual models
at each recursive step, suitable weights are assigned to
each model. A model with a higher probability receives a
correspondingly higher weight, while a model with a lower
probability is assigned a reduced weight. Considering the
inherent uncertainties in real-world system, it is unlikely
that any single model will perfectly match the process.
Hence, it becomes essential to effectively combine models.

Since (4) operates recursively, once the probability of any
model reaches zero, there is no way for that probability to
become nonzero in future time steps. To address this and
ensure the continued participation of every model in the
calculation, an artificial cutoff threshold, denoted as pmin,
is introduced. For models with probabilities falling below
the threshold, i.e., pi,k < pmin, their probabilities are reset
to pi,k = pmin, and are consequently excluded from the
weighting process (Athans et al., 1977). Thus, at the kth
iteration, the ith model is assigned a weight wi,k using the
following scheme:

wi,k =


pi,k∑M
j=1 pj,k

, pi,k ≥ pmin,

0, pi,k < pmin.

Fig. 5. Schematic diagram of the CSTR and the surround-
ing cooling jacket.

4. EXPERIMENT SETUP

The proposed algorithm has been tested on a benchmark
CSTR (Continuous Stirred-Tank Reactor) model, which
simulates a nonlinear complex reaction between compo-
nents A and B to produce C. The problem is purposefully
made up to address the real-world challenges for evalua-
tion of the algorithms proposed in this paper. It is able
to convey sufficient complexities, while also providing a
reasonable number of input and output signals, including
manipulated variables (MVs), process variables (PVs), and
disturbance variables (DVs).

4.1 Process description: CSTR example

Figure 5 illustrates a schematic diagram of the vessel and
the surrounding cooling jacket. A nonlinear exothermic
and irreversible reaction, 2A + B → C + volatiles, takes
place in the vessel, which is assumed to be always perfectly
mixed.
The feed stream of mixture of reagents A and B enters

the tank at the mole ratio of RM = concentration(A)
concentration(B) and

volumetric rate Fin. The product stream C exits continu-
ously at the volumetric rate Fout, which may include some
impurities of not reacted components A and B. Perfect
removal of volatile components are assumed resulting in
a variable outlet density (ρout). Outlet volumetric rate is
calculated under assumption of constant volume of the re-
acting liquid. There is also a recycled line of component A
from a downstream unit in the process, which is considered
an external bounded disturbance.
The process base-model is constructed by mass and energy
balance equations, formulated in the compact form of (1).
The concentration of all components CA, CB , CC together
with the reactor temperature Tr are assumed as the four
state variables of the system. Alternatively, the process
variables (PVs) within the system consist of the four
state variables, as well as the product flow rate Fout and
density ρout, which are either directly measurable or can
be estimated with high accuracy.
The feed mole ratio RM , feed flow rate Fin, and set
point of reactor temperature Tr,SP , are considered as pro-
cess manipulated variables (MVs). There is an inner PID
controller on the cooling jacket loop, which receives the
desired reactor temperature Tr,SP and manipulates the
cooling power Qc.
The process is also subject to various external disturbances
(DVs), which are outlined below:
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• feed B concentration CB,in (measurable)
• feed fluid temperature Tin (measurable)
• recycled fluid temperature Trec (unmeasurable)
• recycled fluid flow rate Frec (unmeasurable)

Detailed formulation of the state transition, control in-
put and output functions are provided in the follow-
ing GitHub link: https://github.com/Soroush-Git/
ADCHEM2024---CSTR-example.

4.2 Submodels definitions

The main source of uncertainty in the proposed CSTR
process can be defined in the kinetic formulation of chem-
ical reaction. For the reaction of 2A + B → C, the rate
equation can be written as krfr(CA, CB), where fr is a
nonlinear function of the concentration of the inlet com-
ponents A and B, and kr is the corresponding rate constant
representing the specific reaction rate at a given temper-
ature (see the above-mentioned GitHub link). Hence, the
tuning of kr, which is a function of activation energy Er

and exponential factor k0 will account for the parametric
uncertainty, whereas the definition of the kinetic function
fr will be employed to address significant structural un-
certainty.
We introduce four different submodels according to dif-
ferent formulations of these parametric and structural
uncertainties:

fr k0 Er

Actual Process CACB k∗0 E∗
r

submodel1 C2
ACB ω(0.1k∗0 , 0.5) ω(1.05E∗

r , 0.5)
submodel2 C2

B ω(2k∗0 , 0.5) ω(1.05E∗
r , 0.5)

submodel3 CAC2
B ω(2k∗0 , 0.5) ω(0.65E∗

r , 0.5)
submodel4 C2

A ω(2k∗0 , 0.5) ω(1.05E∗
r , 0.5)

where ω(µ, σ2) represents a normally distributed random
variable with mean value of µ and variance σ2. In fact,
in each epoch, a value is randomized from this normal
distribution.

The submodels are tuned and adjusted using experimental
data from the actual process. However, they may not
respond adequately to all operating conditions. The actual
process can always be situated within the boundaries of
this ensemble of models, which satisfy the conditions of
Lemma 1.

4.3 Rl agent objectives

The primary control objective for the Rl agent is to ensure
safe and efficient operation while ultimately maximizing
the reactor’s profitability.
In this context, the process adheres to a barrier function
that enforces constraints on both PVs:

1155[kg/m3] ≤ ρout ≤ 1165[kg/m3]

10[m3/h] ≤ Fout ≤ 20[m3/h]

520[K] ≤ Tr ≤ 570[K]

and MVs:

1 ≤ RM ≤ 2

10[m3/h] ≤ Fin ≤ 20[m3/h]

520[K] ≤ Tr,SP ≤ 570[K]

The process profit is calculated as the total yield, which is
obtained by multiplying the product flow by the concen-
tration of the desired product, while deducting the costs
associated with feed and energy, as shown below:

Profit = − 5

3600
FinCAMA − 0.045Tr +

10

3600
FoutCCMC

(5)
where MA = 62 and MC = 254 are the molar mass [g/mol]
of components A and C.
The robust Rl agent seeks to approximate the optimal
policy πθ through iterative steps, aiming to maximize a
reward function. The reward is the actual profit (5), but it
is penalized by a negative gain when the barrier function
is violated:

Reward = Profit

− 40{max(0, ρout − 1165) +max(0, 1155− ρout)}
− 120{max(0, Fout − 20) +max(0, 10− Fout)}
− 120{max(0, Tr − 570) +max(0, 520− Tr)}.

(6)

5. RESULTS DISCUSSION

In this section, we will examine the advantages and dis-
advantages of the proposed algorithms and compare the
results with the conventional RTO-APC solutions, which
are widely used in the energy industries.
Three different Rl agent will be analyzed:

• Regular Rl: trained on a model of the process which
is tuned on some historical data (the best base-
model).

• Robust Rl1: trained on the ensembled of the base-
models with an aggregation on observation by Mmae.

• Robust Rl2: trained on the ensembled of the base-
models with an aggregation on actions by Mmae.

All approaches adopt the same architecture of the Actor-
Critic networks to ensure a fair comparison. Both the
Actor and Critic are represented by feedforward neural
networks with multiple fully connected layers, each con-
sisting of 256 neurons in the input direction, which are
concatenated towards the output layer(s).
Rl agent is trained through 100 epochs, each encompass-
ing 48 hours of environment simulation (corresponding to
the process) with random initialization of state variables
and disturbances.
For each Rl agent, this task is completed within 40 min-
utes on a standard computer equipped with an Intel(R)
Core(TM) i7-1165G7 CPU running at 2.80GHz, without
the use of GPU parallelization.
We also introduced two key performance indicators (KPIs)
to evaluate each control solution. The first one is the
percentage of time the process either complies with the
constraints, along with the count of unsatisfied constraints
ranked by their level of significance. In the example CSTR
process, the outlet volumetric flow rate constraint takes
precedence over product density, as it receives a higher
penalty in the reward function (6). The second one is
the profit for the period during which all constraints are
satisfied.
Figure 6 compares the product flow rate over a 10-day
simulation with a change in production mode, so-called
grade change, at the day 5. All three Rl solutions are
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Fig. 6. Product flow rate over 10-day simulation with a
grade change at the day 5.

able to fully respect the constraint on product flow rate.
Regular Rl is able to push more toward the upper limits
which can results in a higher profit as illustrated in Fig-
ure 7. However, the constraint on product density is not
well guaranteed by Regular Rl. As it is shown in Figure
8, although Regular Rl can effectively push the process
operating point closer to the upper limits, there is no
guarantee that limit violations will be completely avoided,
even during the initial 5 days when the process operating
conditions appear to align closely with the model used
by Regular Rl. On the contrary, during the initial 5
days (first mode of operation), Robust Rl1 successfully
maintains the constraints within their limits and surpasses
Regular Rl in terms of the first KPI. This is primarily due
to Robust Rl1’s approach, which considers a weighted
average of observation sets derived from submodels for
agent training process, prioritizing more critical scenarios.
While this may slightly impact performance from a profit
perspective (Figure 7), it ensures the constraint limits are
maintained. The challenge becomes more evident on day 5
when the process undergoes a change in production mode.
This shift significantly pushes the operating point beyond
the validity of the models employed in both Regular Rl
and Robust Rl1, resulting in a severe constraint violation
(Figure 8).

In such conditions, the control actions generated by the
Robust Rl2 approach demonstrate a more reliable and
robust performance compared to Robust Rl1 and Regular
Rl. This outcome aligns with expectations, as it employs
the robust control actions generated from an ensemble
of agents optimally weighted based on the actual process
operating conditions using the MMAE approach. This ap-
proach can yield substantial profit when the actual process
closely aligns with the agent with the highest score. How-
ever, it also ensures performance even if there is a slight
deviation, as long as it remains within the boundaries of
the submodels.
In this analysis, all three RL approaches were trained using
identical numbers of epochs and simulation lengths. How-
ever, they exhibited varying sample complexities, leading
to larger memory requirements and computational costs.
Specifically, the results indicate that training RL necessi-
tates less complexity than RL1, which in turn requires less
complexity than RL2.

Fig. 7. Profit over 10-day simulation with a grade change
at the day 5.

Fig. 8. Product density over 10-day simulation with a
grade change at the day 5.

The proposed Robust Rl algorithms are compared with
a conventional RTO-APC approach. Three different RTO-
APC approaches are tested. RTO-APC1 and RTO-APC2
are based on the first two most probable submodels se-
lected by the MMAE algorithm. The third one is based on
the perfect model of the system. RTO-APC approaches
consistently yield higher profits by operating closer to
boundary conditions. However, they struggle to consis-
tently satisfy constraints. For instance, RTO-APC1 can
poorly ensure constraints in first five days (mode1 of
operation), while RTO-APC2 fails during grade changes.
The optimal RTO-APC, of course, ensures performance in
about 98% of operating conditions.

6. CONCLUSIONS

The proposed robust Rl algorithm enhances the robust-
ness of the Rl control agent against model uncertainties
and mode changes in the actual process. It can minimize
the number of constraint violations for those conditions
where Regular Rl approaches or the current conventional
control algorithms like APC-RTO are not capable of effec-
tively handling the complexities of the process.
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