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Abstract: Automated fault detection and diagnosis (FDD) in modern chemical process systems
are essential for ensuring safe and reliable operation. Deep learning methods for FDD are
gaining traction due to their high fault classification performances, but these methods lack
interpretability which hinders their practical use. In this work, an interpretable neural network
model for FDD is proposed which classifies the fault based on the fault propagation path. In our
approach, fault propagation paths are embedded into the model as directed graphs in a graph
neural network. This framework enforces connections between hidden layer nodes, giving them
and their activations a physical and interpretable meaning. We evaluate the performance and
interpretability of the proposed model on the benchmark Tennessee Eastman Process where it
achieves a 92.9% classification accuracy on select fault datasets.

Keywords: interpretability; propagation path; graph neural network; fault diagnosis; chemical
process;

1. INTRODUCTION

Abnormal events or faults in industrial process systems
can result in risks to safety and the environment, as
well as high maintenance costs and downtime. Therefore,
automated fault detection and diagnosis (FDD) systems
are essential for the quick recovery of the process sys-
tem. Established methods for FDD include multivariate
statistical methods such as Principle Component Analysis
(PCA) (Kresta et al., 1991) and Partial Least Squares
(PLS) (MacGregor and Kourti, 1995) but with the advent
of Industry 4.0, deep neural networks are emerging as an
increasingly viable option. Methods such as Long Short
Term Memory (LSTM) networks (Zhao et al., 2018), and
Convolutional Neural Networks (CNN) (Wu and Zhao,
2018) have been shown to produce higher accuracies in
FDD tasks than the established methods due to their
ability to model non-linearities and automatically extract
features (Zhao et al., 2018).

However, deep neural networks suffer from a lack of in-
terpretability due to their complex “black box” internal
structure. For FDD models, the ability to explain a de-
cision is crucial for industrial acceptance, given the high
consequence of an incorrect action (Hoffmann et al., 2021).
Operators and engineers must trust that the model follows
a logical reasoning that is aligned with process knowledge.
With established methods such as PCA, the principle
components within the model are composed of linear com-
binations and can be interpreted by producing contribu-
tion plots identifying the variables driving the detection
(Westerhuis et al., 2000). In deep neural networks, the
internal behaviour is much more difficult to decipher due
to the non-linear activation functions and the multitude of
unintelligible nodes and weights (Molnar, 2022).

To fulfill the interpretability requirement for FDD, modern
methods are applying explainability techniques to inter-
pret the decisions of the black-box model. These tech-
niques either approximate the black-box model using an
interpretable model such as a decision tree, or compute
a gradient of the prediction with respect to the input
variables (Molnar, 2022). Similar to PCA, the explanations
are in the form of a contribution plot showing which
variables drive the classification for a given sample. Ex-
amples of applications in process systems FDD literature
include Local Interpretable Model-agnostic Explanations
(LIME)(Bhakte et al., 2023), Gradient-weighted Class
Activation Mapping (Grad-CAM) (Wu and Zhao, 2022),
Layerwise Relevance Propagation (LRP) (Agarwal et al.,
2021), and Shapley values (Bhakte et al., 2022). However,
these explainability techniques only provide an approxi-
mate explanation for a given sample. The black-box model
internals are still unknown which leads to uncertainty in
both the prediction and the explanation (Rudin, 2019).
Having a model that is inherently interpretable would
eliminate the need for an external technique and provide
a more robust and faithful explanation (Rudin, 2019).

To create an inherently interpretable model, constraints
are usually put on the structure, making the inner com-
ponents and decision-making process easier to understand
(Rudin, 2019). Examples include decision trees and linear
regressions which are limited to splits in single variables
and linear relationships (Molnar, 2022). Constraints, in
the form of sparse connections, can also be applied to
neural networks to make them more interpretable such as
in weight-pruned neural networks (Filan et al., 2021) or
Graph Neural Networks (GNNs) (Battaglia et al., 2018).
Structured sparse connections can provide sensible rela-
tions between the input variables and hidden layer nodes,
allowing them to retain a physical meaning (Battaglia
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et al., 2018). When applied to chemical process systems,
the nodes can represent process variables or units if they
are connected following the physical process. Examples in
the process systems literature include Wu et al. (2020) who
incorporated the process structural knowledge into the
architecture of a recurrent neural network for model pre-
dictive control. In their weight-constrained model, groups
of hidden layer nodes represented process units by con-
straining the connections of downstream input variables,
not belonging to the process unit. Other examples in-
clude Wu and Zhao (2021) and more recently, Jia et al.
(2023) who used GNNs for FDD. The nodes in the GNN
represent process variables through constraints outlined
by the process topology. Performance improvements were
achieved by these models but the mechanisms to explore
their inherent interpretability were not investigated.

Therefore, we propose an interpretable neural network
model for FDD in chemical process systems. Similar to Jia
et al. (2023) and Wu and Zhao (2021), the proposed model
uses GNNs where nodes represent process variables but
instead of using a single graph of the full process topology,
a set of graphs outlining the propagation paths of separate
faults are utilized. In the context of FDD, the sequence of
affected variables in a propagation path can discriminate
between faults, and the subset of variables in each path
are more interpretable than the full process topology. In
the proposed model, the set of propagation paths are
integrated through an ensemble of graph convolutional
layers where each layer guides the model to produce a
representation following the corresponding propagation
path. The representations can then be interpreted through
the node activations to understand the model reasoning.
The contributions of this paper are the following:

• An interpretable FDD model which learns and clas-
sifies based on the propagation path of a fault in
addition to time series process data

• A framework to interpret node activations which
represent process variables to understand and verify
the proposed model decision

The remainder of the paper is organized as follows: Section
2 presents the proposed fault propagation-based model
and interpretation method. Section 3 evaluates the effec-
tiveness of the proposed model on the benchmark Ten-
nessee Eastman Process. Performance is compared to stan-
dard deep learning methods for FDD, and a sample inter-
pretation is demonstrated. Section 4 concludes this study
and discusses future work.

2. METHODOLOGY

This section outlines the framework for the proposed in-
terpretable neural network model. The model first cap-
tures abnormal temporal features in the Temporal Con-
volutional (TC) layer and then propagates these features
throughout the fault propagation paths in the Spatial
Propagation (SP) module. The representations of each
layer are then grouped by fault in the classification layer
which outputs a fault class probability. The model is
applicable to continuous processes with a known steady
state where significant deviations are related to abnormal
situations. The full model is shown in Figure 1, and the
following sub-sections describe its components in detail.

Fig. 1. Model schematic from the normalized input to the
output classes. Colored arrows represent the outputs
from the corresponding fault propagation paths.

Fig. 2. Input and output of a filter in the TC layer from
the case study in Section 3.

2.1 Temporal Convolutional (TC) Layer

First, abnormal temporal features in each process variable
are captured using a convolutional layer. These features
identify: 1) the process variables affected by the fault in the
input sample, 2) specific temporal features that can assist
the classification layer in discriminating between faults.

The input to the proposed model is a matrix X with m
process variables and n time steps. It enters the Temporal
Convolutional (TC) layer which has j filters with a size
of [1, k] (Krizhevsky et al., 2012). These 1D filters slide
along the time axis of the m variables detecting temporal
features while also de-noising the input data with the
ReLU activation function. Figure 2 shows the input and
output of one of the filters for the case-study model
presented in Section 3. The filter, indicated by the orange
square, detects the decreasing slopes shown in the shaded
areas. This temporal feature aids in diagnosing faults
with random variations where downward slopes are often
present. Since the 1D filters only process one variable
at a time, their meaning is preserved in the output.
This method is adapted from Song et al. (2023) who
also required the process variables to remain independent
for causality extraction. Once exiting the TC layer, the
extracted temporal features are a 3D tensor of size [m,n, j]
which is fed to the spatial propagation module.
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2.2 Spatial Propagation (SP) Module

In the Spatial Propagation (SP) module, the temporal
features captured in the TC layer are propagated to the
connected process variables outlined in the embedded
propagation paths. First, the temporal features in the
[m,n, j] tensor are concatenated for each process variable
to form a matrix of size [m,n× j]. Next, the matrix is fed
to F parallel GC layers where F is the number of faults
the model is trained on. In the GC layers, each of the
m process variables correspond to a node, and their n× j
vector of temporal features are embedded as node features.
Then, graph convolutions are performed where the node
features are propagated to neighboring nodes based on
their respective propagation paths. The paths are repre-
sented by an adjacency matrix, Af , where the subscript f
is the fault in question. These are [m,m] binary matrices
with “1”s representing causal connections between process
variables in fault ’s propagation path and “0”s representing
no connection. Finally, the aggregated node features are
updated using a set of learned weights and sent through a
ReLU activation function. The equation for the updated

state, H
(l)
f , after being processed by GC layer l is the

following:

H
(l)
f = σ

(
D

−1/2
f AfD

−1/2
f H

(l−1)
f Wf

)
(1)

Where the superscript l is the GC layer in question, σ is
the ReLU activation function, Ãf is the adjacency matrix

with added self-connections, D̃f is the diagonal matrix

used to normalize Ãf , H
(l−1)
f is the previous state and

Wf are the learned weights (Kipf and Welling, 2016). The
output of each GC layer is a 3D tensor of size [F,m, n× j]
representing the states of the F propagation paths.

Within the SP module, we also propose a method to pre-
serve the time ordered attributes of the temporal features
in each of the nodes by pruning connections in the weight
matrix, Wf . In the vanilla GC framework by Kipf and
Welling (2016), Wf is dense making the update function
from the aggregated previous state fully connected as
shown on the left in Figure 3. The updated node features
lose their time ordered attributes by being functions of
all the node features in the previous state. Therefore, we
propose to prune Wf such that the updated node features
are only functions of s previous node features for a given
filter output vector as shown on the right in Figure 3.
s is the amount of past information needed to process
a temporal feature. The visualization of these attributes
in the node activations allow for the interpretation of
sequence, especially when time delays between affected
variables in the propagation path exist. The sequence can
then be used to differentiate between faults.

2.3 Classification Layer

The propagation sequence represented by the activations
in the Temporal Convolutional (TC) and graph convolu-
tional (GC) layers are combined and utilized by the classi-
fication layer to classify the input sample. This framework
of outputting the intermediate layers ensures that the
sequence of activations between layers are used for clas-
sification. Simultaneously, it prevents an “oversmoothing”

Fig. 3. Schematic comparing the node update function of
the classical GC layer by Kipf and Welling (2016) and
the proposed model’s modification with s = 3.

issue in graph neural networks where the node features be-
come too similar after multiple graph convolutional layers
(Hamilton, 2020). Therefore, more information is provided
to the classifier to learn and distinguish between faults.

First the node features corresponding to each of the j
filters in every node are average pooled. The size of the TC
layer output is reduced from an [m,n, j] tensor to an [m, j]
TC matrix and the GC layer output tensors are reduced
from [F,m, n × j] to [F,m, j]. Then, each of the pooled
TC and GC layer tensors are split into F fault matrices.
Note that in each of these matrices, only the subset of
process variables present in their respective propagation
paths are included. Figure 1 represents these matrices with
coloured arrows corresponding to their propagation paths.
Then the fault matrices from each layer are grouped by
fault, concatenated, and flattened to form a final vector of

length (
∑F

f=1 mf )× l× j, where l is the number of layers
and mf is the number of process variables in fault f ’s
propagation path. This final classification vector is fed into
a linear classifier with F +1 output classes which includes
the normal state class. This layer is pruned to connect only
the corresponding flattened fault matrix to their respective
fault class. This framework avoids complex classification
criteria of a given fault based on the activations of process
variables not within the fault class.

2.4 Model Decision Interpretation

The proposed model framework is designed to allow the
user to understand how the model comes to a decision.
The basis of decision-making process are the activations
of nodes following the fault propagation path. The node
activations can be analyzed to verify that the proposed
model is working in this manner. The procedure for
interpretation is the following.

When the proposed model detects a fault, j (number
of filters in TC layer) sets of activations within the TC
and graph convolutional layers are produced. Each set
corresponds to an abnormal temporal feature used by the
model to classify the fault sample. The contributions of
each temporal feature to the chosen output class are calcu-
lated from the pooled outputs and the classification layer
weights. The activations set with the highest contribution
are therefore analyzed. Insight into the types of tempo-
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ral features the model values for the classified fault can
also be obtained through the level of contribution. Then,
the activations are filtered for each node feature using a
threshold calculated with the normal state validation set:

gm,t = am,t
normal,mean + zσm,t

normal (2)

Where for node m and node feature t, gm,t is the threshold
value, am,t

normal,mean is the mean activation value, σm,t
normal

is the standard deviation, and z is the threshold factor. z
is a hyperparameter determining the number of standard
deviations to set the threshold. After filtering, the node
activations of the chosen propagation path are analyzed
to verify the model decision. The user can reason that if
the nodes are activated from the root cause variable along
the propagation path, then the representation produces
a high output probability for the chosen class. The user
can also compare the node activations to other paths
identifying less activations not following the propagation
path resulting in lower output probabilities. The user is
therefore able to identify the decision-making mechanism
for the proposed model.

3. CASE STUDY: TENNESSEE EASTMAN PROCESS

The proposed approach was tested on the Tennessee East-
man Process (TEP) (Downs and Vogel, 1993) which is a
benchmark simulation used for fault detection and diag-
nosis (Chiang et al., 2000). First a description of TEP and
dataset are given, followed by the performance metrics,
pre-processing, and training method. Next, the classifica-
tion performance results are presented and compared to
standard black-box models. Finally, the interpretability is
demonstrated with a sample fault.

3.1 Process Description and Dataset

The TEP produces two products, G and H, from four
reactants, A, C, D, and E, along with an inert, B, and
byproduct, F. It involves five major units: the reactor,
condenser, separator, stripper, and compressor. 52 vari-
ables can be obtained from this process which include
22 process sensors, 18 composition measurements, and 11
manipulated variable measurements. The control structure
is that of Lyman and Georgakis (1995). The schematic
of the process is shown in Figure 4 along with the fault
6 propagation path from Sun et al. (2020) discussed in
Section 3.5.

The original dataset consists of 20 different fault states
plus a fault-free normal state. Each state has a set of 25-
hour operation intervals which are called “runs”. The runs
differ through random seed and the process variables have
a sampling time of 3 minutes equating to 500 samples per
run. In this study, only the first 170 samples of each run
were used for training and evaluation to allow the model to
focus on learning the initial propagation of the faults. Only
faults with identifiable propagation paths in the literature
were evaluated since there are no established ground-truth
propagation paths. They include faults 1 and 7 from Chen
et al. (2018), 4, 5, 12 and 13 from Mori et al. (2014),
6 from Sun et al. (2020), and 8 from Li et al. (2016).
These references use causal discovery methods like transfer

Fig. 4. TEP schematic adapted from Chiang et al. (2000)
with the fault 6 propagation path from Sun et al.
(2020) shown in red

entropy, Granger causality, or Bayesian networks to find
the propagation paths for the faults.

3.2 Performance Metrics

The metrics used to evaluate model performance were the
accuracy and false alarm rate (FAR):

Accuracy =
# of correctly classified samples

total # of samples
(3)

FAR =
# of misclassified samples at normal state

total # of samples at normal state
(4)

Having a low FAR is essential for preventing operator
alarm fatigue and increasing trust in the model. An FAR
limit of 0.02 is set for the final models.

3.3 Data Pre-processing and Training

For each fault, 22 runs were used in total with 18 runs
for training, 2 for validation, and 2 for testing. The
performance improvement was marginal with a higher
number of runs. For scaling, the entire dataset is z-score
normalized using the sample mean and standard deviation
of the normal state training data. Then the absolute value
is taken to avoid a “dead node” issue (Lu et al., 2019)
where some nodes do not activate throughout the entire
training set, complicating the interpretation. The scaling
equation is therefore the following:

x
′

i = |xi − x̄i

si
| (5)

Where for variable i, x′
i is the normalized value, x̄i is

the normal state mean, si is the normal state standard
deviation, and || is the absolute value. The data is then
converted into 2D sliding windows of 52 variables by 20
time-steps with a stride of one to minimize detection delay.
In terms of model parameters, three convolutional filters of
size [1, 5] in the Temporal Convolutional layer were used,
along with two graph convolutional layers with an s of
three. Next, the model was trained until convergence at
50 epochs using the Adam optimizer (Kingma and Ba,
2014) with a batch size of 36 and a learning rate of 0.01.
Within the loss function, the weight of the normal state
class was five times the other classes to emphasize a low
false alarm rate and the selective pruning occurred at the
end of every batch.
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Fig. 5. Graphs of the fault 6 (left) and fault 7 (right)
propagation path adapted from Sun et al. (2020) and
Chen et al. (2018)

3.4 Classification Results

The final model chosen is the model with the highest
validation accuracy and an FAR less than 0.02. The
proposed model achieves a 91.9% accuracy on the test set.
As a performance comparison, several standard black-box
neural network models are also trained and tested on the
same dataset. Specifically, an LSTM (Zhao et al., 2018),
a CNN (Wu and Zhao, 2018), and a Graph Convolutional
Network (GCN) (Wu and Zhao, 2021). The graph used for
the GCN is adapted from Jia et al. (2023) to reflect using
the process topology of the available process variables.
Table 3.4 gives the results comparing the models. Overall,

Table 1. Overall model accuracies

Dataset LSTM CNN GCN Proposed model

Training 92.7% 95.0% 96.0% 94.1%

Validation 93.9% 88.3% 93.9% 91.9%

Test 91.4% 87.7% 95.5% 92.9%

the proposed model performs worse than the GCN on the
test set at 92.9% accuracy while performing better than
the CNN and the LSTM. By using the full topology of the
process, the GCN may extract information outside of the
propagation path, thus leading to a higher performance.
However, the performance of the proposed model is still
deemed acceptable while being interpretable.

3.5 Proposed Model Interpretation - fault 6

In this section, a model decision from fault 6 is interpreted.
According to Sun et al. (2020), when fault 6 occurs, there
is a sudden loss of A feed (X1) which is attempted to be
corrected by the A feed valve (Xmv3). The inlet A compo-
sition is also affected (X23) along with the A purge (X29)
and C purge compositions (X31). Meanwhile, the reactor
is the first unit to be affected with the reactor pressure
(X7), cooling water temperature (X21), and cooling water
valve (Xmv10) deviating from normal. It then reaches the
compressor affecting recycle valve (Xmv5) and compressor
work (X20) (Figure 4 & Figure 5).

The fault is immediately detected and diagnosed correctly
on the first sample, 3 minutes into the fault. Within
the fault 6 classification layer, filter 1 has the highest
contribution for this sample and therefore its activations
are analyzed. The column on the left in Figure 6 shows
these activations which have a threshold factor, z, set to 5
standard deviations. The node features of the correspond-
ing nodes representing process variables are on the x-axis

Fig. 6. TC and GC node activations for fault 6 (left) and
fault 7 (right) propagation paths at t=1 for fault 6

while the activation values higher than the threshold are
on the y-axis. In the Temporal Convolutional layer, the
root cause node X1 and corresponding valve node Xmv3
are activated. The activations then propagate into the next
steps of the path in the first GC layer with variables X23,
X29, X31, X7 and small activations in X21 and Xmv5.
Then in the second GC layer, Xmv10 is activated while the
activations of the other nodes are amplified. These node
activations follow the fault 6 propagation graph from the
root cause, and therefore the reasoning behind the fault 6
classification can be observed.

The activations of other propagation paths can also be
analyzed to verify why another class was not chosen. For
the same fault 6 sample at t=1, the right column on Figure
6 shows the activations of the fault 7 path (Figure 6, right).
In the Temporal Convolutional layer, the reactor pressure
(X16) is activated followed by the A/B/C feed rate (X4),
A/B/C feed valve (Xmv4), reactor cooling water valve
(Xmv10) and temperature (X21) in the first GC layer
and X21 and X16 disappearing in the second GC layer.
These activations do not follow the propagation path of
fault 7 and therefore, it is reasonable that the model chose
fault 6 over fault 7. This verification procedure can also
be repeated with the other propagation paths as well.

4. CONCLUSION

In this work, an interpretable neural network model was
proposed for FDD on chemical process systems. It suc-
cessfully provides prediction interpretations through the
internal node activations which are enforced through graph
convolutional layers and network pruning to represent the
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propagation paths of given faults. Tests on the benchmark
Tennessee Eastman Process show that it can achieve ac-
ceptable performance while being interpretable through
the activation sequence. Future work would address limita-
tions with faults of similar propagation paths but differing
fault pattern (eg. step vs. random variation) and optimiz-
ing and interpreting hyperparameters.
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