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Abstract: Ensuring high prediction accuracy is essential for maintaining high quality of
products in batch processes, given their inherent multi-phase characteristics and dynamic
variations in real-world applications. Identifying quality-relevant process variations is crucial to
address these challenges and produce interpretable and accurate predictions. This work aims to
uncover critical quality-relevant process variables from raw measurements collected from batch
processes. The proposed method consists of two key components. First, a dynamic subspace
is designed for batch processes to extract the slow-varying features that are relevant to the
quality index. Second, the quality-relevant features have been employed to achieve the reliable
prediction of the performance index. Through the simulated experiment on a concentration
batch production process, the proposed method is illustrated.

Keywords: Quality prediction, data decomposition, slow feature analysis, batch processes.

1. INTRODUCTION

The increasing demands for customized products in mod-
ern manufacturing industries have greatly boosted the
success of batch manufacturing [1-3]. Batch manufacturing
produces low-volume and high-value-added products with
minor to major differences in features and/or specifications
to meet the dynamically changing demands of the market.
While batch manufacturing provides great flexibility in
customizing the products, it also faces critical issues that
have limited wider adoption of this type of production
method. In particular, there can be frequent changes in
the operating conditions due to variations in the speci-
fications of the items being produced, which pose great
challenges to the maintenance of product quality and safe
operation. Reliable prediction of product indices through
quality-relevant data decomposition is a promising way to
confront process failures and ensure operating safety and
production consistency.

With the rapid progress and advancement in data sensing
and storage through Industrial Internet of Things Tech-
nologies [4,5], extensive process data has become accessi-
ble. This provides an opportunity for modern batch man-
ufacturing industries to adopt data-driven methods for
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product quality assessment. The use of data can reduce the
dependency on first-principles knowledge for process mon-
itoring and fault detection, bypassing physical-based pro-
cess monitoring [6,7]. This is advantageous in practical ap-
plications, as acquiring precise first-principles knowledge
for complex processes can be challenging [8]. Data-driven
batch product prediction can be traced back to the 1990s.
Due to its interpretation ability, partial least square (PLS)
[9] demonstrates advantages and benefits in regressing raw
measurements on the performance indices. Nomikos et al.
[10] applied PLS to extract the low-dimension primary
features from the high-dimension raw data to the batch
process for the first time. Specifically, in [10], a multi-
way partial least squares (MPLS) was proposed to han-
dle the three-dimensional structure of batch data. This
approach treats each batch data as a sample with two
dimensions. However, the premise of MPLS assumes that
only one operation mode exists during the entire batch
manufacturing process. This assumption may not hold for
complex batch processes with multiple physical stages,
in which multiple data evolution behaviors are observed.
In [11], Lu et al. introduced the concept of multi-phase
partitioning for batch processes, wherein a relevant model
was developed in each segmented phase. Consequently, a
phase division strategy, which recorded the measurements
of variables over all batches at a specific time within the
batch, was developed. However, the adjacent time-slice
matrices will likely be classified into different phases, which
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leads to discontinuous temporal characteristics within the
same phase.

To address this challenge, quality-relevant phase partition-
ing and product quality prediction have received much
research attention. The core issue is how to establish the
linkage between the quality performance and the pro-
cess variations to enable reasonable phase partition. Lu
et al. [12] obtained phase partition results by clustering
the regression relationship in each time-slice data matrix.
However, this method suffers from the challenges associ-
ated with the clustering-based division algorithm, such
as rigid partition and uneven allocation of the sampling
instants. To overcome this issue, Zhao et al. [13] proposed
a sequential phase partition method to ensure that similar
regression correlations are assigned to the same phase.
Through iteratively comparing the historical and present
regression correlations, sequential partitions considering
quality interpretation were achieved when the change of
regression correlation was detected. In [13], the transition
zone among two adjacent phases is further distinguished
and handled separately in the subsequent modeling pro-
cess. The approaches mentioned above focused on obtain-
ing more reasonable phase partition results by finding
a static subspace from process variations. However, the
primary issue lies in that the derived static subspace may
fail to reflect the temporal dynamics over time in each
phase. Specifically, the slow-varying dynamics exist in each
phase of the operation of the physical asset. For instance,
the part weight of plastic products in the injection molding
process slowly accumulates with time. In the penicillin
fermentation process, the density of penicillin slowly in-
creases over time within a single batch. It is logical to
deduce that the gradual change in the performance index
results from the inherent characteristics of the process op-
eration, which exhibits a slow-varying nature. Therefore,
the analysis of slow-varying quality relevant subspace has
the potential to enhance the quality prediction accuracy.

Based on the above observations, this work proposes a fea-
ture decomposition guided by slow-varying batch process
dynamics to find the most quality-relevant process vari-
ations from raw measurements. The proposed approach
consists of two key components. First, a dynamic subspace
is exploited to extract the slow-varying features that are
closely related to the quality index of the batch process.
Second, both the static and the dynamic information of
the extracted features are employed to achieve the reliable
prediction of the performance index.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the structure of the batch process data.
Section 3 formulates the proposed quality prediction model
based on data decomposition. Section 4 presents the sim-
ulation results. Section 5 concludes this work.

2. BATCH DATA DESCRIPTION AND DATA
PREPARATION

In this section, we describe the characteristics of batch
manufacturing processes and the process data for both
single-batch and multiple-batch case scenarios. The basic
data unit with the time-slice matrix is also illustrated.
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Fig. 1. Data description of the batch process data with (a)
a single batch and (b) a three-dimensional presenta-
tion with dozens of batches.
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Fig. 2. Data unfolding of the three-dimensional data ma-
trix to a series of two-dimensional time-slice data
matrices.

Batch manufacturing can produce a batch of identical
products with the same quality over a finite period [14].
In the subsequent batches, more products of the same
or different specifications can be produced in a repetitive
manner. The typical data structure for batch manufactur-
ing is described as follows:

(1) Data structure of a single batch: Denote by J the
number of variables that are measured, a vector xk ∈
R1×J is obtained at sampling instant k ∈ [1,K] where
K is the total number of sampling instants. Within a
batch, the samples over all the K sampling instants
form a two-dimensional data matrix with dimensions
K × J , as shown in Fig. 1 (a).

(2) Data structure of multiple batches: Consider the case
when data for a series of production batches are
collected. Denote the two-dimensional data for the ith
batch by Xi ∈ RK×J . Stack of each batch data Xi

along the batch direction creates a three-dimensional
data matrix, which is denoted by X ∈ RI×K×J . The
order of the variables and the chronological order
of the samples for each batch remain unchanged.
A visual illustration of the three-dimensional data
matrix is presented in Fig. 1 (b).

(3) Time-slice data matrix: This concept is introduced
to elucidate changes in the correlation of variables
across various time instants. Derived from the two-
dimensional matrix from X, the time-slice matrix Tk

is defined as the measurements of all variables over I
batches collected at sampling instant k ∈ [1,K]. This
matrix contains information about the distribution
of the data over different batches. The relationship
between the time-slice data matrix for time instant
k and the three-dimensional data matrix, and the
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information contained in each time-slice data matrix
are delineated in Fig. 2.

In addition to the raw measurements collected from the
production process, the quality-relevant performance in-
dices can be obtained at the end of each batch, for exam-
ple, the part weight in injection molding. Typical batch
processes exhibit multi-phase characteristics, which signi-
fies the variations in variable correlations from one time
segment to another.

The influence of the variable scale on variable correlation
is confronted through data normalization. Performing Z-
score normalization on Tk with zero mean and unit vari-
ation gets the normalized time-slices matrix, which is still
denoted as Tk for clarity. Correspondingly, the normal-
ization information with mean and standard variation at
each sampling time are stored as uk and δk, respectively.

To achieve quality-relevant data decomposition and regres-
sion, it is relevant to consider the overall evolution of the
variable correlations along the batch direction. First, the
data matrix in a batch Xi is normalized based on the
information uk and δk at each time, and the normalized
matrix is denoted by X̃i. Then, by aggregating all the
normalized batches along the variable direction, we obtain
a data matrix X̃ ∈ RIK×J . The corresponding quality
measurements are recorded as Y ∈ RI×1.

Additionally, the presence of slow-varying dynamics ne-
cessitates an exploration of temporal variations between
different time instants. Consequently, ∆Xi(k) = Xi(k) −
Xi(k − 1) for k ∈ [2,K] is computed to represent the
differences in Xi, where Xi(k) denotes the kth row of Xi.
The aggregation of each ∆Xi along the variable direction
creates a comprehensive matrix ∆X ∈ RI(K−1)×J .

3. BATCH PROCESS QUALITY PREDICTION
SUPERVISED BY SLOW VARYING DYNAMICS

The proposed quality prediction method is introduced in
this section. This method consists of regression-based data
decomposition and quality prediction based on the quality-
relevant subspaces.

3.1 Quality-relevant data decomposition considering
slow-varying dynamics

This part details the prediction model with the quality-
relevant slow feature analysis for batch process in each
phase and outputs the regression relationship for online
application when incoming data are available.

The essential is to find the quality-relevant subspace ω,
covering the process variations that are strong prediction
interpretability, low slowness, and large variation. Predic-
tion interpretability requires that the features are highly
relevant to the performance indices, i.e., max L1(ω) =
(X̃ω)TYYT (X̃ω)√

(X̃ω)T (X̃ω)
. Slowness focuses on the varying speed

of the features, which is assumed to be as slow as pos-
sible, i.e., min L2(ω) = (∆Xω)T (∆Xω). The process
interpretability calls for more process variations, i.e.,

max L3(ω) =
√
(X̃ω)T (X̃ω).

The desired subspace ω is ensured through the joint
optimization as follows,

maxL(ω) =
L1 · L3

L2
=

(X̃ω)TYYT (X̃ω)

(∆Xω)T (∆Xω)
(1)

Given the constraint as (∆Xω)T (∆Xω) = 1, the Lagrange
multiplier method is adopted to solve Eq. 1, which is
arranged below,

maxL(ω) = ωT X̃TYYT X̃ω−λ
(
ωT∆XT∆Xω − 1

)
(2)

where λ is the Lagrange multiplier.

3.2 Solving Procedure

Through performing derivation on Eq. 2 with respect to
ω, we have the following equation,

∂L(ω)

∂ω
= 2X̃⊤YY⊤X̃ω − 2λ∆XT∆Xω (3)

Setting Eq. 3 to zero yields,

X̃TYYT X̃ω = λ∆XT∆Xω (4)

Multiplying both sides of Eq. 3 by ωT contributes to derive
the following equation,

ωT X̃TYYT X̃ω = λωT (∆XT∆X)ω = λ (5)

Before solving Eq. 4, a whitening transformation is em-
ployed to eliminate the cross-correlation among the first-
order different matrix. Assuming that the whitening data
matrix is H, data matrix X̃ will be transformed to z =
HT∆XT. To ensure that zT = HT∆XT∆XH = 1, the H

is defined as Λ−1/2UT , where ∆XT∆X = UAUT .

Left multiply the both sides of Eq. 5 by H and then right
multiply the both sides of Eq. 5 by HT , we have the
following equation,

HT X̃TYYT X̃Hω = λHT∆XT∆XH = λ (6)

Eq. 6 is a typical eigenvalue decomposition, yielding the
largest eigenvalue with the first eigenvector ω. Corre-
spondingly, the loading coefficients pi and qi for process
variables and quality index can be obtained, respectively,

pT
i =

(X̃iωi)
T X̃i

(X̃iωi)T (X̃iωi)
(7)

qi =
(X̃iωi)

TY

(X̃iωi)T (X̃iωi)
(8)

To avoid introducing redundancy into the extracted latent
variables, data deflation is conducted to ensure that the
latent variables are orthogonal to each other. To achieve
this, the covariance matrix (X̃TY)i and (∆XT∆X)i are
updated at each iteration below,

∆XT
i+1∆Xi+1 =

(
I− ωT

i pi

)T (
∆XT∆X

)
i

(
I− ωT

i pi

)
(X̃TY)i+1 = (I− ωip

T
i )(X̃

TY)i
(9)
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Fig. 3. A schematic of the penicillin fermentation process [15].

Table 1. Variable descriptions of the penicillin fermentation process.

No. Variable Name Unit No. Variable Name Unit
1 Aeration rate L/R 7 Culture volume L
2 Agitator power W 8 Carbon dioxide concentration 1
3 Substrate feed rate L/h 9 pH 1
4 Substrate feed temperature K 10 Fermentor temperature K
5 Substrate concentration g/L 11 Generated heat kcal
6 Dissolved oxygen concentration g/L

Table 2. Variable descriptions of the penicillin fermentation process.

Phase Name Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Duration 1 → 45 46 → 104 105 → 151 152 → 248 249 → 401
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Fig. 4. The trajectory of the penicillin concentration in a
batch during the four-stage fermentation process.

Updating (X̃TY)i+1 and (∆XT∆X)i+1 into Eq. 6 and
recursively repeat Steps to calculate the following terms,
including weighting vector X̃i and loading coefficients pT

i

and qi until all features are extracted from X̃.

Through iteratively executing Steps 2 through 5, the
weighting matrix W = [ω1,ω2, . . . ,ωJx ] and the loading
matrix P = [p1,p2, . . . ,pJ ] are calculated.

Table 3. Performance comparison between the
proposed method and its counterparts regard-

ing the index RMSE.

Phase No.
Algorithm Name

sub-PLS [12] LSTM [17] QSFR (Proposed)
Phase 2 0.0114 0.0031 0.0029
Phase 3 0.0657 0.0062 0.0041
Phase 4 0.0536 0.0122 0.0129
Phase 5 0.0405 0.0185 0.0162

3.3 Establishment of the quality prediction model

With data matrices P and W, the quality-relevant slow
features can be expressed as,

S = XRM (10)

where R = W(PTW)−1 and RM is the first M weighting
vectors kept in R.

Finally, the quality-relevant slow feature regression (QSFR)
model is completed, and the predicted quality index is
computed as,

Ŷ = SqM (11)

where q = [q1,q2, . . . ,qJ ] are given according to Eq. 5.
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Fig. 5. Performance comparison between the proposed method and its counterparts in (a) Phase 2, (b) Phase 3, (c)
Phase 3, and (d) Phase 4.

4. RESULTS AND DISCUSSION

In this section, we utilize the penicillin fermentation pro-
cess, which is a multi-phase batch process, to illustrate the
efficacy of the proposed method. This penicillin fermenta-
tion process is a typical multiple-phase batch process.

4.1 Description of penicillin fermentation process and
process data

Penicillin is produced via fermentation in a fed-batch
manner. Enzymatic hydrolysis is added to enhance the
productivity. A schematic of the penicillin fermentation
process is presented in Fig. 3. As shown in Fig. 3, this
process mainly consists of four operation stages, each of
which serves a distinct purpose. In the first stage, the pre-
culture stage promotes the cell densities by introducing
microorganisms in batch mode. During this stage, no
penicillin is produced. Second, in the exponential growth
stage of cells, penicillin starts to be produced concurrently
with the continuous feeding of glucose into the process,
which aims to sustain an optimal rate of cell growth. The
third stage is the stationary stage, in which penicillin is
produced at a high rate. In the cell death stage which is
the final stage, the cells initiate self-dissolve, which leads
to a rapid decline in the production rate. Fig. 4 shows
a typical evolution of the penicillin concentration during

the four stages, for an illustrating purpose. It is observed
that the density of penicillin concentration is almost zero
before the 51st sample. A rapid increase in the penicillin
concentration starts from the 51st sample and ends around
the 300th sample. From the 301st sample, the penicillin
concentration increases very slowly, and a slight decline is
observed towards the end of the procedure.

The research group at the Illinois Institute of Technol-
ogy developed a physics-informed simulator (Pensim v1.0)
through detailed mechanistic modeling [15]. This simulator
is accessible from the website http://simulator.iit.
edu/web/pendownload.html. The model development in-
volved measuring eleven variables, as listed in Table 1. All
batch data are simulated under initial working conditions
and set points. With a sampling interval of 1 hour, each
batch spans 401 hours, resulting in a data matrix with
dimensions 11 × 401. A total of 55 normal batches are
generated for analysis: the first 30 batches are used for
training, and the the subsequent 15 batches are used for
validation, and the remaining ten batches are used for
testing.

Based on the phase partition information presented in [16],
five sequential phases characterize the penicillin fermenta-
tion process, as outlined in Table 2. By integrating with
the physical operation stage, the phase division results are
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accurately derived using data, and the results indicate
the starting and ending points of each phase. Notably,
these results align with the physical operation but also
offer insightful findings, and they provide insights into
the subdivision of the third physical stage into Phase 3
and Phase 4. As penicillin production is absent in the
first phase, quality prediction and process monitoring are
conducted throughout the second phase to the fifth phase.

4.2 Quality performance prediction and comparison

This subsection illustrates the quality prediction perfor-
mance of the proposed method. By applying the proposed
method, four specific regression models, each correspond-
ing to one of the four stages, are developed according
to the details presented in Section 3.2. Cross-validation
data are used to determine appropriate values for the hy-
perparameter R, which represents the number of quality-
relevant components. Subsequently, the prediction perfor-
mance is assessed using the testing dataset. Additionally,
two benchmark methods, including the sub-PLS [12] and
the long short-term memory (LSTM) [17], are employed
for comparative analysis.

Both sub-PLS and LSTM are deployed from phase to
phase with the same training data, validation data, and
testing data of the proposed method for fair comparison.
The basic idea of sub-PLS and LSTM are briefly described
and their configurations in each phase are specified.

Both sub-PLS and LSTM are applied across phases using
the same training, validation, and testing data to ensure a
fair comparison. A concise overview of the fundamental
concepts of sub-PLS and LSTM is provided, and the
specifications of their configurations in each phase are
discussed.

(1) sub-PLS: The PLS algorithm is used for regression
analysis in each phase. The retained principal com-
ponents from Phase 2 to Phase 4 are 9, 9, 8, and 8,
respectively.

(2) LSTM: Due to the advantage of temporal learning
ability, LSTM has been widely adopted in temporal
regression issues. Here, a two-layer LSTM network
is constructed, and each layer encompasses 100 neu-
rons. The Adam algorithm is adopted for network
optimization.

Based on the root mean square error (RMSE), Table
3 summarizes the results in each phase. The proposed
method outperforms sub-PLS and LSTM in Phases 2,
3, and 5. In Phase 4, the proposed exhibits comparable
performance. Taking the first testing batch as an example,
the prediction results of the proposed method and sub-
PLS in each phase are illustrated in Fig. 5. In Phases 2
and 3, the proposed method yields estimations that are
closely aligned with the ground truth. While estimation
errors are observed in Phases 4 and 5, the proposed method
outperforms the sub-PLS method.

5. CONCLUSION

To achieve high prediction accuracy, we proposed a feature
decomposition guided by slow-varying dynamics. This ap-
proach can be used to identify the most quality-relevant

process variations from raw measurements. The extraction
of a dynamic subspace renders these process variations
interpretable and crucial for prediction results. The ef-
fectiveness of the proposed method was validated using
a penicillin production process. Furthermore, our method
demonstrated superiority compared to existing methods,
including sub-PLS and long short-term memory networks.
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