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Abstract: Real-time monitoring and accurate prediction of key variables are indispensable to
ensure industrial production activities proceed as expected. With the increase in measurement
data volume and the improvement of hardware computing power, the Transformer and its
variants, due to their excellent capability in extracting global dependencies, are playing an
increasingly important role among deep learning-based multidimensional time series prediction
models. In addition, from the perspective of causality, cause variables contain parts of
information in effect variables and can reduce the uncertainty of effect variables, which is
beneficial for prediction. However, there has been relatively limited research on combining the
Transformer and causal feature analysis. To fully use both advantages, this paper introduces
the Causal-Transformer (CT) model, which utilizes semi-orthogonal projection to extract
causal features from multiple input variables. A multi-head spatial-temporal causal attention
mechanism is designed in the encoder block based on the classical Transformer model to
simultaneously reduce feature dimensions and extract implicit causal features in both the
temporal and spatial dimensions. The CT also utilizes the Granger causality analysis to select
the causal teaching indicators of target variables to provide stable assistance by injecting explicit
causality into the inputs of the decoder block. By leveraging more condensed and independent
causal features, the CT possesses inherent advantages in predicting time series variables. Case
study results show that the CT model outperforms the other models on the diesel refinery
dataset, especially with a reduction of 46.0% and 30.4% in MSE towards the classic Transformer
and informer in five-step prediction.

Keywords: Machine learning, Time series modelling, Transformer, Causal analysis, Attention
machenism

1. INTRODUCTION

With the development trend of complexity, digitization,
and high precision in industrial production processes, real-
time monitoring and assessment of industrial processes
play a crucial role in ensuring production safety and en-
hancing production efficiency (Kashpruk et al., 2023). In
the era of the Industry 4.0 revolution, the rapid devel-
opment of the Internet of Things (Mahdavinejad et al.,
2018) and Cloud Computing (Chen et al., 2019) makes
it possible to utilize multifarious sensors, leading to an
increasing amount of multidimensional time series data
generated during monitoring. So, accurate prediction of
target time series variables reflecting product quality or
physicochemical properties is undoubtedly beneficial for
predictive maintenance, production optimization, anomaly
detection, and other related tasks.

Multidimensional time series prediction methods can be
mainly categorized into statistical regression models (Liu
et al., 2016; Li et al., 2022), traditional machine learning-
based models (Han et al., 2016; Sapankevych and Sankar,
2009), and deep learning-based models (Lim and Zohren,
2021). With the advancement of big data technology
and hardware computing power, deep learning tech-
niques have demonstrated significant potential in model-
ing complex time series data. Various sophisticated time-
series prediction models, particularly the Transformer-like
model (Geng et al., 2022), have been proposed in recent
years.

Since the introduction of the Transformer, a series of novel
Transformer-based models have been designed to address
problems such as local feature extraction and memory
storage, incorporating various attention mechanisms, lo-
cal feature extraction modules, prior temporal feature
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injection modules, and innovative model architectures. Li
et al. (2019) adopted LogSparse self-attention and causal
convolution to improve the local feature extraction and
reduce memory cost. Also, Zhou et al. (2021) proposed
that the informer mainly involved the ProbSparse self-
attention and distilling operation to reduce time and space
complexity. Shen and Wang (2022) borrowed ideas from
the field of computer vision to introduce the CSPAt-
tention and dilated causal convolution for exponentially
receptive field growth. Attention mechanisms mentioned
above chose the length and the dimension of queries sep-
arately rather than simultaneously selecting both. How-
ever, Zhang and Yan (2022) proposed the Two-Stage at-
tention and applied multi-head attention mechanism to
both dimensions, which implies that feature extraction of
variable and temporal dimensions in Transformer-based
time series prediction models is also a crucial problem to
solve.

To extract the features from variable and temporal dimen-
sions simultaneously in the industrial process, Yuan et al.
(2021) proposed a spatiotemporal attention mechanism
based on the LSTM encoder-decoder, enabling the model
to focus on what is more relevant to target variables at
different time steps. However, few works in time series
prediction have combined spatial and temporal feature
extraction with Transformer-like models.

Generally, a root cause is the fundamental reason leading
to the deviation of a system from its normal state or the
occurrence of a failure. So root cause analysis involves
identifying how an inevitable failure occurred and discern-
ing its reasons, which is significant in subsequent fault
handling. Pearl et al. (2000) categorized causal relation-
ships into three distinct levels: predictions, interventions,
and counterfactuals. As one of the data-driven methods
of causal analysis, Granger causality analysis elucidates
the causality between variables from the prediction per-
spective by employing regression equations with lagged
variables. It is believed that cause variables contain a
portion of information from the effect variable, so cause
variables can enhance predictive performance (Yu et al.,
2022), reduce uncertainty, and influence the conditional
probability of the effect variable.

Due to the benefits of causality for prediction tasks, it
is natural to utilize Granger causality to select input vari-
ables of prediction models (Dong et al., 2019). Considering
the remarkable modeling capability of the Transformer for
non-linear dynamic relationships and the inherent superi-
ority of causality in predictive tasks, integrating causality
with the Transformer-like models can enhance the pre-
dictive performance (Liu et al., 2023). However, most of
these works introduce causality by utilizing the causal
convolution layers, which can be regarded as a relatively
loose integration that prevents the leakage of future in-
formation. Causality can be integrated more tightly with
the prediction models. Therefore, this paper strives to
integrate causality and Transformer-based predictive mod-
els deeply by designing an attention mechanism that can
capture causal features and reflect implicit causality and
introducing the Granger causality into the architecture
of Transformer-based models to seek direct guidance on
causality. In light of these ideas, this paper proposes a
novel model called Causal-Transformer (CT).

The remainder of the paper is organized as follows: Section
2 introduces the CT and the detailed architecture. In
Section 3, the superiority of the CT is proved by comparing
different models and conducting ablation experiments. Fi-
nally, a conclusion is provided in Section 4.

2. METHODOLOGY

2.1 Causal teaching indicators

The causal analysis can reveal the interdependent rela-
tionship between variables, which is determined by the
system’s physical structure and information flow and is
impervious to external environmental disturbances. There-
fore, using cause variables to predict effect variables, also
called target variables, has a natural advantage. In terms
of evaluating the causal relationship between time-series
variables, Granger causality is a causal relationship that
determines whether introducing a potential cause variable
can improve the predictive result of the effect variable
by comparing the prediction error of restricted and un-
restricted regression equations.

The decoder of the classic Transformer takes the target
variables as input and uses the teacher-forcing mechanism
during training to predict target variables. Although this
approach speeds up convergence, it does not utilize all
available data. Hence, as the input to the encoder, partial
easy-to-measure process variables having direct or indirect
causal relationships with target variables are selected as
part of the decoder’s inputs as causal teaching indica-
tors (CTIs). The CTIs can describe the inducing factors
that lead to upcoming changes in the target variables,
while the historical target variables provide direct infor-
mation about the preceding changes in the target vari-
ables. Two parts of the inputs, describing the changes in
the target variables from two different perspectives, can
be obtained as follows:

Dt = cat

(
Yt−1,Φ

(
Y[1,T ]

)t−1
)

(1)

where Dt is the input of the decoder at time point t, Yt−1

is the target variables at time point t−1, and Φ
(
Y[1,T ]

)t−1

represents the set of CTIs at time point t− 1 obtained by
using Granger causality analysis which contribute to the
change in the target variables among T timestamps.

2.2 Spatial causal attention

Capturing long-term dependencies accurately between se-
quences is critical to improving the effectiveness of time
series prediction. The self-attention mechanism can calcu-
late the attention weights based on the similarity between
m queries Q ∈ Rm×d and m keys K ∈ Rm×d using the dot-
product operation in d-dimensional space and then obtain
weighted values V ∈ Rm×d as the attended representation.

The classical Transformer configured with embedding sub-
layers was initially applied in natural language process-
ing. However, time series variables carry genuine physical
meanings, rendering the embedding sub-layers unneces-
sary. When adopting slow-changing temporal variables as
the direct input of the attention mechanism, the similar
dynamic information among adjacent time stamps and the
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correlated variables can significantly affect the predictive
performance, which may introduce redundant information
and neglect other essential features.

The spatial and temporal dimensions of the time slices
in multi-head dot-product attention can be regarded as
hyperparameters, which can be determined through grid
search or variable selection before model training. It is
expected to have redundant settings to achieve better
model performance. However, redundant settings can lead
to redundant spatial information resulting from related
and coupled variables. Therefore, attention will be paid
to prioritizing the related sets of variables and assigning
higher weights to them while assigning lower weights
to other variables, leading to an inappropriately sparse
weight matrix.

To reduce the correlation between variables and allocate
equal attention to spatial dimensions representing different
information, the spatial causal attention (SCA) projects
the spatial dimensions of the query and key using mutually
orthogonal projection vectors. After being projected, each
spatial dimension represents a particular subspace of the
original variables’ features independently, which effectively
reduces the redundancy and duplicate information be-
tween the variables and allows these approximately un-
correlated features to be regarded as causal features. SCA
can be calculated with the following equation:

αi
CausalPos = softmax

(
(QPi) (KPi)

T

√
d′

)
V (2)

where Pi ∈ Rd×d′
is the ith spatial causal projection

matrix and d′ is the dimension of spatial projection.

2.3 Temporal causal attention

Long-term continuous and short-term rhythmic changes
are prominent characteristics in temporal variables, so
queries and keys at different time steps often show gradual
variations, implying a similar attention weight distribution
among different time steps. The lack of distinctiveness in
the weighted values at different time steps is not beneficial
for predicting multi-step target variables.

To address this problem, temporal causal attention (TCA)
utilizes mutually orthogonal projection vectors to project
the temporal dimensions of the key and the value, extract-
ing causal features in the linear combinations of the origi-
nal time slices that describe the prominent patterns of tem-
poral changes within a pre-defined time interval. Through
the semi-orthogonal transformation of the temporal di-
mension, the extracted temporal causal features exhibit
an approximate uncorrelated relationship. TCA can be
defined by:

αj
CausalTem = softmax

(
Q
(
MT

j K
)T

√
d

)(
MT

j V
)

(3)

where Mj ∈ Rm×m′
is the jth temporal causal projection

matrix and m′ is the dimension of temporal projection.

2.4 Multi-head spatial-temporal causal attention

Spatial-temporal causal attention (STCA) combines SCA
and TCA by concatenating both to extract the spatial

Fig. 1. The architecture of the CT

and temporal causal features from spatial and temporal
dimensions separately. To fully extract causal features
from different representation subspaces, multi-head STCA
performs parallel computations of h individual STCA
functions and concatenates the computed results before
applying a linear projection for outputs, ultimately yield-
ing the final result which can be obtained by:

αMultiCausal = Concat (head1, · · · ,headh)Wo

headi = Concat
(
αi
CausalPos, α

i
CausalTem

) (4)

where Wo ∈ R2hd×d is the output matrix projecting the
outputs of multiple STCA onto the feature dimension d to
facilitate the stacking of other attention modules.

2.5 Causal-Transformer

The CT stacks multiple encoder and decoder blocks to
capture long-term dependencies between slowly changing
temporal variables. Fig. 1 shows the architecture of the
CT which can be summarized as follows:

• The encoder block consists of a Multi-head STCA
sub-layer to extract the temporal and spatial causal
features and a position-wise fully connected feed-
forward sub-layer, both adopting the residual struc-
ture and Batch normalization.

• The decoder block consists of a Multi-head attention
sub-layer and a position-wise fully connected feed-
forward sub-layer, with each sub-layer also adopting
the residual structure and Batch normalization. Be-
cause CTIs can accelerate model convergence during
training and provide stable guidance for predicting
during testing based on the causal variables, the first
decoder block takes the output of the top encoder
block, historical values of the target variable, and
CTIs as inputs.

• A long short-term memory (LSTM) sub-layer follows
the top decoder block to capture the decoder block’s
long-term dynamic features of outputs. After that, a
fully connected layer is added for the final prediction.
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2.6 Loss function

On the one hand, to ensure predictive effectiveness, the CT
uses mean square error (MSE) to penalize the deviation
of model outputs from the actual values called prediction
error loss. On the other hand, to ensure that spatial and
temporal causal projection matrices represent orthogonal
mappings of the spatial and temporal dimensions and
to guarantee that the projection vector magnitude does
not influence the feature projection components, the CT
employs the Frobenius norm to constrain the unit length of
projection vectors and the column orthogonality of spatial
and the temporal causal projection matrices. Therefore,
the loss function of the CT includes prediction error
loss losspre, spatial causal projection loss losspos, and
spatial causal projection loss losstem, which can be written
as:

Losscausal = MSE (y, ŷ)︸ ︷︷ ︸
losspre

+

l∑
i=1

h∑
j=1

∥∥PT
ijPij − Id′×d′

∥∥
F︸ ︷︷ ︸

losspos

+
l∑

i=1

h∑
j=1

∥∥MT
ijMij − Im′×m′

∥∥
F︸ ︷︷ ︸

losstem

(5)

where y and ŷ are ground truth and prediction of target
variables separately, l denotes the number of stacked en-
coder blocks, and Pij and Mij represent the spatial causal
projection matrix and the temporal causal projection ma-
trix corresponding to the jth head in the ith encoder block.

3. CASE STUDY

3.1 Experiment setup

The superiority of the CT has been validated in a real-
world diesel refining process. As shown in Fig. 2, the feed
in the form of vacuum gas oil after hydrotreating enters
the V-1 vessel, where, after mixing with the recycle stream,
it is fed into the R-1 hydrocracking reactor. The reaction
mass from R-1 is mainly fed from a mixture of naphtha
and diesel fractions into the product tank V-8. Light
naphtha is distilled as the upper product of column C-
1. The bottom product of column C-1 enters heater H-1
and then into column C-2 to separate the target diesel
fraction from it. Part of the high-boiling C-2 product
(residue) is recycled back to V-1. The presence of the liquid
level in the bottom part of the C-2, recorded as variable
LIC-C2 with a sampling interval of 1 minute, makes it
possible to organize a stable flow of the recycle and prevent
fluctuations in the R-1 reactor, thus regarded as the most
critical variable for monitoring and prediction. The dataset
originating from this diesel refining process consists of 1200
samples, with the first 1000 points utilized as the train set
and the remaining data points employed as the test set.

To compare the experimental effects of different models,
this paper trained LSTM, gated recurrent unit (GRU) net-
work, Transformer (Vaswani et al., 2017), Informer (Zhou
et al., 2021) and CT combining with LSTM, one-
dimensional convolution neural network (1D-CNN), and
fully connected neural network within five time steps and

Fig. 2. The schematic diagram of a diesel refining process

chose MSE and R2 as evaluation metrics. Each model de-
termined its optimal hyperparameters through grid search.

3.2 Result analysis

Prediction performance Table 1 and Fig. 3 show the five-
step prediction results of the six models, LSTM, GRU,
Transformer, CT+,CT++, and CT, where the CT+ and
the CT++ replace the LSTM sub-layer in the CT with
the fully connected layers and 1D-CNN separately. The
following conclusions can be drawn:

• It is common for LSTM and GRU models to suffer
from accumulating prediction errors in multi-step
time series prediction problems.

• Compared to the classic Transformer and Informer,
the CT shows a significant improvement on the re-
finery dataset due to the introduction of causality,
which means a reduction of 46.0% in MSE towards
the classic Transformer and a reduction of 30.4% in
MSE towards the Informer.

• Compared to the CT+, the CT++ utilizes 1D-CNN
to extract features of different granularities in the
spatial dimension, resulting in a 14.9% reduction in
MSE and an 8.6% increase in R2. The CT employs
LSTM as a multi-step prediction regressor, enabling
the exploration of dynamic characteristics among
predicted results at different time steps and achieving
a 21.4% reduction in MSE and a 9.6% increase in R2

compared to the CT++.

(a) The fifth time step (b) Error distribution

Fig. 3. Results of five-step prediction

Attention weights The Transformer computes attention
weights on the original slow-changing time series data,
leading to significant similarity in the attention weights
between different queries. Fig. 4 shows that although dif-
ferent heads in a Transformer can extract information from
different representation subspaces, the high similarity of
attention weights at different positions within a head is
disadvantageous for extracting different crucial features
for multi-step prediction. However, multi-head STCA com-
presses features of spatial and temporal dimensions before
computing attention weights, which helps to condense
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Table 1. Performance comparison for different methods on a refining case

Model
Training set Test set

MSE R2 MSE R2

LSTM 2.3922× 10−5 0.99997 0.28655 0.64794

GRU 1.1689× 10−5 0.99998 0.33672 0.58630

Transformer 0.13074 0.82033 0.36786 0.54804

Informer 0.096535 0.86717 0.28532 0.62746

CT+ 0.047426 0.93475 0.29683 0.63531

CT++ 0.024534 0.96632 0.25256 0.68970

CT 0.017637 0.97585 0.19852 0.75609

similar information. By computing attention weights in
nearly orthogonal spatial and temporal dimensions, it al-
leviates the problem of excessive similarity among queries
and keys, significantly increasing discriminability among
different queries.

(a) Attention weights in a Transformer

(b) Attention weights of SCA (c) Attention weights of TCA

Fig. 4. Attention weights in different models

Fig. 5 displays the kernel density estimation of the variance
distribution of attention weights in different attention-
based models. The red line indicates the maximum vari-
ance in the kernel density curve. It can be seen that the
variance of attention weights in models using causal atten-
tion is significantly more significant than that in the Trans-
former. Furthermore, the variance of attention weights in
the TCA is generally greater than that of SCA on the
refining dataset, which suggests that the temporal causal
attention is more capable of generating more considerable
variations in attention weights, helping the model better
capture dynamic changes along the time dimension.

3.3 Ablation

Different components of the CT were successively removed
to verify the separate effect, and hyperparameter selection
and training were then carried out for each modified
model. The prediction performance of the variants on the
training and testing sets is shown in Table 2 from which
the following conclusions can be drawn:

• Residual connections in the LSTM sub-layer can help
the model generalize better and reduce overfitting.

(a) Transformer

(b) SCA of CT+ (c) TCA of CT+

(d) SCA of CT++ (e) TCA of CT++

(f) SCA of CT (g) TCA of CT

Fig. 5. Kernel density estimation of variance distribution
of attention weights

• Without using CTIs the model’s performance de-
creases substantially but still outperforms the Trans-
former. But using all available variables as the inputs
of the decoder block does not improve the perfor-
mance of the model further. The selection of causal
variables has a marked impact on the model, and
a reasonable combination of causal variables enables
the model to achieve better performance.

• Not using causal attention leads to an apparent de-
crease in performance. However, the stable assistance
of CTIs makes the model’s performance better than
that of Transformers.

• Considering that the CT directly takes process vari-
ables as input and the time series data itself carries
relative positional temporal information, positional
encodings are not adopted in the CT. Besides that,
the result shows an increase of 17.9% in MSE and
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Table 2. Variations on the CT

Model
Training set Test set

MSE R2 MSE R2

w/o Residual connection 0.014656 0.97989 0.20940+0.011 0.74272−0.013

w/ All variables 0.018785 0.97417 0.26739+0.069 0.67148−0.085

w/o All CTIs 0.10637 0.85454 0.32140+0.12 0.60512−0.15

w/o STCA 0.020507 0.97196 0.23464+0.036 0.71172−0.044

w/ Positional encodings 0.019530 0.97325 0.23400+0.035 0.70513−0.051

a decrease of 6.7% in R2 with positional encoding,
indicating that positional encoding does not improve
the model’s performance on the refining dataset.

4. CONCLUSION

To alleviate the redundant information among queries
and keys in predicting slowly varying time series data
using Transformer-based models, this paper proposes the
multi-head STCA to perform semi-orthogonal projection
on queries and keys to extract independent spatial and
temporal causal features. The CT regards CTIs as part
of the decoder’s input, which provides fuller and more
stable causal assistance when facing the accumulation of
prediction deviations. On the refinery dataset, the CT
achieved the best performance with an MSE of 0.19852
on the test set. Future work will focus on the integration
of causal analysis and graph neural networks.
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