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Abstract: Oscillations are considered the most important indicator of poorly performing
control loops. However, noise and other disturbances conceal these oscillations, thus making
the detection task quite difficult. Furthermore, the efficiency of most detection and diagnosis
techniques proposed in the literature is reduced considerably in the presence of noise. Therefore,
denoising is recommended to make the detection task more straightforward. In this work,
the multivariate singular spectrum analysis (MSSA) is employed to denoise the plant-wide
oscillatory control loops. This approach stands in contrast to existing methods that typically
focus on addressing noise in individual control loops. In order to improve the efficiency of MSSA,
detrended fluctuation analysis (DFA) is incorporated to select only the significant components
and eliminate the noise to provide a noise-free version of the multivariate data. The effectiveness
of the proposed MSSA-DFA method has been verified using a numerical example and real
industrial plant data.
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1. INTRODUCTION

In this era of data-driven analysis, control performance
monitoring (CPM) relies heavily on the quality of the data
being processed. However, plant data such as controllers
outputs (OPs), process variables (PVs), and manipulated
variables (MVs) derived from industrial control loops are
typically corrupted by noise. Poorly performing controllers
are usually characterised by the emergence of oscillations
in these signals. Such oscillations are relatively simple to
detect with visual inspection when the signal is purely
sinusoidal and devoid of noise and other disturbances
(Jelali and Huang, 2010). Noise is the undesirable signal
produced internally by a process instrument or externally
by unknown disturbances, and its presence is inevitable.
Most of the CPM techniques found in the literature strug-
gle to detect these oscillations in the presence of noise
(Bounoua et al., 2022). Stiction is a common problem in
control systems, and it can significantly impact controllers’
performance. One approach to detecting stiction involves
analysing the relationship between PV and OP using
patterns generated by PV-OP plots. Several studies have
demonstrated that the ability of PV-OP plots to identify
stiction is restricted in noisy environments (Rengaswamy
et al., 2020). Therefore, eliminating noise before processing
the data is vital to capture the most accurate information
relevant to CPM. Removing noise from signals can be chal-
lenging, especially in multivariate systems where several
signals may be correlated or interdependent.
Recently, more attention has been paid to preprocessing
methods applied in CPM in order to deal with noise
and/or nonstationary trends. Empirical mode decomposi-

tion (EMD), used earlier as a decomposition technique to
detect and diagnose oscillations in industrial control loops
(Srinivasan et al., 2007; Aftab et al., 2017a,b, 2018b,a,
2019), has been employed as a denoising technique. In
Lang et al. (2020), a novel oscillation denoising scheme by
integrating the ensemble EMD (EEMD) with the canoni-
cal correlation analysis (CCA) was proposed. In Chen et al.
(2021), EEMD was also used to decompose the single-loop
oscillation data combined with the detrended fluctuation
analysis (DFA) and CCA algorithm to extract the effective
oscillation information. More recently, these works were
extended to address the problem of detrending as it was
demonstrated that the trends are severely compromised
during the denoising via EEMD-CCA (Lang et al., 2022).
These works have addressed the denoising problem in the
single control loops only, and the plant-wide oscillations
denoising problem still needs to be addressed.
Typically, plant-wide oscillations involve multivariate sig-
nals from multiple control loops, which makes their analy-
sis and denoising challenging. To address this issue, this
paper proposes a robust and effective solution to the
problem of denoising plant-wide oscillations that com-
bines multivariate singular spectrum analysis (MSSA)
and detrended fluctuation analysis (DFA) to denoise
multivariate/plant-wide data. The proposed framework is
designed to identify and extract noisy components from
the multivariate signals using DFA and reconstruct the
noise-free time series using the significant components.
The effectiveness of the proposed framework is evaluated
using both simulated data and real industrial case studies.
The results show that the proposed framework is highly
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effective in denoising multivariate signals and plant-wide
oscillations. Additionally, the accuracy of the framework
in extracting relevant information is evaluated by consid-
ering high noise levels. The results demonstrate that the
proposed framework is robust and accurate even in the
presence of high levels of noise.
The remainder of this paper is organised as follows:
Sections 2 and 3 introduce the different techniques and
methodologies employed in the proposed framework. Sec-
tion 4 describes the MSSA-DFA algorithm. Section 5
presents the application results using simulated and in-
dustrial case studies. Finally, a conclusion is reported in
section 6.

2. DETRENDED FLUCTUATION ANALYSIS

Detrended fluctuation analysis (DFA) is a method for
estimating the long-term correlation properties of a time
series. It measures how the variance of the time series
scales with time and can be used to detect the presence
of long-term correlations or trends in the data (Bryce and
Sprague, 2012). The input time series with N observations
b(i) ∈ RN is transformed into an unbounded process y(t)
called the signal profile, which is an integrated signal with
a subtracted offset as:

y(t) =
t∑

i=1

[b(i)− ⟨b⟩] (1)

where ⟨b⟩ denotes the signal’s mean:

⟨b⟩ = 1

N

(
N∑
i=1

b(i)
)

(2)

y(t) is then divided into overlapping segments of size ∆w
(a set of segment sizes Ξ = {∆w : w = 1, 2, . . . , P} is
selected for the analysis).
The integrated signal is then locally fitted to a polynomial
in each segment to calculate the local trend y∆w(t). Fol-
lowing this, the detrended fluctuation F (∆w) is calculated
for each segment ∆w by subtracting the local trend y∆w
from the integrated time series y and calculating the root-
mean-square (RMS) fluctuation over the segment:

F (∆w) =

√√√√ 1

∆w

∆w∑
t=1

(y(t)− y∆w(t))
2 (3)

The procedure is repeated over the whole time series and
for all segment sizes ∆w ∈ Ξ. Finally, the DFA exponent
value α is computed by fitting a power-law function to the
detrended fluctuation F (∆w) as a function of the segment
size ∆w:

F (∆w) ∝ ∆wα

The acquired pairs of ∆w and F (∆w) are plotted on a
log-log graph. A line is fitted to the linear part of this
graph, where the DFA value is calculated as the slope of
this straight line.

The DFA method is a useful tool for analysing the scaling
properties of a time series and can be used to detect
long-term correlations or trends that are not apparent
from other methods, such as autocorrelation analysis.
Moreover, DFA is relatively simple to implement and does
not require a priori assumptions about the underlying
model or parameters. A detailed procedure for calculating
DFA can be found in Bounoua et al. (2023).

3. SINGULAR SPECTRUM ANALYSIS

Singular spectrum analysis (SSA) is an advanced and
effective approach to analysing vector stochastic processes
(Elsner and Tsonis, 1996). The original vector can be
decomposed into independent and interpretable modes
representing the oscillatory components, noise, and non-
stationary trends if applicable (Zhang, 2018). SSA gen-
erally includes performing three steps (Golyandina et al.,
2018): (1) Embedding in which a trajectory matrix is con-
structed through time-lagged replication of the 1-D time
series under analysis; (2) Decomposition of the trajectory
matrix into a sum of matrices of rank 1, which can be
achieved through the singular value decomposition (SVD);
(3) Reconstruction step where the original form of the
input is reconstructed from groups of the decomposition
step; this gives the different components that construct the
original signal.
The embedding step involves constructing a trajectory
matrix X from the original time series x1, x2, . . . , xN . The
trajectory matrix X is formed by taking a window of
length M and sliding it along the time series, resulting
in Ñ = N −M + 1 columns of the trajectory matrix:

X =


x1 x2 . . . x

Ñ
x2 x3 . . . x

Ñ+1
...

...
. . .

...
xM xM+1 . . . xN

 (4)

The decomposition step involves computing the SVD of
the trajectory matrix X:

X = UΣVT (5)

where U is an M ×M orthogonal matrix of left singular
vectors, Σ is an M×Ñ diagonal matrix of singular values,
and V is a Ñ × Ñ orthogonal matrix of right singular
vectors.
The first r columns of U and the first r rows of V are
used to form empirical orthogonal functions (EOFs). These
EOFs are linear combinations of the original time series,
which capture the most significant temporal patterns
or trends in the data. The reconstruction step involves
projecting the original time series x1, x2, . . . , xN onto
the EOFs to obtain a set of reconstructed time series
x̂1, x̂2, . . . , x̂N .
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4. MULTIVARIATE SINGULAR SPECTRUM
ANALYSIS BASED ON DFA PROCEDURE

MSSA is the multivariate extension of SSA that allows for
the analysis of spatial and temporal correlations among
several time series (Gruszczynska et al., 2018).
Let X(n) = (x1(n),x2(n), . . . ,xL(n)) be the input data
matrix with L variables and N samples where xl(n) =
{xl(n)}n=1:N ∈ RN . MSSA is then performed through
the following steps:
Step 1: The data matrix is embedded to construct the mul-
tivariate trajectory matrix by forming M -lagged duplicate
of each time series in X(n) as:

X̃l =


xl(1) xl(2) · · · xl(Ñ)

xl(2) xl(3) · · · xl(Ñ + 1)
...

...
...

...
xl(M) xl(M + 1) · · · xl(N)

 ∈ RM×Ñ ,

(6)
for (l = 1, . . . , L) where M is an integer called window
length that is selected as 1 < M < N/2

The trajectory matrix of the multivariate data matrix is
then given as follows:

X̃ =
(
X̃1, X̃2, . . . , X̃L

)T
∈ RLM×Ñ (7)

Step 2: Estimate the covariance matrix of the trajectory
matrix:

C̃
X̃

=
1

Ñ
X̃X̃T ∈ RLM×LM (8)

Step 3: Similar to SSA, the eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λLM ≥ 0 and eigenvectors

{
ek
}
k=1,...,LM

are computed
through the eigendecomposition of the covariance matrix.
Each eigenvector ek consists of L blocks, each block
consisting of M entries associated with each of the L time
series in X:

ek =
(
ek11, . . . , e

k
1M , ek21, . . . , e

k
2M , . . . , ekL1, . . . , e

k
LM

)T (9)

Step 4: The principal components
{
pk
}
k=1,...,LM

are com-
puted by projecting the trajectory matrix onto the eigen-
vectors as follows:

pk(n) =

(
X̃

(n)
, ek
)

=

M∑
m=1

L∑
l=1

xl(n+m− 1)eklm (10)

where n = 1, . . . , N −M + 1

Step 5: Compute the reconstructed components (RCs).
The k-th RC at n for variable l is defined as:

Rk
l (n) =



1

M

M∑
j=1

pk(n− j + 1)ekl (j) for M ≤ n ≤ N −M + 1

1

n

n∑
j=1

pk(n− j + 1)ekl (j) for 1 ≤ n < M − 1

1

N − n+ 1

M∑
j=n−N+M

pk(n− j + 1)ekl (j) for N −M + 2 ≤ n ≤ N

.

(11)
Step 6: At this stage, the DFA of the reconstructed
components is computed individually in order to decide
what RCs are kept for the denoising process. Only S
RCs that are significant in terms of DFA are kept, i.e.
with DFA> 1. This is repeated for every variable l ∈
{1, 2, · · · , L}.
Step 7: Finally, summing up the S reconstructed compo-
nents gives the denoised version of each variable.

5. APPLICATION

In this section, a numerical example and a real industrial
process will be used to demonstrate the efficiency of the
suggested approach.

5.1 Numerical case study

A simulated multivariate signals case is used first to affirm
the efficiency of the proposed framework. The data consists
of three signals oscillating at multiple frequencies. The
first signal oscillates at a single frequency of 0.1 rad/s,
the second signal simulates oscillations due to nonlinearity
in the process at a fundamental frequency of 0.1 rad/s
and a harmonic at 0.3 rad/s, and the third signal contains
oscillations at three frequencies 0.1, 0.3, and 0.4 rad/s.
The three signals were corrupted by a coloured noise
component generated by filtering white noise using a filter
with a transfer function H(z) = 1−0.2z1

1−0.1z1+0.8z2 .

The proposed method was implemented for this multi-
variate data set. The upper panel of Fig. 1 shows the
original noisy signals where oscillations are obscured by
noise, especially for the multiple frequencies case studies.
First, a window length M = 30 was selected in this study
to obtain the covariance matrix, eigenvectors, and PCs.
For this window size, a total of 90 variables are now
contained in the trajectory matrix X̃. A visual depiction
of the covariance matrix computed through Eq.(5) for the
augmented matrix is presented in Fig. 2.
Based on this covariance matrix, LM = 90 eigenvectors
were extracted in order to compute the PCs. At this step,
the number of PCs to keep for further analysis is selected
using the correlation dimension proposed in Bounoua
and Bakdi (2021). This is a nonlinear technique that
can provide important information about the underlying
structure of the data and extract the number of principal
components. Amongst the 90 original PCs, only 16 PCs
were chosen. This means ensuring that the residuals that
reflect the noise are excluded and that only significant PCs
are retained. The first four PCs that were selected are
shown in Fig.3.
Accordingly, 16 RCs were obtained for each of the three
variables. At this stage, DFA was employed to determine
which components to keep so that only components having
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Fig. 1. Numerical case study: the multivariate original noisy data (upper panel) and the denoised version using MSSA-
DFA compared with the original noise-free oscillatory signals (lower panel)
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Fig. 2. The covariance matrix of the augmented data set
of the numerical case study.
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Fig. 3. The first four PCs derived from MSSA-DFA frame-
work for the numerical case study.

significant variations are selected i.e., having DFA> 1.
From the 16 RCs, only 6 components are kept and summed
up to reconstruct the denoised version of the signals under
analysis. The lower panel of Fig.1 illustrates the results
obtained from applying the MSSA-DFA proposed method.
The results demonstrate the high proficiency of the sug-
gested method in the batch processing of the multivariate
data and extracting only the meaningful oscillatory data.
This processing method performed adequately for all three
types of oscillations, including linear and nonlinear process
oscillations with multiple frequencies.

5.2 Industrial case study

To further confirm the validity of the proposed scheme,
a multivariate data set from an industry case study will
be employed. The data was collected from the Eastman
Chemical Company plant, which is a well-known process
consisting of five major units: three distillation columns
and two decanters, as well as several recycle streams. The
plant encompasses 15 control loops and 30 plant tags,
making it a complex multivariate system.
For 48 operational hours, the data was sampled every 20
seconds, yielding 8640 samples per tag. The dataset con-
tains information on various process variables, including
temperature, pressure, flow rate, and level, as well as the
corresponding controller outputs.

Covariance matrix
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Fig. 4. The covariance matrix of the augmented data set
for the industrial case study.

The Eastman Chemical Company dataset is a valuable
resource for evaluating the efficacy of the proposed frame-
work and validating its suitability for real-world industrial
applications. The dataset exhibits various characteristics
that are typical of industrial control systems, such as noisy
signals, complex multivariate dynamics, and nonlinear be-
haviours, among others. The process is well described in
Thornhill et al. (2003), and the data is publicly available
in Bauer et al. (2018). The data set comprises PV, OP, set
points, and error signals. PV and OP are mean-centred
and normalised to unit standard deviation. In this study,
the OP data set was used for the analysis, consisting of 15
signals.
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Fig. 5. The original multivariate control loops signals of the industrial data set.

100 200 300 400 500

-2

-1.6

-1.2

100 200 300 400 500
-2.5

-2

-1.5

200 400 600 800 1000 1200

-1

0

1

100 200 300 400 500
-2

0

2

100 200 300 400 500

-1

0

1

2

200 400 600 800 1000 1200
-2

-1

0

1

100 200 300 400 500
-1

0

1

100 200 300 400 500
-3

-2

-1

100 200 300 400 500

-1

0

1

100 200 300 400 500
-3

-2

-1

100 200 300 400 500

-1

0

1

200 400 600 800 1000 1200

-1

0

1

100 200 300 400 500

Samples

-2

-1

0

100 200 300 400 500

Samples

-1

-0.5

0

0.5

200 400 600 800 1000 1200

Samples

-1

0

1

2

Fig. 6. The denoised version of the plant-wide industrial data set.

In the given data, it is evident that the process is under-
going a plant-wide oscillation. The PVs and OPs exhibit
distinct patterns that reflect the oscillatory behaviour of
the system. These patterns can be characterised by their
frequency, amplitude, and phase, among other parameters.
Therefore, it is essential to denoise in such cases to identify
these patterns. Similar to the numerical case study, the
procedure in Section 4. was applied to this data with
the same parameters, including the window size and the
threshold of DFA. In this case, LM = 450 variables are
included in the trajectory matrix. Fig.4 illustrates the
obtained covariance matrix.
The eigendecomposition of this matrix produced 450
eigenvectors and, therefore, 450 PCs were derived. As a
result of applying the correlation dimension, only 91 PCs
were used to obtain the reconstructed components for each
of the 15 signals under investigation. Ensuing this, DFA
values were calculated for the RCs, and 43 out of 91 RCs
were used to obtain the noise-free signals. This study used
the proposed framework to analyse a dataset comprising
8640 observations. The entire range of observations was
used to implement the proposed framework, which affects
the efficiency of advanced signal processing techniques to

extract relevant information from the data and identify
key features. However, for visualisation purposes, a small
sample size will be demonstrated, as shown in Fig.5. The
sample size was carefully selected to preserve the key
features of the data. The resulting denoised version of this
case study is depicted in Fig.6. As can be observed from
the results, the oscillations in the signal are considerably
more distinct, and the generated variables are far smoother
than the original ones. This confirms the efficacy of the
MSSA-DFA framework in dealing with different types of
signals and varying levels of noise, regardless of the number
of signals treated simultaneously. The MSSA-DFA frame-
work is particularly useful in industrial control systems,
where noisy signals are prevalent and can significantly
impact the accuracy of control performance monitoring.
This method can be compared to other methods, such
as deep learning techniques, which could be done in the
future.

6. CONCLUSIONS

The proposed strategy utilizes MSSA method to obtain a
smoothed version of the multivariate data from industrial
control loops. To enhance the denoising performance, DFA

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

683



is incorporated to prevent the addition of any erratic com-
ponents. DFA ensures that only significant reconstructed
components are included in the computations of the re-
constructed components.
The efficacy of the proposed method is demonstrated
through a numerical case study that includes three sig-
nals exhibiting oscillations from a linear and a nonlinear
process with multiple frequencies corrupted by coloured
noise. The results show that the proposed MSSA-DFA
approach can effectively reduce the impact of noise and
extract relevant information from complex multivariate
signals. Moreover, real multivariate data from the indus-
trial Eastman Chemical plant is used to test the suggested
MSSA-DFA approach in denoising the data under various
conditions.
The proposed method can have considerable implications
for industrial control systems, where the presence of noisy
signals can significantly impact the accuracy of control
performance monitoring techniques. By incorporating ap-
propriate signal preprocessing techniques, such as the
MSSA-DFA approach, it is possible to enhance data set
quality and the accuracy and effectiveness of advanced pro-
cessing tools, thus improving the performance of industrial
control systems.
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