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Abstract: Process faults often lead to process/equipment failure or an emergency abnormal situation and 

are of greater concern in process industries. Multivariate statistical process monitoring methods using 

Singular Spectrum Analysis (SSA) have proved to be an effective tool for chemical process monitoring 

among other multivariate multiscale methods and are extensively studied and widely used for fault 

detection. In this study, Singular Spectrum Decomposition, a data-adaptive nonparametric method 

originated from SSA is used for the decomposition of signals into multilevel components which take care 

of autocorrelation within the process variables. In SSD, unlike SSA, the determination of crucial parameters 

like the embedding window dimension for building the trajectory matrix and the number of principal 

components for grouping and reconstructing time series is automated through consideration of the data's 

frequency content. The proposed approach is applied to detect faults in simulated and industrial data. The 

evaluation of results showed that the proposed method effectively detects faults in lower scales/levels as 

compared with the conventional SSA-based method.  

 Keywords: Singular Spectrum Analysis, Singular Spectrum Decomposition, Principal Component 

Analysis, Multivariate Statistical Process Monitoring, Fault Detection. 

 

1. INTRODUCTION 

The growing complexity of contemporary chemical processes, 

coupled with the ongoing need for continuous maintenance to 

optimize operations and address abnormal events, poses a 

significant challenge for process engineers. Data-driven 

process monitoring methods play a crucial role in the early 

detection of process faults, aiming to prevent abnormal 

conditions from developing and enabling effective corrections 

at an early stage. Detecting process faults, which have the 

potential to result in significant process failures, is especially 

challenging due to their unpredictable and unobservable 

nature, along with deviations in process variables. To tackle 

this challenge, multivariate statistical methods, including 

principal component analysis (PCA) and its various 

extensions, are employed to detect process faults. 

Nevertheless, these approaches encounter constraints when 

confronted with highly nonlinear, auto-correlated, and 

multiscale data containing embedded background noise. 

Consequently, there is a necessity to extract genuine fault 

dynamic features from operational data tainted by noise before 

initiating statistical analysis for process monitoring 

(Bakshi,1998; Chiang et al.,2001; Chen et al.,2016). In this 

study, Singular Spectrum Decomposition (SSD) is utilized to 

decompose the process signals into multiple levels, 

proficiently eliminating background noise to improve the 

precision of process monitoring and fault detection. The study 

introduces a comprehensive process monitoring framework 

that merges the multiscale and noise-reduction benefits of SSD 

with Principal Component Analysis (PCA).  

In recent years, singular spectrum analysis (SSA) has emerged 

as a data-adaptive, nonparametric spectral method for 

monitoring and detecting faults in chemical processes 

characterized by nonlinearity and nonstationarity (Aldrich et 

al., 2007; Krishnannair et al., 2016). The lagged trajectory 

matrix in SSA involves windowing the process data, and its 

physical meaningfulness depends on the proper choice of the 

embedding dimension. Additionally, selecting principal 

components for grouping and reconstruction of the data 

requires careful consideration to avoid mode mixing. Despite 

existing strategies, there is no standardized automated 

approach for these processes, leading SSA to be primarily used 

for the reconstruction of specific signal components rather 

than the meaningful decomposition of process signals. 

However, SSA has its limitations, including the critical 

selection of the window length and the need for careful 

principal component selection to prevent a single component 

from containing oscillations or patterns associated with 

different behaviours. Alternatively, similar scales may be 

distributed across multiple components, a phenomenon known 

as mode mixing. To address the limitations inherent in 

Singular Spectrum Analysis (SSA), this study introduces 

Singular Spectrum Decomposition (SSD), an iterative method 

for decomposing time series signals in processes.   

Singular Spectrum Decomposition (SSD), an innovative 

iterative time series decomposition method based on SSA, is 

designed for process fault detection. Unlike SSA, SSD adopts 

a fully data-driven approach in determining the embedding 

dimension and selecting principal components for 

reconstructing specific component series, making it an 

adaptive decomposition method. SSD operates by extracting 

energy associated with various intrinsic time scales, 

circumventing mode mixing, and ensuring precise separation 

between intermittent components at transition points. In this 
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paper, the limitations of Singular Spectrum Analysis (SSA) in 

analyzing process signals, particularly in the context of 

nonstationary data are addressed. Emphasizing the extraction 

of energy linked to diverse intrinsic time scales, SSD 

effectively addresses challenges such as mode mixing and 

ensures accurate separation between intermittent components. 
Currently, Singular Spectrum Decomposition (SSD) has found 

successful applications in signal processing. For instance, 

Bonizzi et al. (2014) have employed SSD in the processing of 

tidal and tsunami data. Maryam et al. (2018) have suggested 

the utilization of the SSD technique for screening and 

extracting gene expression spectra. Additionally, Yan et 

al.(2017) have integrated SSD with morphological 

demodulation methods to extract faults in rolling bearings. 

In pursuit of these objectives, this study adopts the trajectory 

matrix definition for SSD proposed by Bonizzi et al. (2014). 

This definition plays a crucial role in guaranteeing a consistent 

reduction in residual energy at each iteration. The process 

monitoring technique that has been proposed using SSD is 

combined with PCA to de-correlate the cross-correlation 

among the process variables.  SSD is used to capture the 

autocorrelation within each variable. In this study, PCA is used 

for feature extraction of pre-processed signals with SSD. The 

effectiveness of SSD in fault detection is assessed through the 

evaluation of simulated numerical data, and a comparative 

analysis is conducted with the application of SSD in the 

context of the Base Metal Flotation process, contrasting it with 

the performance of SSA. The primary goal of this study is to 

introduce and validate a method that enhances the detection of 

faults in chemical process systems. 

The paper's organization is outlined as follows: Section 2 

provides a concise review of SSD, followed by the subsequent 

section which delves into the process fault detection 

methodology utilizing SSD. Finally, conclusions are given in 

the last section. 

2. SINGULAR SPECTRUM DECOMPOSITION 

 

SSD, a novel signal decomposition technique derived from 

SSA, introduces creative improvements. Singular Spectrum 

Analysis (SSA) dissects the process signals into various 

additive components like trends or noise through the singular 

value decomposition (SVD) of a lagged covariance matrix 

derived from the original process signal. The subsequent 

reconstruction of the series involves utilizing subsets of 

eigenvectors and corresponding principal components of the 

variables through diagonal averaging. The Singular Spectrum 

Analysis (SSA) algorithm consists of four crucial steps: 

embedding, singular value decomposition, grouping, and 

diagonal averaging. These steps have been comprehensively 

outlined in previous studies, and their methodologies, as 

reported in works such as Krishnannair et al. (2016), 

Krishnannair (2017), Golyandina et al. (2001), Vautard et al. 

(1992), and Aldrich et al. (2007), have been adopted for the 

purposes of this study. While SSA has demonstrated 

effectiveness in analyzing and predicting non-stationary time 

series in previous studies, challenges arise in automatically 

determining the embedding dimension and selecting principal 

components with physical meanings for signal reconstruction. 

In contrast, SSD addresses these challenges by adaptively 

choosing the fundamental parameters of SSA by focusing on 

extracting narrow frequency band contents of the signal (Pang 

et al.,2018). SSD is tailored to break down a signal into its 

individual components, whereas SSA delves into uncovering 

the distinct patterns present within the signal. The decomposed 

singular spectrum components are iteratively derived, and the 

specific implementation steps for each iteration are as follows:  

A. Construction of trajectory matrix 

For an input signal 𝑥(𝑛) with length of 𝑁, setting the 

embedding dimension to 𝑀 results in the construction of 

𝑀 × 𝑁 matrix 𝑿. The ith row of this matrix is 𝑥𝑖 =
[𝑥(𝑖), … , 𝑥(𝑁), 𝑥(1), … , 𝑥(𝑖 − 1)]. Therefore 𝑿 can be 

expressed as 𝑿 = [𝒙1
𝑇 , 𝒙2

𝑇 , … , 𝒙𝑀
𝑇 ]𝑇 . For a given series 𝑥(𝑛) =

[𝑥1, 𝑥2, … , 𝑥𝑁−1, 𝑥𝑁] , if 𝑀 is the embedding dimension, the 

resulting trajectory matrix 𝑿𝑆𝑆𝐷  would be:  

 𝑿𝑆SD = (𝑿|𝑨)         (1) 

Where 𝑿 is the trajectory of 𝑥(𝑛) based on the basic SSA 

algorithm and the matrix 𝑨 is 

                         𝑨 = [

𝑥𝑘+1 ⋯ 𝑥𝑁

⋮ ⋱ ⋮
𝑥1 ⋯ 𝑥𝑀−1

]                (2) 

 

In contrast to the fundamental SSA approach, the SSD method 

enhances the trajectory matrix by introducing an extra block 

denoted as 𝑨. This inclusion facilitates the integration of 

various permutations of the entire time series vector within 

each row of the adjusted trajectory matrix, referred to as 𝑿𝑆SD. 

Additional insights on this methodology can be explored in 

references (Bonizzi et al., 2014 , Pang et al., 2018). 

The selection of the embedding dimension 𝑀 significantly 

influence the analysis results. For SSD, 𝑀 is adaptively chosen 

as 𝑓𝑚𝑎𝑥 𝑓𝑠⁄ , 𝑓𝑚𝑎𝑥 is the dominant frequency in the power 

spectral density (PSD) of 𝑥(𝑛), and 𝑓𝑠 represents the sampling 

frequency. 

B.  Decomposition 

 

Singular value decomposition is executed on the trajectory 

matrix  𝑿𝑆𝑆𝐷 , defined as  

           𝑿𝑆𝑆𝐷 = ∑ 𝜆𝑖
𝑀
𝑖=1 𝑢𝑖𝑣𝑖

𝑇                  (3)                                          

 

where 𝒖𝑖 and 𝒗𝑖 are the left and right singular vectors and 𝜆𝑖’s 
are singular values. 
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C. Grouping and Reconstruction 

 

As expressed in (3), the trajectory  matrix 𝑿𝑆𝑆𝐷  can be 

represented as the sum of M principal components. The  

𝐿(𝐿 < 𝑀) principal components, whose left eigenvectors 

exhibit a dominant frequency in the range of [𝑓𝑚𝑎𝑥 − ∆f,
𝑓𝑚𝑎𝑥 + ∆𝑓] are selected to reconstruct a desired singular 

spectrum component. ∆𝑓is estimated through Gaussian 

interpolation of the power spectral density (PSD) of the input 

signal. Assuming that the selected 𝐿 principal components 

contribute to a new matrix 𝑿̃, the corresponding estimated 

component is obtained by conducting diagonal averaging on 

the sum of L matrices, each obtained by taking the outer 

product of the corresponding eigenvectors. That is 𝑿𝑆𝑆𝐷̃ =

∑ 𝒖𝒊𝒌̃
𝐿
𝑘=1 𝒖𝑖𝑘

𝑇̃ 𝑿𝑆𝑆𝐷   , where 𝑢𝑖̃s are the corresponding 

eigenvectors. The transition to a  one-dimensional series can 

be obtained by averaging each ij -th the element of 𝑿̃ over all 

i and j. This  can be achieved as follows: 

 

  𝑖 + 𝑗 = {
𝑘 + 1 𝑎𝑛𝑑 𝑘 + 1 + 𝑁, 𝑤ℎ𝑒𝑛 𝑖 + 𝐽 < 𝑁
𝑘 + 1                               𝑤ℎ𝑒𝑛 𝑖 + 𝑗 ≥ 𝑁

       (4) 

 

The estimated singular spectrum component is then subtracted 

from 𝑥(𝑛). This process is iteratively performed on the 

residual until a stopping criterion is met. The decomposition 

process is stopped when the normalized mean square error 

between the residual and the original signal is less than 1%. 

For further details on SSD, refer to Bonizzi et al.,(2014) and 

Pang et al.,(2018). 

 

 

 3. PROCESS MONITORING 

METHODOLOGY 

 
 

The suggested approach for process monitoring utilizing 

Singular Spectrum Decomposition (SSD) involves breaking 

down each process variable into various singular spectrum 

components. A Principal Component Analysis (PCA) model is 

established for each component derived from SSD to identify 

faults. Initially, SSD is employed on each variable to generate 

multiple singular spectrum components at various 

resolutions/scales. Subsequently, for each scale, the respective 

SSD components of all variables are amalgamated into a 

unified matrix, enabling the application of PCA for fault 

detection. The process monitoring methodology based on 

Singular Spectrum Analysis (SSA) adheres to analogous 

procedural steps as the SSD-based method. More clearly, the 

SSD based monitoring methodology consists of decomposing 

each variable into multiple levels of components by using SSD 

which is followed by the development of a PCA model using 

the reconstructed variables at each level. In SSA based 

monitoring methodology, the variables are decomposed into 

multiple components using SSA followed by the development 

of a PCA model of SSA components at each scale. 

 

The suitable count of principal components to be retained is 

determined for each component within every scale, and control 

limits for monitored indices such as Hottelling’s  𝑇2 and 𝑄 

statistics are computed. These limits are established using 

parameters derived from the dataset collected during normal 

operating conditions, following the methodology outlined by 

Kresta et al., (1991). If, at a specific scale 𝑇2 or 𝑄 for the 

reconstructed new dataset is outside the calculated control 

limits, the process is judged to be out of control. The reliability 

percentage is calculated by considering the number of samples 

that exceed the control limit in the new dataset. 

 

 

                   4. RESULTS AND DISCUSSION 

 

  

In this section, the validation of the proposed methodology is 

conducted by applying Singular Spectrum Decomposition 

(SSD) and Singular Spectrum Analysis (SSA) to datasets that 

represent both a nonlinear dynamic process and a base metal 

flotation plant. 

 

4.1 Case Study 1: Nonlinear Dynamic Process 

 

A five-variable nonlinear dynamic process proposed by Chen 

and Liao (2002) is used to investigate the efficiency of the 

proposed monitoring method. The model is represented by  

 

 𝐱(𝑡) = 𝓐𝐱(𝑡 − 1) + 𝓑𝐮2(𝑡 − 1) (5) 

 𝐮(𝑡) = 𝓒𝐮(𝑡 − 1) + 𝓓𝐰(𝑡 − 1) (6) 

 𝐲(𝑡) = 𝐱(𝑡) + 𝐯(𝑡) (7) 

 

where the coefficient matrices are given by  

 

𝓐 = [
0.118 −0.191 0
0.847 0.264 0.9
0.214 −0.11 0

] 𝓑 = [
0.05 0.1
0.05 0.05

0 0.05
] 

 

𝓒 = [
0.811 −0.226
0.477 0.415

] 𝓓 = [
0.193 0.689

−0.320 −0.749
] 

 

 

 

𝐮(𝑡), 𝒚(𝑡)and 𝐱(𝑡) are input, output and state variables at 

time 𝑡, 𝐯(𝑡) and 𝐰(𝑡) are uncorrelated zero mean Gaussian 

noise, with variance of 0.5 and 5 respectively. The inputs 𝐮(𝑡) 

and outputs 𝐲(𝑡) are measured and used to monitor the system. 

The first 500 samples generated by the above equations are 

taken as normal data. A fault condition (Case 1) is generated 

by changing the 1 × 2 element of 𝓑 to -0.1. Fig. 1 displays the 

data pertaining to abnormal conditions. Specifically, the initial 

160 samples correspond to the normal condition, while the 

subsequent 340 samples capture the manifestation of 

abnormalities in the data. 
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Fig. 1.Data for abnormal operating conditions(first 160 

samples represent the normal operation and last 340 samples 

represent the abnormality in the data). 

 

For the SSA decomposition, an embedding window of size 

M=6 was chosen by identifying the maximum value of the 

decorrelation point. This point is where the autocorrelation 

function of each variable first passes through zero. The SSD 

method decomposes each variable into multiple components, 

and the minimum number of components obtained through 

SSD decomposition for each variable was selected for 

grouping and signal reconstruction. Consequently, seven 

singular spectrum components were utilized for reconstructing 

the signal into multiple levels in the SSD approach. The PCA 

model was then employed to monitor the SSA and SSD 

components at various scales. The PCA model retained 

principal components that accounted for a minimum of 90% of 

the variance in the data. 

 

Table 1 presents the estimated reliability of Hotelling’s T2 and 

Q statist for both SSD and SSA in normal and fault cases. In 

Case 0, the reliability percentage was calculated using the 

instances where the number of samples exceeded the control 

limits in the first 160 samples from the abnormal data. 

Conversely, for Case 1, the reliability percentage was 

determined based on the last 340 samples from the abnormal 

data that exceeded the control limits. It is noteworthy that the 

control limits for both statistics were established at a 95% 

confidence level. In the specified fault condition, the reliability 

percentage of the SSD approach surpassed that achieved with 

the SSA approach. Nevertheless, it is noteworthy that the 

performance of SSA was also impacted by its limited 

applicability in nonlinear processes. The outcomes 

demonstrate the superiority of the proposed method over the 

SSA approach in this particular case study. 

 

Table 1.  Reliability of  SSA and SSD in nonlinear 

dynamic process. 

Method Statistic Case 0 Case 1 

SSA 
𝑇2 10% 14% 

𝑄 8% 16% 

SSD 
𝑇2 9% 75% 

𝑄 6% 67% 

 

 

4.2 Case Study 2: Base Metal Flotation Process  

 

In this investigation, the study focused on five features, 

referred to as image variables, extracted from digital images 

depicting surface froths in the zinc roughers of a complex base 

metal flotation plant. These image variables include the small 

number emphasis feature (SNE), second moment (SM), 

average grey level of the image (AGL), entropy (ENT), and 

froth instability (INSTAB). 

 

The concentrator plant comprised several integrated unit 

operations, including a semi-autogenous (SAG) mill, a ball 

mill, a hydrocyclone for classifying pulp from the ball mill, a 

flotation feed buffer tank, and flotation rougher banks. The 

textural features of the flotation froths were assessed using the 

neighboring grey level dependence matrix method as outlined 

by Bezuidenhout et al. (1997).  

 

The reference models for SSA and SSD were constructed 

using a dataset comprising 284 samples obtained during 

normal operating conditions (referred to as Case 0). Model 

evaluation was conducted using a separate set of 299 samples 

collected under faulty conditions (referred to as Case 1). The 

variables representing normal and abnormal conditions are 

depicted in Fig.2.  

 

 
 

Fig. 2. Variables from normal (NOC) and abnormal operating 

conditions (ANOC) in the base metal flotation plant. 

 

The fundamental SSA-based process monitoring scheme was 

implemented with a sliding window of size M=43, determined 

based on the sample autocorrelation functions of the variables. 

In the SSD approach, the signal was decomposed into three 

singular spectrum components, as the minimum number of 

decompositions achieved through each variable was three in 

this case study. Hence, three singular spectrum components 

were employed for the reconstruction of signals in the 

application of the PCA model for fault detection. The 

reliability percentage of Hotelling’s 𝑇2 and 𝑄 statistics  SSA 

and SSD for in fault case and the normal case are listed in 

Table 2. 

 

While the basic SSA successfully identified the onset of the 

fault condition, the reliability percentage of both Hotelling’s 

𝑇2 and 𝑄 statistics  reached 100% with the SSD approach. In 

this study, the performance of SSD proved to be equally 

effective as that of SSA.  
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Table 2.  Reliability of PCA, SSA, EMD and EMD-SSA in 

Base Metal Flotation Plant process. 

Method Statistic Case 0 Case 1 

SSA 
𝑇2 6% 100% 

𝑄 7% 94% 

SSD 
𝑇2 3% 100% 

𝑄 3% 100% 

 

 

6. CONCLUSIONS 

In this study, both SSA and SSD were utilized for fault 

detection in chemical processes. The research showed that the 

proposed approach is more effective in detecting faults 

compared to SSA, leveraging the capabilities of SSD. SSA and 

SSD are employed to extract multiscale components, and PCA 

is subsequently applied to each SSA/SSD component for fault 

detection. Results from simulated and industrial studies 

revealed an improved performance of SSD in nonlinear 

process monitoring when compared to SSA. Both SSA and 

SSD demonstrated similarly superior performance, as 

observed in the industrial case study. 

The presented SSD method provides an adaptive energy-

frequency-based decomposition of data into multiple 

components. Its data-driven and adaptive characteristics, 

coupled with its effective use of data, position SSD as a 

valuable alternative for decomposing and analyzing noisy, 

nonlinear, and nonstationary process signals. Unlike SSA, the 

SSD method automates the selection of the window length and 

the principal components of the corresponding trajectory 

matrix for grouping and reconstructing a specific component 

at a particular scale, introducing an adaptive dimension. 

Additionally, the updated definition of the trajectory matrix 

improves feature identification in the data and leads to a 

reduction in residual energy after each iteration. Furthermore, 

this study marks the inaugural application of SSD for chemical 

process monitoring and fault detection. 
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