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Abstract:
This paper presents a hierarchical MPC-based control framework for a real microgrid including
solar panels and batteries, that considers the uncertainty from the point of view of faults
and risks (F&R) mitigation. While fault management is applied during plant operation, risk
management considers external factors that can change microgrid planning in the medium-long
term. Due to their different time-scales, a two-layer control scheme is proposed using Model
Predictive Control (MPC) at both levels. At the bottom layer, the fault-tolerant predictive
controller optimizes the operation by manipulating inputs to follow microgrid set-points. A
reconfiguration strategy is implemented using structured residuals and stochastic thresholds.
On the other hand, the upper layer develops an optimal mitigation strategy, also based on MPC,
to reduce the effects of risks obtained from external information, i.e., unexpected changes in
demands, maintenance costs, or deviations in generation. The decision variables of this layer are
the selection of mitigation actions to be undertaken, which minimise a proposed multicriteria
objective function. Different simulations have been carried out to show the efficacy of this
methodology in a F&R scenario from a stochastic point of view.

Keywords: Microgrids, Energy Management Systems, Risk Management, Model Predictive
Control, Fault Tolerant Control, Hierarchical control

1. INTRODUCTION

Given the significant complexities involved in integrating
renewable energy sources and energy storage systems into
energy management systems (EMSs), it is necessary to
address the uncertainty associated with these components
as part of the control strategy. The uncertainty that may
arise can be associated with internal factors, such as faults
in the operation of the plant, or, instead, with external
factors, such as the price of energy or generation with solar
or wind plants, which are highly dependent on the weather.

Microgrids (MGs) are energy distribution systems that
operate autonomously or in connection with the main
grid, providing greater flexibility and resilience in energy
management. From the point of view of control systems
applied to microgrids, the work (Garcia-Torres et al., 2021)
presents a review of different control strategies and trends
applied to microgrids. Among them, Model Predictive
Control (MPC) (Bordons et al., 2020) stands out for
the relevant characteristics it presents compared to other
control policies, such as the use of a model to predict

⋆ This work has been funded by MCIN/AEI/
10.13039/501100011033 under grant PID2019-104149RB-I00
(project SAFEMPC) and PID2022-142069OB-I00.

the output, easy handling of constraints, weighting factors
for the error and control effort, and the incorporation of
delays.

There are contributions in control systems with MPC on
MGs that deal with the uncertainties of different appro-
ximations. For example, stochastic time-varying distur-
bances are used in the work of Bahakim and Ricardez-
Sandoval (2014) to be considered in the optimization prob-
lem of the controller. Also, tree-based scenarios and prob-
abilistic constraints describe the uncertainties in the MPC
controller and the proposals are evaluated on a real MG
benchmark. In Petrollese et al. (2016), an MPC strategy
is applied where planning considers both the short and
long term. For long-term planning, statistical weather and
load forecasts are obtained, and for real-time management,
the microgrid makes use of a predictive controller that
considers the previous forecasts. Other works can be found
in the scope of hierarchical and stochastic EMS based on
MPC, such as Minciardi and Robba (2017) or S. Rai-
mondi Cominesi and Scattolini (2018). The latter proposes
a bilevel scheme where an MPC approach is employed to
strategically outline the deployment of MG components
throughout the prediction horizon. Simultaneously, oper-
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ating at a faster frequency, an SMPC regulator at the lower
layer aims to balance uncertainties.

Few studies have explored MPC methodologies in the
context of Fault Detection and Isolation (FDI) as well
as Fault Reconfiguration (FR). FDI is a widely discussed
topic with a substantial and significant body of literature
(Issermann (2006)). In Izadi et al. (2010), a fault-tolerant
MPC approach is introduced, wherein fault identification
is utilized to adapt the system to the post-fault model.
The work of Marquez et al. (2021) proposes an enhanced
MPC technique with a fault mitigation method designed
specifically for microgrids, where faults are associated with
reconfiguration actions (RAs).

On the other hand, Risk Management (RM) has emerged
as a highly regarded approach to address uncertainties
(Baron and Paté-Cornell (1999)). Although initially im-
plemented for the prevention of natural disasters and
macroeconomic systems, it has become a widespread prac-
tice in all systems that are susceptible to uncertainties.
RM considers the identification of potential risks, their
quantification, and the formulation of a strategic plan to
address and reduce those challenges. Therefore, obtaining
information from sources such as weather forecasts or
operational failures, is crucial to the effectiveness of this
approach. In this line, the works of (Eising et al., 2008;
Zafra-Cabeza et al., 2020) show the potential benefits of
RM, especially remarkable as contributions of risk mitiga-
tion on MGs based on MPC.

As can be concluded, there are contributions of control sys-
tems integrating FDI or otherwise, risk management. Both
areas have been widely studied but not together. As far as
the authors are aware, there are no established frameworks
available for calculating optimal control strategies that
resolve the conflicting objectives of maximizing short-term
profits in microgrid fault-tolerant operations while consi-
dering medium to long-term risk perspectives. This work
focuses on the development of a novel and hierarchical
EMS based on MPC that integrates FDI as well as RM to
consider external information. Figure 1 describes the two
different layers:

• The high-level layer is devoted to addressing RM in
an optimal way using the controller MPC-1. In this
case, risks are modeled and evaluated using external
data and forecasts, and mitigation actions (MAs) are
delivered to the low level to be executed.

• The low-level controller is dedicated to power dis-
patching and fault management. Faults are de-
tected and corrected using quantitative models and
stochastic threshold estimation. Reconfiguration ac-
tions (RAs) are determined to mitigate faults. The
MPC-2 controller computes the decision variables of
the plant u, driving the MG to satisfy the demands
and also considering the MAs and RAs.

This paper has been divided into the following parts. Sec-
tion 2 proposes the formulation for risk management, de-
scribing the controller MPC-1 at the higher level. Section
3 describes the control methodology for the lower level,
integrating MPC-2 and the fault management strategy.
The case study of Section 4 describes the real microgrid
located in the ENGREEN laboratory of the University

Fig. 1. Control scheme framework.

of Seville. Simulations are also outlined in this section.
Finally, some conclusions are drawn in Section 5.

2. DESCRIPTION OF THE HIGHER LEVEL

This level is responsible for risk mitigation. Consider
R = {R1, · · · , Rnr}, the set of nr risks, which could cause
changes named effects, with a certain probability. Thus,
consider P r = {pr1(t), · · · , prnr(t)}, the set of probability
functions and C = {C1, · · · , Cnc} the set of criteria.
ER = {er1(t), · · · , ernr(t)} are the effects of the risks
evaluated on the relevant criteria. Thus, eri(k, j) is the
effect of risk i, about the criterion k at the sampling time
j. In this work, the optimization of risk mitigation is based
on the execution of MAs that reduce the effects of risks.
Consider A = {A1, . . . Ana} the set of na MAs. Every MA
is characterized by a trio of attributes:

Ai = {ui
M , Hi, Gi}, i = {1, . . . na} (1)

where

- uM = {u1
M , . . . , una

M } is the vector of decision vari-
ables and ui

M represents the decision variable associ-
ated with action Ai.

- Hi = {hj
i (u

i
M ) : ℜ → ℜ} being the set of functions hj

i
that influence the decrease of the impacts on criterion
j as a function of ui

M at each time, when the action
Ai is applied.

- Gi = {gji (ui
M ) : ℜ → ℜ} being the set of functions

gji that calculate the additional values to be added to
criterion j, if action Ai is executed.

Next, terms EXRj
i are described, which mean the expo-

sure to risk Ri over the criterion j as:

EXRj
i (uM , t) = pri (t)

(
eri(j, t)−

na∑
a=1

Γr(i, a)hj
a(u

a
M )

)
+

+

na∑
a=1

Γr(i, a)gja(u
a
M ),∀j ∈ {1 . . . nc}, ∀i ∈ {1 . . . nr}(2)

with Γr ∈ {0, 1}nr×na the matrix representing the actions
to be launched to mitigate risks. Γr(i, a) = 1 means that
Ri is mitigated by action Aa, otherwise, Γ

r(i, a) = 0. nc
is the number of criteria. Consider zj the function value
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of the criterion j. These functions are defined as follows,
considering the risk exposure:

zj(t+ 1) = zj(t) +

nr∑
i=1

EXRj
i (uM , t). (3)

The multicriteria performance index for MPC-1 to miti-
gate risks is stated as follows:

Jr(z, uM ) = (z(t)− zref )Tβr(z(t)− zref ), (4)

with zref (t) are the reference to reach in the outputs and
βr is the weighting vector for the criteria. The optimization
problem to solve is:

min
uM ,t

Nr∑
i=0

Jr(z(t), uM (t)), (5)

with Nr the prediction horizon for the MPC-1.

MAs provided for this controller will be sent to the lower
level. This proposal is open to decide on the nature
of the MAs. In this study, these adjustments will be
implemented as modifications to the parameters of MPC-
2, which controls the plant. This may involve alterations to
constraints, references, weighting factors, or adjustments
to the model.

3. DESCRIPTION OF THE LOWER LEVEL

As mentioned above, this layer drives the optimization of
the MG operation, as well as fault management, including
detection, isolation, and reconfiguration, also using MPC.

The control oriented model of the MG can be represented
by a discrete state space model as follows:

x(t+ 1) = f(x(t),u(t),v(t)), (6)

where x(t) ∈ ℜnx represents the vector of states, u(t) ∈
ℜnu represents the input vector, and v ∈ ℜnv the distur-
bance. The objective function, denoted as J , utilized in
MPC-2 can be expressed as

J(x(t), u(t)) = (x(t)− xref (t))
T δ(x(t)− xref (t)) + (7)

+∆uT (t)λ∆u(t).

It encompasses the error between the predicted states x(t)
and the reference vector xref , and the control effort ∆u,
which are weighted by matrices δ and λ, respectively.
The optimization problem solved at each time instant t
is formulated as:

min
{u(t),...,u(t+N−1)}

N−1∑
i=0

J(x(t+ i), u(t+ i), v(t+ i)), (8)

subject to

x(t+ 1) = Ax(t) +Bu(t) + v(t), ∀t ∈ ZN−1
0 ,

x(0) = x(t),

x(t+ 1) ∈ X , ∀t ∈ ZN−1
0 ,

u(t) ∈ U , ∀t ∈ ZN−1
0 ,

v(t) ∈ V, ∀t ∈ ZN−1
0

where ZN−1
0 is the set of integers from 0 to N − 1 and N

is the prediction horizon. A more detailed description can
be found in (Marquez et al., 2021).

3.1 Fault Management approach

At this level, a fault-tolerant approach is included, ad-
dressing the fault detection and isolation (FDI) and also,
a fault reconfiguration mechanism.

In this work, FDI relies on parity equations and struc-
tured residuals to identify faults. This approach generates
nres residual signals denoted as rq to quantify deviations
between actual and expected behavior. In the presence
of a fault, the deviations will be significant and will be
considered as potential fault indications. For a more com-
prehensive understanding of the FDI methodology, refer
to (Marquez et al., 2021). However, it is acknowledged
that this method is susceptible to false fault indications
arising from uncertainties in the process. To enhance the
method’s reliability, a strategy is employed to dismiss false
faults by assessing whether rq values fall within a range
determined by time-varying thresholds. These thresholds,
denoted by [αq(t), βq(t)], are stochastic and dynamically
calculated using chance constraints. To ascertain whether
a nonzero residual rq(t) means a true fault, a new boolean
variable rbq ∈ {0, 1} is introduced and associated with rq.
Its calculation is based on:

rbq(t) =

{
1 if rq(t) > βq(t) or rq(t) < αq(t)
0 if αq(t) ≤ rq(t) ≤ βq(t)

(10)

∀ t, q.

This process involves utilizing an structural matrix S ∈
{0, 1}nf×nres , with nf the potential number of faults. This
matrix represents the procedure for identifying the vector
of fault signatures, f ∈ {0, 1}nf , through the vector rb as
follows:

fi = 1 if Si,q = rbq ∀q ∈ {1, . . . , nres}. (11)

Therefore, in every sampling instance, the vector f is
computed to indicate detected faults and therefore, to
launch reconfiguration actions (RAs), if acceptable. In
addition, the vector f can be used at the high level to
update the probabilities of the coupled risks to detected
faults.

The reconfiguration plan for faults is defined by matrices
L ∈ {0, 1}(nf×nar), M ∈ R(nf×nar), with nar the number
of RAs. The matrix L represents the RAs, denoted by
RAi, to be executed for each fault, and the matrix M
describes the intensity. If element Lij = 1, the fault Fi can
be reconfigured by the action RAj and Lij = 0 otherwise.
On the other hand, the intensity of the action RAj to
reconfigure the fault Fi is Mij .

Taking into account the previous settings, the RAs to
be executed and their magnitude denoted by uR are as
follows:

uR = {ui
R},∀i = {1, . . . , nar}, (12)

with

ui
R = max(B(i)), (13)
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where B(i) is the i-th column of L⊗M , with ⊗ being the
Schur product.

The reconfiguration actions to execute represented by uR

can encompass actions of different natures. In the case
study, they are considered as changes in the MPC-2.
However, other types of actions could be considered.

4. CASE STUDY

This section outlines the actual MG employed to show-
case the method’s results, situated in the ENGREEN
laboratory at the University of Seville. The microgrid’s
schematic representation is illustrated in Figure 2. For
a more comprehensive understanding of the microgrid’s
components and configuration, a detailed description is
available in (Bordons et al., 2015).

Fig. 2. ENGREEN Microgrid.

Renewable energy generation is emulated using a pro-
grammable power supply (6kW) designed to replicate the
dynamic characteristics of a solar photovoltaic field. To
emulate energy consumption demand, an electronic load
(1kW) is employed. Additionally, the plant incorporates
a battery bank comprising a lithium-ion battery (400Ah)
and a lead-acid battery (370Ah). Moreover, the microgrid
is connected to the distribution network, facilitating the
buying and selling of energy. The system is connected
through a 48VDC bus regulated by the lead-acid battery
bank.

The model used to implement the control law of the MPC-
2 has been taken from Bordons et al. (2020):

SOCle(t+ 1) = SOCle(t)−KleTsPle(t), (14)

SOCli(t+ 1) = SOCli(t)−KliTsPli(t), (15)

with the following balance equation:

Pdem(t) = Ple(t) + Pli(t) + Pgrid(t) + Pres(t), (16)

Pnet(t) = Pres(t)− Pdem(t), (17)

where x = [SOCle SOCli] is the state vector, u =
[Pgrid Pli] is the vector of manipulated variables and
finally, v = Pnet, is the disturbance that affects the system.
Ple and Pli are, respectively, the power provided/absorbed
by the lead-acid battery and the ion-lithium bank. The
power of the lead-acid battery Ple is determined by Eq.
(17). Pres is the power produced by renewable energy
sources, Pdem is the power demanded by the load, and
Pgrid is the power exchange with the main grid. A sign
criterion has been chosen in which the energy contribution
to the power bus has a positive sign, otherwise a negative

value. Taking into account the expressions (17)-(17), the
resulting model in matrix form is:

x(t+ 1) = Ax(t) +Bu(t) + Ev(t),

y(t) = Cx(t),

with

A =

[
1 0
0 1

]
, B =

[
0.0468 0.0468
−0.1369 0

]
, E =

[
0.0468

0

]
C =

[
1 0
0 1

]
,

(18)

where the values of matrices B and E have been obtained
experimentally considering that the conversion coefficient
for the lead-acid battery is Kle =

ηle

Cmax
le

= 1.56×10−3 %
kWs ,

and for the Li-ion battery is Kli = ηli

Cmax
li

= 1.254 ×
10−3 %

kWs .

To guarantee the correct performance of the system, the
MG is subject to hard constraints. Limits are set on the
manipulated variables and their incremental values:

−2.5 kW ≤ Pgrid(t) ≤ 6.0 kW, (19a)

−3.0 kW ≤ Pli(t) ≤ 3.0 kW, (19b)

−1.0 kW ≤ △Pgrid(t) ≤ 1.0 kW, (19c)

−1.0 kW ≤ △Pli(t) ≤ 1.0 kW, (19d)

and in the state variables:

40% ≤ SOCle(t) ≤ 75%, (20a)

30% ≤ SOCli(t) ≤ 80%. (20b)

4.1 Experiments

Profiles representing the usual patterns of household
energy consumption and photovoltaic panel generation
on a sunlit day have been extracted from the site
https://demanda.ree.es/movil/peninsula. The selected day
was September 27, 2023, and the data are from the Spanish
city of Seville. The considered period is 17 hours, approx-
imately from 06:00 to 23:00 hours. Figure 3a shows the
demand, solar generation and disturbance, Pnet = Pres −
Pdem. The disturbance takes a negative value when the
demand is higher than the generation power. The control
strategy must decide according to an economical optimiza-
tion whether to buy or sell energy depending on the state
of the microgrid and the sale price of the kWh, denoted
by pkwh(t). For that, a profile of this variable is shown
in Figure 3b. Also, the upper threshold value has been
depicted in this figure to set regions where to buy or sell.
This information was taken from the site https://www.
esios.ree.es/ on the same day that the experiments
were done.

For all tests, the sampling time was set to 30s for MPC-
2 and for MPC-1 (risks management) was 1 min. The
prediction horizons were N = 5 and Nr = 10. The
considered criteria comprise C1 to C5 in the objective
functions of MPC-1, as described below:

• C1: economic benefit.
• C2: demand fulfilment.
• C3: usage of the main grid.
• C4: usage of the lithium battery.
• C5: usage of the lead-acid battery.
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Fig. 3. Demand, Generation, Disturbance, and price of the
kWh for the experiments.

Furthermore, weighting vectors are set as βr = [1, 0.5, 0.5, 1, 1]
in Equation (4) of the MPC-1, and δ = [1, 0; 0, 10−5],
λ = [1.6 × 10−2, 0; 0, 1 × 10−2] in Equation (7) in the
MPC-2.

Scenario 1: Normal operation
In this experiment, no faults or risks were considered,

and the system operated normally. The battery state
of charge and control variables over time are shown in
Figures 4 and 5, respectively. The MPC-2’s objective
was to minimize the variation in SOCle (blue line) while
allowing SOCli to absorb any changes. The weighting
factor of SOCle is higher than that of SOCli. Ion-Lithium
batteries were used to store excess energy from renewable
sources. They can be flexibly charged and discharged
and even exchanged with the grid. Any excess renewable
energy was either stored or exported, ensuring efficient
energy utilization. At the beginning of the period Pnet is
negative (the demand is higher than the generation), and
the MPC-2 prioritizes the use of the battery (discharging
process). In addition, energy is taken from the main grid
(Pgrid > 0). Afterward, Pnet is positive and the batteries
increase the SOC values.
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Fig. 4. Levels of the outputs in experiment 1.

Scenario 2: Operation with F&R
In this scenario, the following items are involved:

• R1: the estimation of the price of kWh is higher
than the upper threshold. It presents an effect
er11(t) = 0.30pkwh(t) on the parameter benefit (C1)
and er21(t) = 0.1Pdem, meaning a decreasing rate of
demand unsatisfied. The proposed MAs for R1 are: (i)
A1: change the estimation of the price of kWh in the
MPC-2 optimization problem and (ii) A2: decrease
the weighting factor of the control effort, λ of Pgrid

and δ in Eq. (7) in MPC-2 to favor the sale of energy if
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Fig. 5. Control variables in experiment 1.

SOCli is above 60%. The decision variables for these
actions are u1

M and u2
M ∈ {0, 1}.

• F1: fault in the lithium battery. It reveals signifi-
cant differences between the estimated and the real
variable SOCli. With this fault, the battery can fol-
low with the operation, but the following RAs are
proposed: (i) RA1: Stop possible sales (Pgrid ≥ 0
and (ii) RA2: use the lead-acid battery relaxing δ =
[10−2, 0; 0, 10−5], λ = [1, 0; 0, 10−3] in Equation (7).
Thus, L = [1, 1] and M = [0, 10−2].

Table 1 describes the properties of the proposed MAs for
R1. To put in context the performance of this proposal,
the probability of R1 was pr1 = 0.99 during the period t1 =
[18, 23] hours and an artificially designed F1 is provoked
from t = 21 hours. A1 allows change the estimation of
pkwh(t) with no cost, and A2 decreases the benefits a 10%
(h1

2), reduce the unsatisfied demand (h2
2) and add an extra

fee to pay, Pfee, to make possible the sale.

Table 1. Mitigation actions for R1.

Ai hj
i gji

A1 h1
1 = er11u

1
M g11 = 0

A2 h1
2 = 0.1er11u

2
M , h2

2 = er22u
2
M g12 = −Pfeeu

2
M

When the plant is operating, both MPC-1 and MPC-2 are
running simultaneously. In this case, MPC-1 takes into
consideration R1 and its probability. It determines A1 and
A2 to mitigate R1, considering the effects, probability,
functions h and g, and weighting factors for the criteria.
Figure 6 shows as these actions are obtained through
variables u1

M and u2
M in the optimization problem stated

in Eq. (5). Figure 3b has been used again to illustrate as
the price of kWh has increased as a consequence of R1 and
the MG starts to sell energy (Pgrid < 0) (see the first part
of Fig 8).

Fig. 6. Actions to execute for mitigating R1 in scenario 2.
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After the risk event, the fault F1 is detected through
the variables r1 and rb1 (see Fig. 7). In this case, the
reconfiguration plan executes RA1 and RA2, which causes
the sale to stop and the lead-acid battery to satisfy
the demand, respectively. This happens despite having
previously sold to the network, highlighting the priority
of reconfiguring rather than mitigating risks. Figures 8
and 9 show the control variables and the microgrid output,
respectively, with the mitigation of risk and the occurrence
of the fault. In these figures, it can be observed that from
fault detection at 21h, Pgrid = 0, the discharge of the
lithium battery is less pronounced, complementing the
satisfaction of demand with the lead-acid battery.

Fig. 7. Residual signals for r1 in experiment 2.

Fig. 8. Control variables in experiment 2.

Fig. 9. Levels of the outputs in experiment 2.

5. SUMMARY AND CONCLUSIONS

The work described here integrates approaches to risk
mitigation and fault diagnosis with different time scales
to be applied in EMSs. Results show the effectiveness of
the proposed hierarchy control strategy when some devices
and events take place. Under this methodology, different
objective functions, constraints and sampling rates differ
at both levels are allowed.
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