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Abstract: A tube-based nonlinear model predictive controller (NMPC) is developed to regulate a
continuous bioprocess of purple non-sulfur bacteria (PNSB). The controller employs a macroscopic
model that exhibits significant parametric uncertainty due to the restricted availability of experimental
data for parameter identification. The proposed model describes microbial protein production during
PNSB growth on fructose and glucose. This work aims to assess the robustness of the proposed control
strategy and compare the performance with classical NMPC. To this end, both controllers are challenged
in a Monte-Carlo study, with identical disturbances in the form of parametric variations spread over 100
different scenarios. The resulting trajectories, as well as biomass and protein productivity levels, confirm
the better performance of the robust tube-based controller.
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1. INTRODUCTION

Purple non-sulfur bacteria (PNSB) are versatile organisms ca-
pable of, under anaerobic conditions, phototrophically consum-
ing various carbon sources, such as carbohydrates (Kars and Al-
parslan, 2013), amino acids (Teixeira et al., 2010), and volatile
fatty acids (VFA) (Cabecas Segura et al., 2022a). Industrial
interest in PNSB has been increasing in recent years due to
their unique feature of converting industrial or domestic waste
streams into higher value components, including microbial pro-
tein (MP), also called single-cell protein (SCP), carotenoids,
coenzyme Q10, hydrogen, and bioplastics (Capson-Tojo et al.,
2020). Among these, MP constitutes a promising alternative to
complement human (Alloul et al., 2019; Spanoghe et al., 2021)
or animal feed (Delamare-Deboutteville et al., 2019). Despite
the clear potential, current technological challenges must be
addressed to make PNSB commercially feasible. Capson-Tojo
et al. (2020) have identified areas of improvement related to
process design, process efficiency (light and substrate conver-
sion), and product valorization. Considering this context, the
definition of an advanced control structure to regulate the for-
mation of a targeted product by PNSB may as well be a valuable
resource for an industrial scale-up.

In this regard, nonlinear model predictive control (NMPC) is
an appealing approach, also considering the reported applica-
tions to bioprocess control in the literature. Particular strategies
can be adopted according to specific control objectives, like
maximization of biomass production (Santos et al., 2012) or a
specific product (Dewasme et al., 2023), substrate regulation
(Craven et al., 2014), or trajectory tracking (Ulonska et al.,
2018). NMPC, however, relies on the development of a model,
which may be a complex task. Data collection requires a series
of batch or fed-batch experiments, which are commonly costly

and time-consuming. Also, even if a large amount of data is
available, the impact of the remaining parametric uncertainties
may still need to be accounted for. For this reason, a consider-
able research effort is directed to robust NMPC where modeling
uncertainties are handled, from conservative approaches such
as minimax MPC (Santos et al., 2012; Dewasme et al., 2015) to
tube-based (Mayne et al., 2011; Zhong et al., 2023; Dewasme
et al., 2024), multi-stage (Hebing et al., 2020; Dewasme et al.,
2023), and stochastic MPC (Mesbah, 2016).

The next section presents a mechanistic model describing the
evolution of Rs. rubrum, focusing on protein production. The
motivation for considering the significant parametric uncer-
tainty levels is supported by the possible lack of economic
resources to produce more data. Even though some models
describing the growth of purple bacteria are already reported
(Puyol et al., 2017; Cabecas Segura et al., 2022a,b; Capson-
Tojo et al., 2023), none of them have all the attributes required
for this study, i.e. PNSB growth exclusively on glucose and
fructose combined with protein production. A different model
is therefore proposed to fulfill this purpose. Section 3 presents
the control problem and the classical and tube-based NMPC
designs. The robustness of both controllers with respect to
parameter uncertainties is assessed and discussed. Conclusions
are drawn in section 4, regarding what is, to the best of the
authors’ knowledge, the first advanced control work dedicated
to PNSB.

2. MATHEMATICAL MODEL OF PNSB GROWTH

2.1 Model description

A dynamic model is proposed to describe Rs. rubrum growth
on fructose and glucose, both generated by sucrose hydrolysis
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and coupled with intracellular protein production. The reac-
tion scheme and substrate kinetics are respectively inspired by
Cabecas Segura et al. (2022a) and Fekih-Salem et al. (2019).
The resulting macro-reactions read as follows:

Yf f ru
ϕ1→ X +Y p1P (1)

Yg glu
ϕ2→ X +Y p2P (2)

where X, fru, glu, and P, are, respectively, the concentrations of
biomass (g L−1), fructose (g L−1), glucose (g L−1), and protein
(g L−1). Yf , Yg, Y p1, and Y p2 respectively correspond to the
fructose, glucose, and protein yield coefficients.

The reaction rates, defined as Monod-type kinetics, are given
by:

ϕ1 = µmax1X
f ru

K1 + f ru
(3)

ϕ2 = µmax2X
glu

K2 +glu
(4)

where µmax1 and µmax2 are the maximum specific growth rates
and K1 and K2 are the half-saturation constants of fructose
and glucose, respectively. Protein production is described as a
regular bioprocess product, following the structure of product
formation described in Bastin and Dochain (1990).

Applying mass balances for each component and considering
a chemostat operating mode leads to the following differential
equations:

dX
dt

= ϕ1 +ϕ2 −
F
V

X (5)

d f ru
dt

=−Yf ϕ1 +
F
V
( f ruin − f ru) (6)

dglu
dt

=−Ygϕ2 +
F
V
(gluin −glu) (7)

dV
dt

= 0 (8)

dP
dt

= Y p1ϕ1 +Y p2ϕ2 −
F
V

P (9)

where F is the inlet flow of the reactor and V is the reac-
tor’s constant volume. The dilution rate in h−1 is defined by
D = F/V , and the productivity of biomass and protein, in
g L−1 h−1, are calculated as ProdX = DX , and ProdP = DP.

2.2 Model identification and validation

Parameter identification and sensitivity analysis are performed
using a procedure inspired from Fekih-Salem et al. (2019).
The parameters are estimated by weighted least-squares, while
the sensitivity analysis allows the evaluation of the Fisher
Information Matrix (FIM), and in turn, the confidence intervals
for each parameter.

The database is composed of 6 batch experiments where only 2
of them provide protein concentration data. A more thorough
discussion of the experimental conditions, the measurement
analytical devices, and the metabolic features of Rs. rubrum
will be reported elsewhere.

Fig. 1 shows the model prediction for the first 4 batch ex-
periments without protein concentration measurements (direct
validation with the data used for identification), while Fig. 2
shows the direct validation with the 2 remaining experiments

where measurements of the protein concentrations are avail-
able. The estimated parameters, along with their 95% confi-
dence intervals, are listed in Table 1. In view of the limited
amount of available data, it is not a surprise that some of these
confidence intervals are quite large. It should also be noted
that model reduction (for instance, merging both reaction rates)
unfortunately degrades curve fitting. Moreover, no other kinetic
structure, for instance including inhibition factors, could im-
prove the root mean square errors (RMSEs) shown in Table 2.

The large confidence intervals related to fructose consumption
are explained by the fast nutrient exhaustion highlighted in
Fig. 1, resulting in a small number of non-zero data. After
complete fructose depletion, biomass growth relies solely on
glucose.
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Fig. 1. Model predictions (red continuous line) for the concen-
trations of biomass, fructose, and glucose in experiments
1-4, and experimental data (black dots). The bars corre-
spond to a posteriori calculations of the 95% confidence
intervals related to the measurement error.
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Fig. 2. Model predictions (red continuous line) for the con-
centrations of biomass, fructose, glucose, and protein in
experiments 5-6, and experimental data (black dots). The
bars correspond to a posteriori calculations of the 95%
confidence intervals related to the measurement error.

One can also notice that the uncertainty related to one of the
protein yield coefficients (Y p2) is significantly higher than the
other (Y p1), which might suggest the possibility of a model re-
duction. Since it is observed that protein formation is correlated
to biomass concentration (Fig. 2), the available information is
not sufficient to support the decision to remove one of these
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yield coefficients. However, despite these parametric uncertain-
ties, the RMSEs given in Table 2 are acceptable. Hence, these
parameter uncertainties confirm the requirement for a robust
control framework.

Table 1. Estimated parameters, standard devia-
tions, and confidence intervals.

Parameter Estimated
value

Standard
deviation (σ) CI (%)

µmax1 (h−1) 0.0838 0.267 636
µmax2 (h−1) 0.0198 0.009 95.0
K1 (g L−1) 0.181 4.08 4514
K2 (g L−1) 1.40 1.05 150
Yf (g g−1) 2.37 0.373 31.0
Yg (g g−1) 0.925 0.0807 17.0
Y p1 (g g−1) 0.496 0 0
Y p2 (g g−1) 0.269 1.33 985

Table 2. RMSE results for biomass, fructose, glu-
cose, and protein.

Component RMSE
X 0.125
fru 0.0133
glu 0.123
P 0.0270

3. TUBE-BASED MODEL PREDICTIVE CONTROL

3.1 Formulation of the control problem

As biological systems are inherently uncertain, robust control
represents an effective approach to minimize the effect of pa-
rameter variability. Tube-based nonlinear model predictive con-
trol, as proposed by Mayne et al. (2011), offers a solution by
reducing the dispersion of the trajectories of a system subject
to a priori unknown disturbances. This cascade control strategy
proceeds in two steps, first determining a (often off-line) nom-
inal optimal trajectory (also called central path), based on the
resolution of an optimization problem using the non-disturbed
process model. A second optimization is then achieved by an
ancillary controller, preventing the state and input variables
from making important deviations from the central path, and
therefore maintaining all trajectories in their respective robust
sets, also called tubes. Computing the tubes is challenging in
the specific case of nonlinear systems. An approximation can
however be achieved through a Monte-Carlo analysis (Mayne
et al., 2011).

In the following, a tube-based NMPC is designed, where glu-
cose is selected as the controlled variable. The process input
is a single feed containing both glucose and fructose, and the
process is operated in continuous mode at constant volume
(chemostat).

The nominal NMPC problem, at instant i ∈ [0, t f ], is formulated
as:

Jnom = argmin
v

i+p

∑
t=i

(gluz(t)−gluref(t))2 (10)

s.t. ż = f (z(t),v(t),θ;z0,i), t ∈ [i, i+ p] (11)
vmin ≤ v(t)≤ vmax (12)

where z = [Xz f ruz gluz Vz Pz] is the nominal state vector (the
index z also stands for nominal state variables), v is the nominal
input variable, θ is the vector of nominal parameters, and z0,i is

the vector of nominal initial states at instant t = i. The nominal
optimal glucose and input flow rate trajectories, obtained by
solving (10-12), are respectively denoted glu∗z and v∗. p is the
prediction horizon and gluref is the glucose setpoint, which
is initially fixed to 0.45 g L−1 until 720 h. After 720 h, a
glucose reference step change to 0.30 g L−1 is applied and
maintained until the end of the experiment (at the final time
t f = 1200 h). The input constraints related to the feed rate are
vmin = 0 and vmax = 0.0171 L h−1 (representing the limits of the
pump), and the reactor volume V is constant and equal to 2 L.
The initial concentrations of biomass, fructose, glucose, and
protein are, respectively, 0.236, 0.373, 0.591, and 0.156 g L−1.
The concentrations of fructose and glucose in the single feed
are 1.07 and 1.16 g L−1. The prediction horizon and control
horizon are both set to p=120 h, and the sampling time Ts is
24 h. Except for the nominal case, a white noise level with 3%
standard deviation is added to the state variable measurements
in all simulations.

The selection of glucose as the target variable, as well as the
sampling time Ts, are motivated by the extensive literature
regarding bioprocess control with glucose regulation. Consid-
ering that bioprocess are usually characterized by slow dy-
namics, Craven et al. (2014) discuss the implementation of
an NMPC scheme for regulating glucose concentrations with
long measurement intervals (12 h) under the presence of noise
and process variability, to replicate an industrial operation and
assess the feasibility of an at- or off-line application. In the
referenced study, the successful performance of the controller
is verified by comparing the off-line measurements used by
the NMPC to those acquired online at 6 min intervals. If the
process is slow enough, measurement techniques such as high-
performance liquid chromatography (HPLC) can be employed,
with a longer sampling time (Ulonska et al., 2018). The usual
online availability of biomass and glucose measurements also
allows considering the use of a soft sensor (observer), as in
Dewasme et al. (2015).

The control problem formulated in (11) to (12) is solved with
the nonlinear Model Predictive Control toolbox from Matlab®.
This tool allows the definition of an NMPC object contain-
ing the parameters of the control problem. The optimization
problem is solved by applying the function nlmpcmove at
each time sample. Simulation results for the nominal (non-
disturbed) MPC lead to a successful regulation as highlighted
in Figs. 3 and 4.

3.2 Classical NMPC vs tube-NMPC application

This section is devoted to the robustness analysis of the ap-
plications of both classical and tube-based NMPC, subject to
identical disturbances in the form of parametric uncertainties
assumed to be bounded within the confidence interval ranges.
This is achieved by a Monte-Carlo analysis, where the values
of nominal parameters θ are randomly varied within their 95%
confidence intervals. The sets of parameters θ∗j for each run j is
contained in the range:

θ−2σ ≤ θ
∗
j ≤ θ+2σ, j ∈ N | 1 ≤ j ≤ 100 (13)

where σ is the vector of parametric standard deviations, shown
in Table 1. To provide a fair comparison of both controller
performances, a tightened constraint NMPC formulation is
proposed, where the state constraint

glumin ≤ gluz(t)≤ glumax (14)
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Fig. 3. Nominal NMPC simulation. The black continuous lines
indicate the state evolution and the continuous red lines
represent the tracked references.
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Fig. 4. Feed rate trajectory of the nominal case.

comes in addition to the nominal problem (10-12). The
lower and upper bounds of the glucose concentration con-
straints glumin and glumax, from (15), are set to glumin =
gluref − 0.07 g L−1 and glumax = gluref + 0.07 g L−1. When
solving the classical NMPC problem, the process measure-
ments vector at instant t = i, x0,i, replaces z0,i in (11).

Figs. 5 and 6 show the state and input evolutions obtained dur-
ing the Monte-Carlo analysis when using the classical NMPC.
The parametric variations lead to a significant spread of the tra-
jectories, poor glucose regulation performance, and constraint
violations.

To overcome these issues, a tube-based formulation is adopted,
and the following additional ancillary control problem is solved
for the jth Monte-Carlo scenario at instant i ∈ [0, t f ]:

min
u

a
i+p

∑
t=i

(glux(t)−glu∗z (t))
2 +b

i+p

∑
t=i

(u(t)− v∗z (t))
2 (15)

s.t. ẋ = f (x(t),u(t),θ∗j ;x0,i), t ∈ [i, i+ p] (16)

where glux is the glucose trajectory of the perturbed system
(16), where x and u are, respectively, the state vector and the

Fig. 5. State evolutions of the classical NMPC simulation for
100 runs, shown in continuous gray lines, with tracking
references in continuous red lines. The blue continuous
lines are the state mean trajectories, and the blue dashed
lines represent the upper and lower corridor bounds.
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Fig. 6. Gray lines show the feed rate results for 100 runs of
the classical NMPC implementation. The blue continuous
line is the input mean trajectory, and the blue dashed lines
represent the upper and lower corridor bounds.

input of the disturbed system, and x0,i is the process measure-
ment vector at time t = i. The solution of the optimal control
problem (15-16) leads to the determination of the ancillary
optimal glucose concentration glu∗x and input u∗.

Constraint sets V and Z are respectively defined for the nominal
input and states. They are subsets of the corresponding per-
turbed system sets U and X. Each set is composed of input/state
intervals all reported in Tab. 3.

Table 3. States and input intervals on the tube-
NMPC application.

Variable Description Perturbed system Nominal system
X state [0, 2] [0.001, 2]
fru state [0, 1] [0.0001, 1]
glu state [0, 1] [0.001, 1]
P state [0, 1] [0.001, 1]
F input [0, 0.0171] [0.000171, 0.0171]

Fig. 7 shows a schematic representation of the tube-NMPC
approach, while Figs. 8 and 9 present the results from the
application of the proposed strategy to the 100 Monte-Carlo
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scenarios, with the same seed of random parametric deviations
generated during the classical NMPC applications. Notably,
the tube-NMPC highlights better tracking performance, pre-
venting large deviations from the reference. As expected, the
ancillary controller forces the trajectories to remain in a tight
tube surrounding the reference trajectory. The state and input
maximum deviation values confirm this last statement. The
standard NMPC trajectories present maximum deviations of
0.25, 0.0077, 0.27, 0.059 g L−1, and 0.0085 L h−1, respectively
for X , f ru, glu, P, and F . The corresponding tube-NMPC
maximum deviations are 0.014, 0.0013, 0.017, 0.0039 g L−1,
and 0.0014 L h−1.

Fig. 7. Tube-NMPC scheme.

Fig. 8. State evolutions of the tube-NMPC simulation for 100
runs, shown in continuous gray lines, with tracking refer-
ences in continuous red lines. The blue continuous lines
are the state mean trajectories, and the blue dashed lines
represent the upper and lower corridor bounds of the clas-
sical NMPC application for comparison.

To confirm the latter observations from a quantitative perspec-
tive, Figs. 10 and 11 show the distribution of the average
biomass (ProdX ) and protein (ProdP) productivities over the
100 simulated scenarios.

Overall, biomass productivity values from Fig. 10 indicate a
wider dispersion in the classical NMPC cases than in the tube-
NMPC cases. A similar outcome can be observed in Fig. 11, in
which the predictions for protein productivity are not severely
affected by the parametric uncertainty when the tube-based
controller is applied, in opposition to the classical one. Tube-
NMPC maintains ProdX within a range from 5.3 × 10−3 to
5.90 × 10−3 g L h−1 and ProdP is estimated to be between
1.80 × 10−3 and 1.90 × 10−3 g L h−1. In comparison, the
classical NMPC results for ProdX are between 1.13 × 10−4
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Fig. 9. Gray lines show the feed rate results for 100 runs
of the tube-NMPC implementation. The blue continuous
line is the input mean trajectory, and the blue dashed
lines represent the upper and lower corridor bounds of the
classical NMPC application for comparison.
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Fig. 10. Average biomass productivity in 100 simulated sce-
narios. Tube-NMPC results are shown in green markers,
classical NMPC values are presented in red markers, and
the black continuous line represents the expected results
of the nominal case.
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Fig. 11. Average protein productivity in 100 simulated scenar-
ios. Tube-NMPC results are represented by green bars, and
classical NMPC is represented by red bars.

and 8.00 × 10−3 g L h−1, while ProdP goes from 4.23 × 10−5

to 2.70 × 10−3 g L h−1. Therefore, one can infer that a robust
tube-NMPC is a suitable alternative for industrial processes
focused on MP production by PNSB, given that product stan-
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dardization and repeatability should be regarded as essential
decision factors for process design and control.

4. CONCLUSION

In this work, a predictive control framework for the substrate
regulation of a continuous purple non-sulfur bacteria (PNSB)
culture is proposed. A mechanistic model of PNSB growth
on glucose and fructose is first identified and validated while
exhibiting large parametric uncertainties related to the limited
amount of available data. A Monte-Carlo study mapping the
parametric variability through 100 scenarios reveals that a
classical NMPC formulation fails to maintain the substrate
regulation conditions while a tube-based NMPC strategy shows
better tracking and robustness performance. Moreover, biomass
and protein productivity present minor deviations among all
the performed Monte-Carlo runs. Future work should focus on
the collection of data to consolidate the model, as well as on
identification and robust control applications directed to other
strains of PNSB presenting more complex scenarios, such as
considering additional controlled and input variables.
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Dewasme, L., Mäkinen, M., and Chotteau, V. (2023). Prac-
tical data-driven modeling and robust predictive control of
mammalian cell fed-batch process. Computers & Chemical
Engineering, 171, 108164.

Dewasme, L., Fernandes, S., Amribt, Z., Santos, L., Bogaerts,
P., and Vande Wouwer, A. (2015). State estimation and
predictive control of fed-batch cultures of hybridoma cells.
Journal of Process Control, 30, 50–57.
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