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Abstract: Population balance model-based approaches have become ubiquitous in crystallization process 

design and control to drive crystallization systems to meet the required industry-specific critical quality 

attributes (CQAs).  However, the reliability of model-based approaches is often subject to uncertain model 

parameters, which are usually determined through parameter estimation routines that process noisy 

experimental data. Disregarding these uncertainties during design often results in unexpected operational 

failures, suboptimal performance, or failure to attain desired CQAs. In this study, a reliability-based design 

optimization (RBDO) framework was applied for the open-loop control design of crystallization processes 

under parametric uncertainty. First, the concept of reliability-based design optimization was introduced to 

design crystallization systems under uncertainty to meet the target CQAs with a desired probability. A 

nested two-level simulation-optimization approach using surrogate modeling was used to solve RBDO 

problems. Finally, the above method was applied to demonstrate its effectiveness using a case study for 

batch crystallization process design. The results show that the RBDO-based approach provides reliable 

open-loop setpoint trajectories with higher probabilities of satisfying the desired CQAs when compared 

with open-loop optimization using nominal model parameters. 

Keywords: optimization under uncertainty, crystallization, optimal control, reliability-based design 

optimization, parameter uncertainty, continuous crystallization, pharmaceutical manufacturing

1. INTRODUCTION 

Crystallization is an integral purification and particle attribute 

control unit operation in the manufacturing processes of 

several industries, including pharmaceuticals, specialty 

chemicals, and energetics (Mullin, 2001). The properties of the 

crystals produced during the crystallization step not only 

impact the attributes of the final product but also the 

downstream manufacturing steps post-crystallization. 

Typically, crystallization processes are designed to 

consistently produce crystals that meet the desired Critical 

Quality Attributes (CQAs) such as purity, yield, and crystal 

size distribution (CSD). The values of the different target 

CQAs are usually determined based on the trade-off between 

specific product attributes. For instance, in the pharmaceutical 

industry, crystal size distribution is a crucial CQA, and its 

target range is determined through a trade-off between the 

drug’s bioavailability and its manufacturability (Kirwan and 

Orella, 2002). Therefore, the goal of the crystallization process 

design is to find optimal trajectories within the design space 

that enable the consistent production of crystals meeting the 

target CQAs.  

Model-based design approaches have shown immense 

potential in achieving the above-mentioned goal in a resource-

efficient manner (Fujiwara et al., 2005). However, because the 

model parameters in these approaches are determined through 

parameter estimation methods that process noisy experimental 

data, ignoring the uncertainty associated with these parameters 

during optimal control and design can hinder the effectiveness 

of model-based results. Implementing optimal trajectories 

obtained without considering parameter uncertainty in 

experimental settings may lead to unexpected operational 

failures, suboptimal performance, or failure to meet the target 

CQAs (Xie and Schenkendorf, 2019). Hence, several efforts 

have been made in the literature to design and control 

processes under uncertainty. Within this context, three 

prominent branches emerge, namely Multi-stage stochastic 

optimization, Robust optimization, and Chance Constrained 

Programming (Sharifian et al., 2021).  

Reliability-based design optimization (RBDO) is an 

application of chance-constrained programming. Unlike 

generic chance-constrained programming, RBDO 

formulations exclusively consider deterministic design 

variables in the objective function, thus avoiding the next to 

relax the objective function under uncertainty. Unlike robust 

optimization, which pursues designs with high degrees of 

robustness by enforcing conservative design choices that 

minimize sensitivity to parameter uncertainties, RBDO 

provides flexibility to quantify system failure probabilities. It 

aims to derive optimal designs that ensure the satisfaction of 

probabilistic constraints at user-specified levels, effectively 

achieving a trade-off between robustness and the associated 

design cost required to attain resilience against model 

parameter uncertainties (Acar et al., 2021; Libotte et al., 

2022). While RBDO has been extensively studied in the field 

of structural design optimization, with a few recent 

applications in chemical engineering, its potential application 

and effectiveness in crystallization process design and control 

is unexplored (Moustapha and Sudret, 2019; Libotte et al., 

2022). The primary objective of this paper is to bridge this 

knowledge gap and demonstrate the applicability of RBDO in 
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the context of open-loop optimal control of crystallization 

systems under uncertainty.  

2. RELIABILITY BASED DESIGN OPTIMIZATION  

A generic reliability-based design optimization problem 

formulation can be represented as follows,  

min 𝑐(𝒅) (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑓𝑗(𝒅) ≤ 0 

𝒫(𝑔𝑘(𝒅, 𝒙, 𝜽) ≤ 0) ≤ 𝒫𝑓𝑘
 

{𝑗 = 1, … , 𝑠 } 

{𝑘 = 1, … , 𝑛 } 

where the objective is to minimize the cost function 𝑐(𝒅) with 

respect to the decision variables 𝒅 ∈ 𝔻. The formulation 

involves a combination of hard constraints, which are always 

satisfied (i.e., 𝑓𝑗(𝒅) ≤ 0), and soft constraints that are modeled 

as probabilistic constraints. The system is considered to be in 

a state of failure for any 𝒅 when the condition 𝑔𝑘(𝒅, 𝒙, 𝜽) ≤ 0 

is satisfied. Here, 𝒙 = 𝒙(𝒅, 𝜽) ∈ 𝕏 is a vector of state variables 

and 𝜽 ∈ 𝚯 is a vector of uncertain model parameters 

represented by the joint probability distribution 𝚯. In RBDO, 

the probabilistic constraints necessitate that all failure 

probabilities 𝒫(𝑔𝑘(𝒅, 𝒙, 𝜽) ≤ 0) are less than a user-defined 

threshold probability 𝒫𝑓𝑘
. Hence, this formulation provides a 

higher degree of flexibility during control design under 

uncertainty compared with robust optimization formulations.  

Typically, specific target ranges are defined for various CQAs 

of crystallization products based on trade-offs between 

different factors related to product characteristics and 

manufacturability. The crystallization system can be 

considered to be in a state of failure if, for any given design, 

the output CQAs deviates from the acceptable target range. In 

the context of open-loop crystallization control design under 

parametric uncertainty, probabilistic constraints can be 

established based on the probability of not achieving the 

desired targets for CQAs under uncertainty. Furthermore, hard 

constraints can be applied to design trajectories to ensure 

operational feasibility, with the optimization objective 

centered on maximizing process productivity.  

3. SYSTEMATIC FRAMEWORK FOR SOLVING RBDO 

PROBLEMS USING SURROGATE MODELING 

In this study, a nested two-level simulation-optimization 

approach was employed to solve the generalized RBDO 

problem represented in equation (1). Here, the outer loop 

explores the design space, while the inner loop calculates the 

corresponding failure probabilities 𝒫(𝑔𝑘(𝒅, 𝒙, 𝜽) ≤ 0) for 

each design 𝒅. Within the inner loop, failure probabilities were 

computed using the Monte Carlo-based sample average 

approximation (SAA) method. This involves approximating 

the multivariate integration of the joint probability density 

function of the random variable over the failure domain 

𝑔𝑘(𝒅, 𝒙, 𝜽) ≤ 0, by a discrete sample-based estimate 

(Pagnoncelli, Ahmed and Shapiro, 2009). Despite being 

computationally intensive due to the need for multiple sample 

evaluations, the above method has a well-characterized 

convergence behavior that enables confidence bounds to be 

calculated for the failure probability estimates (Rubinstein and 

Kroese, 2016). 

To overcome the high computational costs associated with the 

need for a large number of samples to achieve a good 

approximation coupled with the cost of computing expensive 

high-fidelity models, surrogate modeling was used to reduce 

the computational cost by substituting expensive high-fidelity 

models with inexpensive-to-evaluate surrogates (Nagy and 

Braatz, 2007; Makrygiorgos, Maggioni and Mesbah, 2020). In 

the context of RBDO, surrogate models are built within a trust 

region to approximate the failure constraints 𝑔𝑘 ≤ 0 by 

augmenting both the deterministic design and uncertain 

parametric spaces. This approach circumvents the need to 

repeatedly construct surrogate models from scratch for each 

design iteration within the outer optimization loop, thus 

reducing computational overhead. Having accurate surrogate 

models for representing the failure domain is essential in this 

approach, since inaccuracies in surrogate models may result in 

either underestimation or overestimation of failure 

probabilities, leading to sub-optimal RBDO solutions. Since 

building a surrogate model that is globally accurate is 

challenging, active learning with adaptive sampling was used 

to enhance the accuracy of surrogate model in regions of 

interest such as the failure domain 𝑔𝑘 ≤ 0 (Moustapha and 

Sudret, 2019). The typical flow for solving problem (1) is 

summarized in the flowchart shown in figure 1 and was 

implemented using UQLab (Marelli and Sudret, 2014).  

4. CASE STUDY: OPEN-LOOP CONTROL USING RBDO 

FOR A BATCH CRYSTALLIZATION PROCESS 

In this case study, the proposed framework is applied to 

the optimal open-loop control design of batch cooling 

crystallization of a commercial active pharmaceutical 

ingredient (API), diphenhydramine hydrochloride (DPH). 

4.1 Mathematical model development 

In this section, the model equations comprising the high-

fidelity population balance model (PBM) for describing the 

Figure 1: Solution methodology used for solving RBDO problems. 
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batch crystallization dynamics of DPH in isopropyl alcohol 

(IPA) are presented. Population balance equation (2) tracks the 

crystal number density (𝑓) in the batch crystallizer with respect 

to time (𝑡) and crystal length (𝐿), under primary nucleation, 

secondary nucleation, size-dependent growth, and 

agglomeration mechanisms.  

𝜕𝑓(𝑡, 𝐿)

𝜕𝑡
+

𝜕(𝐺(𝐿)𝑓(𝑡, 𝐿))

𝜕𝐿
= [𝐵𝑝 + 𝐵𝑠]𝛿(𝐿 − 𝐿𝑚)

+
1

2
∫ 𝛽(𝑡, 𝐿 − 𝜆, 𝜆)𝑓(𝑡, 𝐿 − 𝜆)𝑓(𝑡, 𝜆)𝑑𝜆

𝐿

0

− ∫ 𝛽(𝑡, 𝐿, 𝜆)𝑓(𝑡, 𝐿)𝑓(𝑡, 𝜆)𝑑𝜆

∞

0

(2) 

Equation (2) is subjected to the following initial condition 

characterizing the initial crystal size distribution, along with 

the following boundary condition that limits the growth of all 

crystals to a finite size.  

 

𝑓(𝐿, 𝑡 = 0) =  𝑓0(𝐿)                 lim
𝐿→∞

𝑓(𝐿) = 0 (3) 

 

Equation (2) is coupled with a mass balance equation that 

tracks the solute concentration (𝑐) in the crystallizer, as shown 

below: 

 

d𝑐

d𝑡
= −

𝑘𝑣𝜌𝑐

𝜌𝑠1018
[3 ∫ 𝐺𝐿2𝑓(𝐿, 𝑡) d𝐿 + (𝐵𝑝 + 𝐵𝑠)𝐿𝑚

3

∞

0

] (4) 

 

The initial condition for equation (4) is 𝑐(𝑡 = 0) = 𝑐0, where 

𝑐0 represents the initial concentration (g solute/g solution) in 

the batch crystallizer. Table 1 shows the other supplementary 

equations required to complete the PBM model description. 

 

Table 1: Supplementary equations describing various 

crystallization mechanisms 

Mechanism Equation 

Supersaturation 
𝜎 =  

𝐶 − 𝐶𝑠

𝐶𝑠

 

Solubility  
𝐶𝑠 (

𝑔 𝑠𝑜𝑙𝑢𝑡𝑒

𝑔 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
) = 𝑒𝑥𝑝 [𝐴 + 

𝐵

𝑇 (𝐾)

+ 𝐶 𝑙𝑛(𝑇 (𝐾))] 

Primary 

Nucleation 
𝐵𝑝(#𝑚−3𝑠−1) = 𝑘𝑝𝜎𝑝 

Secondary 

Nucleation 
𝐵𝑠(#𝑚−3𝑠−1) = 𝑘𝑠𝜎𝑠𝑉𝑐 

Volume 

fraction of 

crystals 

𝑉𝑐 =  𝑘𝑣 ∫ 𝐿3𝑓(𝐿)𝑑𝐿
∞

0

 

 

Size dependent 

growth 
𝐺 (𝜇𝑚. 𝑠−1) = 𝑘𝑔(𝛽𝐿𝛾)𝜎𝑔𝑒𝑥𝑝 (

−𝐸𝑔

𝑅𝑇
) 

 

Agglomeration 𝛽(𝐿, 𝜆) (𝑚3𝑠−1#−1) =  𝑘𝑎𝑔𝑔 

 

The values of the parameters used in the above model are 

listed in Table 2 below.  

 

Table 2: Values of different constants and kinetic 

parameters 

Parameter Value Units 

𝑘𝑣 0.52 - 

𝜌𝑐  1048.9 kg/m3 

𝜌𝑠𝑜𝑙  782 kg/m3 

𝐴 51.17 - 

𝐵 -8155 - 

𝐶 -4.695 - 

log (𝑘𝑝) 8.2139 ± 0.367 #/m3. s 

log (𝑘𝑠) 11.151 ± 0.367 #/m3. s 

log (𝑘𝑔) 5.8029 ± 0.5059 µm/s 

𝛽𝑔 1.43 ± 0.0106 µm-1 

log (𝑘𝑎𝑔𝑔) -17.3385 ± 0.2293 #/m3. s 

p 2.5 - 

s 1.5 - 

g 1.1 - 

𝛾g 0.5222 - 

𝐸g 45 kJ/mol 

The PBM model and the corresponding uncertain model 

parameters presented here were experimentally estimated and 

validated, with further details available elsewhere (Barhate et 

al., 2024).  

4.2 RBDO formulation and solution methodology 

During a typical batch cooling crystallization process, the 

implemented temperature trajectory influences the generated 

supersaturation driving force in the crystallizer. This further 

affects the attributes of products (CQAs) obtained at the end 

of the batch. Hence, for a batch cooling crystallization open-

loop control design, the following optimization problem can 

be formulated,  

 

𝑚𝑖𝑛
𝑇1,𝑇2,𝑇3,𝑇4,𝑡𝑏𝑎𝑡𝑐ℎ 

𝑡𝑏𝑎𝑡𝑐ℎ (5) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 1 ≤
𝑑𝑇

𝑑𝑡
≤ −0.1 

150 < 𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 

𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 < 350 

50 < 𝑆𝐷 

𝑆𝐷 < 150 

𝑇𝑖( ̊𝐶) ∈ [10,48], 𝑡𝑏𝑎𝑡𝑐ℎ(𝑚𝑖𝑛) ∈ [35, 120] 

 

 

Here, the objective is to optimize the temperature trajectory to 

minimize the overall batch time while ensuring that the 

product CQA’s, represented by the volumetric mean size 

(𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒) and standard deviation (𝑆𝐷) of CSD, remain 

within predetermined target ranges. The constraints on 

𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒  and 𝑆𝐷 are terminal constraints, enforced at the 

end of the batch when their measurement will be available 

using offline characterization tools. To facilitate computation, 

the temperature-time trajectory is discretized into four 

equidistant temperature points relative to the overall batch 

time, thus transforming the problem from infinite-dimensional 

to finite-dimensional. Additionally, an operational feasibility 

constraint is imposed by limiting the cooling rate to fluctuate 
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between -0.1 to -1oC/min. This constraint is enforced 

discretely on the temperature trajectory by ensuring that the 

temperature differentials between successive points fall within 

the specified bounds. The definitions of 𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 and 𝑆𝐷 are 

given in Equations (6) and (7), respectively.  

 

𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 =
∫ 𝐿4𝑓(𝐿)𝑑𝐿

∞

0

∫ 𝐿3𝑓(𝐿)𝑑𝐿
∞

0

 (6) 

𝑆𝐷 = √
∫ 𝐿2𝑓𝑣𝑓(𝐿)𝑑𝐿

∞

0

∫ 𝑓𝑣𝑓(𝐿)𝑑𝐿
∞

0

− (
∫ 𝐿𝑓𝑣𝑓(𝐿)𝑑𝐿

∞

0

∫ 𝑓𝑣𝑓(𝐿)𝑑𝐿
∞

0

)

2

(7) 

Here, 𝑓𝑣𝑓(𝐿) denotes the volume-based crystal size 

distribution [𝑓𝑣𝑓(𝐿) =  𝑘𝑣𝐿3𝑓]. 

The open loop setpoint obtained by solving the above problem 

is sensitive to the accuracy of the kinetic model parameters 

because their uncertainty has not been incorporated in the 

problem formulation. While designing under parametric 

uncertainty, the above problem can be re-formulated using the 

RBDO framework as follows, 

𝑚𝑖𝑛
𝑇1,𝑇2,𝑇3,𝑇4,𝑡𝑏𝑎𝑡𝑐ℎ 

𝑡𝑏𝑎𝑡𝑐ℎ (8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 − 1 ≤
𝑑𝑇

𝑑𝑡
≤ −0.1 

𝒫[(150 − 𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒) < 0] ≤ 𝒫𝑓1 

𝒫[(𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 − 350) < 0] ≤ 𝒫𝑓2 

𝒫[(50 − 𝑆𝐷) < 0] ≤ 𝒫𝑓3 

𝒫[(𝑆𝐷 − 150) < 0] ≤ 𝒫𝑓4 

𝜽 ∈ 𝚯 , 𝑇𝑖( ̊𝐶) ∈ [10,48], 𝑡𝑏𝑎𝑡𝑐ℎ(𝑚𝑖𝑛) ∈ [35, 120] 

 

 

In this formulation, process failure is defined when the product 

CQA's fall out of the acceptable range, and hence, are modeled 

as probabilistic constraints, thereby allowing user flexibility in 

defining the necessary failure probability thresholds for each 

of the constraints based on their relative importance. This 

flexibility prevents the overcompensation of the optimal 

temperature trajectory under parametric uncertainty. The 

utilization of single chance constraints, rather than joint chance 

constraints, offers greater flexibility in specifying threshold 

failure probabilities. This strategy is particularly advantageous 

in pharmaceutical crystallization applications, where 

constraints related to bioavailability may carry greater 

significance compared to others, such as manufacturability. By 

employing single-chance constraints, distinct failure 

probabilities can be assigned to individual bounds, facilitating 

tailored risk management.  

In this study, sparse-polynomial chaos expansion (s-PCE) was 

selected as a surrogate model to approximate the nonlinear 

PBM model based on both literature survey and preliminary in 

silico investigations (Nagy and Braatz, 2007; Makrygiorgos, 

Maggioni and Mesbah, 2020). The general form of s-PCE 

model is represented as   

𝑌 ≈ 𝑀𝑃𝐶𝐸(𝑿) = ∑ 𝑐𝛼𝜓𝛼(𝑿)

𝛼𝜖𝐴

(9) 

Here, multivariate polynomials 𝜓𝛼(𝑿) are employed as basis 

functions, with 𝑐𝛼 representing the coefficients associated with 

these basis functions. Least-angle-regression (LAR) algorithm 

is used to identify polynomials exerting the most significant 

impact on the model responses from a large pool of candidates 

using the hyperbolic truncation scheme (Blatman and Sudret, 

2011; Makrygiorgos, Maggioni and Mesbah, 2020).  

The kinetic parameter space was assumed to follow a 

multivariate normal distribution with independent parameters. 

Table 2 provides the nominal values and 95% confidence 

interval values for these uncertain parameters. First, the kinetic 

and design parameter spaces were augmented, and 

comprehensive global surrogate models were constructed for 

each constraint using N = 9066 sample points. While 

constructing the s-PCE models, a hyperbolic truncation 

scheme with q = 0.75 was used and the degrees of basis 

functions were restricted to range from 2 to 5. The surrogate 

models were also validated on a test dataset where the 

percentage prediction error was found to be less than 5 %, 

before using them in the RBDO framework. To address the 

non-convexity of the RBDO problem and the challenges 

associated with computing gradients of probabilistic 

constraints, the derivative-free constrained covariance matrix 

adaption evolution strategy (C-CMAES) algorithm was 

selected for the outer optimization loop (Arnold and Hansen, 

2012). The computation of failure probabilities for all 

constraints was performed in the inner loop, as detailed in 

Section 3. The computational burden associated with a 

derivative-free solver remains moderate, primarily since the 

cost function in RBDO problems is typically a simple 

analytical function, and the failure probability estimation relies 

on inexpensive-to-evaluate surrogate models. This solution 

methodology enhances the overall computational tractability 

of solving RBDO problems. The only computational 

bottleneck in the aforementioned surrogate-based approach 

lies in constructing accurate surrogate models to approximate 

failure domains. However, once developed, these surrogate 

models enable the solution of underlying RBDO problems 

within seconds, across various threshold failure probabilities.   

4.3 Results and discussion 

RBDO problem (8) was solved for different values of the 

threshold failure probabilities 𝒫𝑓𝑘
(0.5, 0.2, 0.15, and 0.1). 

Although different threshold probabilities can be specified for 

each constraint corresponding to different CQAs, here same 

threshold values were assigned to all constraints. The 

optimization problem returned a converged solution for all the 

above cases, except for 𝒫𝑓𝑘
= 0.1. In this case, the optimizer 

could not identify any temperature trajectory that ensured the 

failure probability of constraints to be less than 0.1 for the 

Figure 2: Threshold failure probability (reliability) 

versus batch time (productivity). 
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considered uncertainty space. To make the solution feasible at 

a threshold probability of 0.1, one either has to relax the 

acceptable region bounds on the CQA’s or obtain more precise  

kinetic parameter estimates with less uncertainty. In the case 

study, the approximation error of the surrogate model had no 

impact on the feasibility of optimization results. This was 

validated by comparing failure probabilities for all optimal 

designs computed using surrogate models and with those 

computed from expensive PBM models. The computed failure 

probabilities were comparable across all constraints and 

consistently stayed below the specified threshold failure 

probabilities.  

Figure 2 illustrates a bar graph that presents the final objective 

function values for each problem, corresponding to different 

threshold failure probabilities. In addition, these solutions 

were compared with the nominal solution obtained for 

problem (5), where the parameter uncertainty was ignored. As 

the threshold failure probability increased, making the process 

more reliable, a concomitant increase in batch time was 

observed. Hence, a tradeoff exists between the desired 

reliability and the design cost in terms of the process batch 

time required to achieve that reliability.  

Figure 3 presents a comparison of the probability distributions 

of 𝑀𝑒𝑎𝑛 𝑠𝑖𝑧𝑒 and 𝑆𝐷 for both the nominal solution and RBDO 

solution with 𝒫𝑓𝑘
= 0.15. It can be clearly seen, that as 

expected, the nominal solution has approximately 50% of 

distribution outside the acceptable region marked by red box, 

however the RBDO solution has less than 15 % of its 

distribution falling outside the acceptable region on either side, 

making the process more reliable. Thus, implementing the 

optimal open-loop control trajectory obtained from the RBDO 

solution will increase the process robustness and help 

minimize the plant-model mismatch due to parameter 

uncertainty.  

Figure 4 offers a bird’s-eye view comparison between the 

nominal and RBDO solutions along the boundaries of the 

specified range of CQAs. The nominal solution, derived 

without factoring in parameter uncertainty, aligns with the 

boundaries of the acceptable CQAs, presenting a trajectory 

with the minimum batch time. However, as this solution 

resides at the boundaries, even a slight deviation in the values 

of the kinetic parameters could potentially propel the solution 

beyond the target region, leading to process failure. The 

RBDO formulation addresses this vulnerability by ensuring 

that the solution is positioned within the feasible region such 

that the process failure risk is less than the desired threshold 

levels at the expense of a slightly longer batch time.  

 

6. CONCLUSIONS 

This study presents a population balance model-based design 

framework for optimal open-loop control design in 

crystallization processes, integrating kinetic parameter 

uncertainty through reliability-based design optimization 

(RBDO). RBDO formulations were applied to a batch 

crystallization control design case study, aiming to determine 

setpoint temperature trajectories that guarantee the fulfillment 

of product CQAs within the target range under parametric 

uncertainty. The employed solution methodology utilizes a 

nested two-level simulation-optimization approach with 

sparse-polynomial chaos expansions used as surrogate models. 

The results highlight that the RBDO-based approach yields 

robust open-loop trajectories with higher probabilities of 

meeting the specified CQAs under uncertainty compared with 

open-loop optimization using nominal parameters. However, 

this enhanced reliability is accompanied by an increase in 

batch time, introducing a tradeoff between the desired 

robustness and the associated design cost needed to achieve it. 

The proposed approach effectively quantifies the risk 

probability associated with the control design and optimizes it 

while ensuring the risk/failure probabilities remain below the 

user-specified thresholds given model parameter uncertainties.  
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