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Abstract: The performance of a process control loop can be limited when nonlinear problems like 
deadband, hysteresis, backlash, stiction, etc. exist in control valve. Stiction occurs more frequently than the 
other valve problems and has potential to cause adverse oscillations in the control loop, resulting in poor 
quality products, excessive use of raw materials and energy, and an environmental footprint. Timely 
detection of sticky control valves can help control engineers to take appropriate actions (retuning the 
controller or using stiction compensation methods) to prevent further degradation of the performance of the 
control loop. In connection with the aforesaid fact, this work proposes a novel stiction detection method 
founded on learning vector quantization neural network (LVQNN). Simulated database is generated and 
used to train the LVQNN with the training algorithm: LVQ2.1. To further enhance the performance of the 
method, transfer learning is adopted to retrain the pre-trained LVQNN model by using industrial data. The 
retrained LVQNN is tested on practical data obtained from a wide variety of industries. Results highlight 
that the proposed method can outperform the existing methods. 
Keywords: Learning vector quantization; valve stiction; oscillations; neural network; control loops. 

1. INTRODUCTION 

Control performance monitoring is acknowledged as a key 
factor in increasing the profitability of industries. A proficient 
monitoring system ought to have the capability to pinpoint 
control loops that are underperforming and then differentiate 
between different sources of malfunction to recommend the 
most relevant measures to take (Paulonis and Cox (2003)). The 
poor performance of the control loops can be ascribed to tight 
control tuning, process upsets, sensor malfunctioning and 
control valve problems. Control valves are frequently utilized 
in process control loops, which control fluid flow, pressure, 
and temperature in a wide range of industrial processes. They 
are vital mechanical devices for the control loops to maintain 
the key process variables at their respective desired values. 
However, control valve operation can be challenging in the 
presence of stiction (Desborough and Miller (1998)). Valve 
stiction introduces oscillations in the control loops, which can 
reduce control loop performance and product quality. 
Researchers from academia and practicing engineers have paid 
a great deal of attention to this industrial problem due to its 
role in improving performance of the control loops.  
 
Manual stiction detection is impractical in plants with 
numerous valves, necessitating the use of non-intrusive and 
automated methods. Since Horch (1999) developed the first 
automatic non-invasive detection technique, several non-
intrusive methods have been proposed. Even though there are 
many of these approaches, new ones are nevertheless 
suggested every year, which involve the usage of multivariate 
statistical techniques, machine and deep learning algorithms, 
statistical techniques, system identification methodologies and 

global optimization algorithms. The book written by Jelali and 
Huang (2009) discusses various automatic stiction detection 
methods reported in the literature up to 2009. Details on the 
methods developed afterwards can be found in Zheng et al. 
(2021) and Bacci di Capaci and Scali (2018).  
However, some of the existing methods either exhibit poor 
stiction detection performance on industrial case studies while 
the other methods are too complicated to be used in practice. 
This inspires the authors of this study to propose an innovative 
stiction detection approach utilizing a supervised machine 
learning algorithm: the learning vector quantization neural 
network (LVQNN). The rest of the paper is organized as 
follows. In Section 2, the problem of control valve stiction is 
revisited. The proposed methodology is discussed in detail in 
Section 3. In Section 4, the training of the LVQNN and its 
application to industrial benchmark case studies are discussed. 
Section 5 concludes the work.  

2. CONTROL VALVE STICTION 

Fig. 1 portrays the behaviour of a control valve impacted by 
stiction. If the control valve functions without abnormality, 
commands (controller output (OP)) generated by the controller 
are perfectly executed by the control valve. In this case, control 
valve position (MV) precisely matches OP, which is denoted 
by the straight line passing through the origin. But because of 
valve stiction, the previously existing linear correlation 
between OP and MV has dissipated. As a result, they are in 
nonlinear relationship represented by the parallelogram that 
contains three phases: stiction band, slip-jump and moving 
phase. The stiction band indicates the dormant phase of the 
control valve and there is no change in the valve position 
despite continuous variation in OP. When an aggregate change 
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in OP is high enough to move the valve out of stiction, then 
MV suddenly moves (this sudden jump is called slip-jump) 
and keeps changing until OP changes its direction. During 
operation, the control valve can subject to stiction multiple 
times with various amounts of stiction band.  
  

 
Figure 1. Sticky control valve. 

3. THE PROPOSED METHOD 

The main purpose of the present work is to develop a non-
contact (or non-invasive) type stiction detection methodology, 
which is based on LVQNN. In most process industries, OP and 
process variable (PV) are routinely measured whereas MV is 
rarely obtained. Hence, the proposed method uses those 
frequently measured signals only. This choice is justifiable 
because control valve stiction unquestionably affects control 
loops, so, PV deviates from its setpoint and cycles 
continuously or intermittently with constant or variable 
amplitude. Therefore, information regarding control valve 
stiction can be obtained from OP and PV signals (Shoukat 
Choudhury et al. (2008)). In the present work, the 
preprocessing method introduced in (da Silva Mendonça et al. 
(2017)) is adopted to convert a pair of PV and OP signals into 
the D signal defined in the equation given below.  

,  (1) 
where ,  is the number of data points in PV or 
OP and  is the mean of PV and  is the mean of OP.  
Kohonen (1997) created LVQNN to use labeled data to solve 
multi-class classification problems [9]. The operation of 
LVQNN is similar to that of k-nearest neighbors’ algorithm. 
The prime goal of LVQNN is to find groups in the input data 
of training data, and assigns a given test input to one of those 
groups, which is nearest to the test input (da Silva et al. 
(2017)). Fig. 2 shows the structure of LVQNN.  

The input layer establishes a connection between the network 
and the actual environment i.e. detecting stiction. The neural 
network gets training samples (D signals derived from pairs of 
OP and PV) via the input layer. All of the D signals in the 
training data are assumed to have the same number of data 
points. The input layer can have the same number of neurons 
as the length of a single D signal. The neurons in the input 

layer simply forward the data they get to the neurons in the 
hidden layer. Codebook vectors are the weights that link the 
input layer to the hidden layer. 

. Codebook vectors are the weights that link the input layer to 
the hidden layer. 

 
Figure 2. Architecture of LVQNN 
 

The next equation provides a matrix of codebook vectors.  

,   (2) 

where  denotes transpose. 

In the above equation, the weights of the ith neuron in the 

hidden layer are given by . 

The hidden layer is also referred to as competitive layer since 
the neural network utilizes winner-take-all learning strategy to 
modify the weights of the middle layer neurons. Each neuron 
in the output layer is associated with a subset of the hidden 
layer neurons. The number of neurons in the output layer is 
equal to the number of groups in the input space; hence each 
output layer neuron signifies one class region. There can be the 
same number of subclasses for each of the output layer 
neurons. While training of the neural network is in progress, 
the codebook vectors undergo continuous modification until 
there is no difference between predicted class labels and the 
actual class labels. After the weights of the output layer 
neurons are initialized, they will not be updated.  

Assume that the competitive layer has 6 neurons, and the 
output layer has 3 neurons, i.e. there are three class regions or 
groups in the training data. The first two hidden layer neurons 
belong to the first class (i.e. the first output neuron), the third 
and the fourth hidden layer neurons represent the second class 
(the second output neuron) and the last two hidden layer 
neurons are in class region 3 (the third output neuron). Under 
this circumstance, the weights of the output layer neurons can 
be fixed as shown below. 
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For the first training sample, the Euclidean distance between 
the sample and each of the codebook vectors is calculated. The 
codebook vector with the shortest Euclidean distance to the 
sample is declared the winner. The output of winner neuron is 
one, and the output of the remaining neurons is zero. The 
output of the hidden layer for the first training sample is  

.   (4) 

Here it is assumed that the second hidden layer neuron wins 
the competition.  

The output of the LVQ neural network is 

.      (5) 

The LVQ neural network predicts that the first training sample 
belongs to class region 1. This process of computing neural 
network outputs for the remaining training samples is 
continued. Among the learning algorithms available to train 
the LVQNN, LVQ2.1 is found to be the most effective in 
minimizing misclassification rate. This training algorithm is 
described in the following.  

LVQ2.1 is an improvement of LVQ2 training algorithm. 
LVQ2.1 simultaneously updates the codebook vectors of two 
hidden layer neurons which are the nearest neighbours to the 
training sample. One additional constraint which needs to be 
satisfied by the training sample is that the training sample must 
fall into a window defined around midplane of the codebook 
vectors of two neurons closest to it. It is to be noted that the 
winning neurons are from different classes.  

If the following inequality relation holds, then the training 
sample is considered to be in the window. 

,    (6) 

where  is the Euclidean distance between the codebook 

vector of neuron  and the training sample,  is the 
Euclidean distance between the codebook vector of neuron  
and the training sample,  is the window length. It is to be 
recalled that neuron  and neuron  win the competition.  

The rule to change the codebook vectors of neuron  and 
neuron  are  

.   (7) 

.   (8) 

In the above equations,  is called the learning rate. The 
learning rule in Eq. (7) is used when neuron  correctly 
classifies the training sample and neuron  incorrectly 
classifies the training sample. If neuron  incorrectly 
classifies and neuron  correctly classifies the training sample, 
then the learning rule in Eq. (8) is employed.  

4. RESULTS AND DISCUSSIONS 

As the proposed method relies on the supervised learning 
algorithm, labeled data is needed to learn the codebook vectors 
of the hidden layer neurons. The authors in Jelali and Huang 
(2009) formed a database called ISDB containing practical 
data acquired from various industries. However, the available 
practical data is still not sufficient to adequately train LVQNN. 
Therefore, a simulated database was generated by creating the 
control loop, shown in Fig. 3, under various scenarios.  

 
Figure 3. Process control loop 
 
Both self-regulating (concentration) and integrating (level) 
processes were considered to produce oscillatory PV and OP. 
Proportional integral controllers was employed in each control 
loop. The following equations provide the mathematical 
models for the process and the controller of the concentration 
loop and the level loop, respectively.  
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The data-based stiction model introduced in (Shoukat 
Choudhury et al. (2005)) was utilized in the present work to 
create stiction-caused oscillations in the control loops. White 
noise with variance V was added to PV. Table 1 provides 
ranges selected for stiction band (S), slip-jump (J) and noise 
variance (V).  
 
Table 1 Parameter range for producing stiction-induced 
oscillations 

Parameter Range 
𝑆 [0.5: 0.25: 10] 
𝐽 [0.1: 0.25: 5] 
𝑉 0.01 

 
As discussed before, proportional integral controllers with 
excess integral action can also introduce oscillations in the 
control loops. According to the parameter values given in 
Table 2, oscillatory data was generated. In this case too, PV 
was corrupted with noise.  

( ) [ ]1 0 1 0 0 0 0a =

( ) ( ) ( )

0
1

1 1 0 0 0 0 1
02 2 1 0 0 1 1 0 0 0
0

0 0 0 0 1 1 0
0
0

a W a

é ù
ê ú
ê úé ù é ù
ê úê ú ê ú= = =ê úê ú ê ú
ê úê ú ê úë û ë ûê ú
ê ú
ê úë û

1min ,
1

d d wj i
d d wi j

æ ö -æ öç ÷ > ç ÷ç ÷ +è øè ø

d j
j di

i
w

j i

j
i

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

w w x wj j j

w w x wi i i

a

a

üæ ö
= + - ïç ÷

è øï
ý

æ öï= - -ç ÷ï
è øþ

( ) ( ) ( )

( ) ( ) ( )

1 1 1

1 1 1

w w x wj j j

w w x wi i i

a

a

üæ ö
= - - ïç ÷

è øï
ý

æ öï= + -ç ÷ï
è øþ

a
j

i
j

i

 

2024 IFAC ADCHEM
July 14-17, 2024. Toronto, Canada

383



 
Table 2 Parameter range for producing oscillatory data 
(tightly-tuned controllers) 

Parameter Range 
𝐾( [0.1: 0.01: 0.3] 
𝜏* [0.01: 0.01: 0.27] 
𝑉 0.01 

 
Table 3 Parameter range for creating oscillatory data 
(external oscillatory disturbances) 

Parameter Range 
𝐴 [1,1.5,2,2.5] 
𝐹 0.01: 0.01: 0.27 
𝑉 0.01 

 
Table 4 Configuration and training details 

Parameter Value 
No. of hidden layers 1 

No. of hidden neurons 20 
No. of epochs 200 

Length of each D signal 300 
Learning rate 0.015 

Training algorithm LVQ2.1 
Objective function MSE 

 
To simulate external oscillatory disturbances, sinusoidal signal 
with amplitude A and frequency F was added to the control 
loop at the disturbance input d. By using different values for A 
and F as given in Table 3, several oscillatory PV and OP 
signals were created. Once the simulation database was 
created, D signals were produced from each pair of PV and OP 
signals belonging to stiction and non-stiction datasets. If a D 
signal is obtained from a pair of PV and OP representing 
stiction condition, then target vector for the neural network is 
[1 0]. The target vector changes to [0 1] for the D signals 
signifying non-stiction conditions. Table 4 provides hyper-
parameters and training details of the LVQNN. The LVQNN 
was trained using LVQ2.1 delineated above. 
 
As the simulate data generally do not contain all the 
characteristics of the industrial data, some of the data available 
in ISDB were used to retrain the trained LVQNN model. The 
retrained LVQNN was tested on the remaining industrial data 
obtainable in ISDB. The details of the industrial control loops 
and the results are given in Table 5. The full forms for the 
acronyms used in Table 5 are provided in Table 6. As per 
Tables 5 and 7, the proposed method provided correct 
diagnosis for the 22 control loops out of the 26 control loops 
studied. It can be noticed from Table 8 that the LVQNN based 
stiction detection methodology outperformed the existing 
methods considered for the comparison.  
 
 

 

 
Table 5 Results for ISDB control loops 

LN CL AM VIM IDC 
CHE 1 FC STN STN Yes 
CHE 2 FC STN STN Yes 
CHE 3 TC NSTN NSTN Yes 
CHE 4 LC NSTN NSTN Yes 
CHE 5 FC STN STN No 
CHE 6 FC STN STN Yes 
CHE 10 PC STN STN Yes 
CHE 11 FC STN STN Yes 
CHE 12 FC STN STN Yes 
CHE 13 AC  NSTN STN Yes 
CHE 14 FC  NSTN NSTN Yes 
CHE 16 PC NSTN NSTN Yes 
CHE 23 FC STN NSTN No 
CHE 24 FC STN STN Yes 
CHE 26 LC STN STN Yes 
CHE 29 FC STN STN Yes 
CHE 32 FC STN STN Yes 
CHE 33 FC NSTN NSTN Yes 
CHE 34 FC NSTN NSTN Yes 
CHE 58 FC NSTN NSTN Yes 
MIN 1 TC STN STN Yes 
PAP 2 FC STN STN Yes 
PAP 4 CC NSTN NSTN Yes 
PAP 5 CC STN STN Yes 
PAP 7 FC NSTN STN No 
PAP 9 TC NSTN STN No 

 
Table 6 Configuration and training details 

Acronym Full form 
IDC Is diagnosis correct 
AM Actual malfunction 
CL Control loop 
LN Loop name 
FC Flow control 
PC Pressure control 
CC Concentration control 
AC Analyzer control 
TC Temperature control 

STN Stiction 
NSTN No stiction 
VID Verdict issued by method 
LC Level control 
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Table 7 Performance of proposed method 
Performance 

Metric Value 

True positive 14 
True negative 8 
False positive 1 
False negative 3 

Precision 0.933 
Recall 0.8235 

Specificity 0.8889 
F1 score 0.875 
Accuracy 0.8462 

 
Table 8 Comparison with existing methods 

Method AL NAL NCD 
BIC (Jelali and 
Huang (2009)) 

24 2 19 

Horch Method 1 
(Horch (1999)) 

24 2 14 

Horch Method 2 
(Jelali and Huang 

(2009)) 

25 1 16 

Rossi And Scali’s 
Method (Jelali and 

Huang (2009)) 

26 0 17 

He’s Method 
(Jelali and Huang 

(2009)) 

25 1 12 

Singhal and 
Salsbury’s Method  
(Jelali and Huang 

(2009)) 

26 0 11 

Le’s Method (Jelali 
and Huang (2009)) 

26 0 18 

Karra and Karim’s 
Method (Jelali and 

Huang (2009)) 

26 0 18 

SLOPE Method 
(Jelali and Huang 

(2009)) 

25 1 14 

ZONES Method  
(Jelali and Huang 

(2009)) 

25 1 15 

BSD Method 
(Kamaruddin et al. 

(2020)) 

26 0 20 

Proposed method 26 0 22 
AL – applicable loops, NAL – not applicable loops, 
NCD – number of correct diagnoses 

5. CONCLUSIONS 

Sticky control valves are a common source of oscillations in 
industrial control loops, which ultimately result in production 
loss and reduced profits. Timely identification of sticky control 
valves is crucial. In the present work, a simple stiction 

detection method was devised with the help of the LVQNN. 
Compared to the existing methods, the proposed method 
demonstrated superior performance by providing correct 
diagnosis for the 22 control loops out of the 26 control loops.  
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