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Abstract: Dynamic market conditions as a consequence of increased globalization, coupled with
fluctuations in electricity prices brought about by the deregulation of energy markets, require
process manufacturing plants to operate in a responsive manner in order to remain competitive.
In particular, the quasi steady-state assumption that is typically applied in optimal scheduling
does not hold in a highly dynamic operating environment, where the dynamics of transitions
have an increasingly significant impact. This has led to a research thrust on the integration
of scheduling and control. In this paper, we provide an overview of this topic, highlighting
assumptions and formulations related to the plant control system. We then focus on a class of
‘controller aware’ scheduling formulations, in which the predicted closed-loop response of the
plant under the action of the plant control system is taken into account. A case study illustrating
key concepts is presented.
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1. INTRODUCTION

Traditionally, chemical manufacturers follow a hierarchi-
cal decision-making architecture, an example of which is
shown in Fig. 1. The downwards arrows indicate produc-
tion targets while the upward arrows indicate feedback
information. In some paradigms, the real-time optimiza-
tion (RTO) layer may be absent, or be replaced by a
dynamic real-time optimization (DRTO) problem. Steady-
state models have typically been used in the scheduling
layer. However, increasingly volatile market conditions,
shaped by the deregulation of the electricity prices and
growing participation of intermittent energy sources in the
power grid, require set-point transitions to be performed
more often to efficiently respond to fluctuations in product
demand and raw material costs, for example. In this new
operating paradigm, the process dynamics become rele-
vant to the scheduling decisions, and should be accounted
for in the scheduling layer (Baldea and Harjunkoski, 2014)
to improve economic performance. This has motivated
efforts for the integration of scheduling and control.

The integration of scheduling and control is often advo-
cated as a pathway to improve the response time and flexi-
bility of production processes (Caspari et al., 2020). One of
the reasons is that providing the scheduling problem with
more detailed information about the process dynamics has
the potential to reduce plant-model mismatch, increasing
the chances of a feasible schedule with achievable produc-
tion targets being generated. Another reason is that the
integrated scheduling and control problem is solved more
often than the traditional scheduling problem, increasing
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Fig. 1. Typical decision-making hierarchy in the chemical
industry.

the feedback frequency. Therefore, any disturbances to the
schedule are perceived (and dealt with) faster than in the
traditional approach.

In the next section we discuss various paradigms for the
integration of scheduling and control. In Section 3, we
present an overview of integrated scheduling and control
with closed-loop prediction. That is followed by an illus-
trative case study, and conclusion.

2. INTEGRATION OF SCHEDULING AND
CONTROL

Various paradigms for the integration of scheduling and
control have been proposed in the literature. The two
more prominent ones are the single-level and hierarchical
approaches. In both of them, the typical steady-state based
scheduling model gives way to a dynamic process model.
However, in the hierarchical paradigm, some studies pro-
pose to virtually account for the control dynamics in addi-
tion to the process dynamics. These are deemed ‘controller
aware’ formulations (Flores-Cerrillo et al., 2024) because
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Fig. 2. Single-level paradigm for the integration of schedul-
ing and control.
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Fig. 3. Hierarchical paradigm for the integration of
scheduling and control.

they predict the closed-loop response of the process. That
is, the process response under the feedback control action.

In the single-level approach, the computed scheduling
decisions and input values are directly applied to the plant
without necessitating a controller. With reference to the
diagram in Fig. 1, this means integrating the scheduling,
real-time optimization and controller layers into a single
layer as presented in Fig. 2. The single-level approach
can also be considered as an extension of economic model
predictive control (EMPC) (Ellis and Christofides, 2014)
to scheduling decisions. In the hierarchical paradigm, the
integrated scheduling and control problem is solved at the
RTO level to provide set-points to the control system. The
hierarchical paradigm of Fig. 3 captures integration of the
scheduling and real-time optimization layers in Fig. 1, with
or without a virtual integration of the control system.

Single-level paradigm

Several studies in the literature follow the single-level
paradigm. However, not all of them consider a closed-
loop implementation of the optimal decisions, focusing
instead on the development of the integrated scheduling
and control formulation. The formulation developed in
Flores-Tlacuahuac and Grossmann (2006) computes the
optimal cyclic schedule of multiproduct CSTRs. The tran-
sition times have to be determined iteratively as part of
the solution of the integrated problem in order to obtain
an acceptable trajectory. Zhuge and Ierapetritou (2012)
develop a similar formulation but, in addition, propose
a strategy for closed-implementation that consists of re-
computing the optimal control and scheduling decisions
when the deviation between the predicted and observed
state trajectories exceeds a specified threshold. Simkoff
and Baldea (2020) propose a stochastic integrated and
control formulation for a chlor-alkali process. They con-
sider uncertainty in electricity demand and price. Chu and
You (2013b) develop a two-stage stochastic formulation
for batch processes that accounts for model uncertainty.
A scheduling and control formulation for hydropower sys-
tems subjected to electricity price uncertainty is presented
in Mathur et al. (2021).

The integration of scheduling and control typically yields
a mixed-integer nonlinear programming (MINLP) prob-
lem due to the nonlinear dynamic process model and
the discrete scheduling decisions. A number of studies

have proposed methods to reduce the integrated prob-
lem complexity and solution time. Andres-Martinez and
Ricardez-Sandoval (2021) utilize concepts of switched sys-
tems to convert their MINLP formulation to a nonlinear
programming (NLP) problem. Alternatively, Chu and You
(2013a,b) and Nie et al. (2015) propose methods based on
generalized Benders decomposition to reduce the solution
time.

Hierarchical paradigm

A disadvantage of the single-level paradigm is that it
requires the solution of a large scale dynamic optimization
problem at every sampling-time. Failure to solve this prob-
lem could potentially lead to reliability and safety issues.
This is one of the main motivations for the hierarchical
paradigm, which keeps the existing controller layer in
chemical manufacturing industries intact. Therefore, even
if the integrated problem fails to be solved, set-point tra-
jectories could be manually assigned to the plant controller
to maintain safe process operation.

As previously mentioned, there are two main variations
within the hierarchical paradigm. The first one utilizes
an open-loop representation of the process dynamics. The
second one accounts for the closed-loop process dynamics.
That is, it models the control dynamics in addition to
the plant dynamics, and is thus controller aware (Flores-
Cerrillo et al., 2024). Control-aware formulations compute
optimal set-point trajectories for the control system, while
in open-loop formulations, the set-point trajectories have
to be extracted from the predicted state, output and input
trajectories in some fashion. We discuss control-aware
formulations in more detail in Section 3.

Open-loop formulations for the integrated scheduling and
control problem are proposed in Andrés-Mart́ınez and
Ricardez-Sandoval (2022) and Zhuge and Ierapetritou
(2015). They typically have lower computational complex-
ity than their closed-loop counterpart since they neglect
the lower-level control dynamics. However, for the same
reason, open-loop formulations have inherent plant-model
mismatch, even under perfect knowledge of the plant
model.

3. CONTROL-AWARE SCHEDULING
FORMULATIONS

Control-aware scheduling formulations are referred to as
closed-loop formulations because they predict the closed-
loop process dynamics. Therefore, they eliminate the
plant-model mismatch resulting from neglecting the im-
pact of the control system on the plant dynamics that is
inherent in the open-loop prediction counterpart. Addi-
tionally, knowledge of the control systems allows control-
aware formulations to compute feasible and reachable set-
point trajectories for the lower-level controller. Scheduling
decisions such as production sequencing can be commu-
nicated to the plant exclusively through these set-point
trajectories.

Several control-aware formulations for the integrated
scheduling and control problem have been proposed in the
literature. These include formulations tailored to processes
controlled by linear model predictive control (LPMC)
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(Dias et al., 2018; Remigio and Swartz, 2020; Simkoff and
Baldea, 2019; Burnak et al., 2018; Zhuge and Ierapetritou,
2014; Dering and Swartz, 2023a), input-output linearizing
controllers (Du et al., 2015; Kelley et al., 2018), and
PI controllers (Dering and Swartz, 2023b; Chu and You,
2012).

The LMPC aware formulations differ on several fronts,
including the strategy utilized to account for the control
action and solve the integrated problem. Because LMPC
is itself an optimization problem, accounting for its action
within an integrated scheduling and control formulation
leads to a multilevel dynamic optimization problem for
which a specialized solution strategy is required.

Dias et al. (2018) develop a state-space data-driven model
for an air separation unit. The input actions applied to
the data-driven model are computed via solution of a
LMPC problem. They utilize a simulation-based optimiza-
tion strategy to solve the resulting multilevel problem.
The optimization is carried out by iteration between an
optimization calculation in which decision variables are
adjusted, and closed-loop simulation that provides sensi-
tivity information to the optimizer. This process continues
until a convergence criterion is met. The optimal set-point
trajectories are tracked online by the lower-level LMPC
controller to compute the input values applied to the plant.

Remigio and Swartz (2020); Dering and Swartz (2022)
and Simkoff and Baldea (2019) take advantage of the
convexity properties of the LMPC problem, and replace
the embedded LMPC problems within their integrated
scheduling and control formulation by the equivalent first-
order Karush-Kunh-Tucker (KKT) conditions. This effec-
tively reduces the multilevel optimization problem to a
single-level mathematical problem with complementarity
constraints (MPCC). Simkoff and Baldea (2019) utilize a
nonlinear model representation of the process in their in-
tegrated formulation, and use complementarity conditions
to model discrete scheduling decisions. A penalization
approach that consists of penalizing the complementarity
constraints in the objective function is used to solve the
integrated problem. Real-time execution of the scheduling
and control problem is not considered, and the scheme
is applied to single product plants that do not require
sequencing decisions. In Remigio and Swartz (2020) and
Dering and Swartz (2022), the integrated problem is solved
online at predefined time intervals to compute set-point
trajectories for the lower-level controller. They consider
mutiproduct processes, and the production sequencing is
communicated to the plant exclusively through the set-
point trajectories assigned to the LMPC controller. While
a discrete-time state-space approximation of the nonlinear
plant model is utilized in the formulation in Remigio and
Swartz (2020), Dering and Swartz (2022) use piecewise
linear segments to approximate the nonlinear plant model.
In both studies, binary variables are introduced to refor-
mulate the LMPC-KKT conditions as mixed-integer linear
constraints, and a disturbance estimate is used to address
plant-model mismatch.

As previously mentioned, control-aware scheduling for-
mulations are computationally more expensive than their
open-loop counterpart. This has motivated the develop-
ment of strategies to reduce their computational burden.

Zhuge and Ierapetritou (2014) use multiparametric pro-
gramming to obtain an explicit solution for the LMPC
problem. This solution is then utilized within their inte-
grated scheduling and control framework to compute the
input actions applied to the process model. Burnak et al.
(2018) go a step further and obtain offline solution maps
for the control-aware scheduling problem itself, reducing
its online solution time to a look-up table and a function
evaluation. An alternative strategy is adopted in Dering
and Swartz (2022). They use an unconstrained LMPC
formulation coupled with an input clipping mechanism
as a surrogate for its constrained counterpart. Since the
unconstrained LMPC problem has an explicit solution, the
solution time is significantly reduced.

Given the market volatility and inherent processes uncer-
tainties, a robust control-aware formulation could prove
beneficial. There are at least two strategies to deal with un-
certainty within the context of the integration of schedul-
ing and control. One is via feedback and periodic solution
of a deterministic problem. The other is to explicitly ac-
count for uncertainty in the problem formulation using
stochastic programming or robust optimization methods.
In the latter, the integrated problem can also be solved
periodically to incorporate feedback information. An in-
teresting discussion of the impacts of the re-scheduling
frequency, uncertainty and scheduling horizon on the qual-
ity of the executed schedule is provided in Gupta et al.
(2016); Gupta and Maravelias (2016) in the context of
state task network (STN) formulations. A control-aware
formulation that explicitly accounts for uncertainty in
product demand is proposed in Dering and Swartz (2022),
and later extended to account for uncertainty in cost and
model parameters in Dering and Swartz (2023b).

4. CASE STUDY

In this section, we present an illustrative case study of a
nonlinear plant operated under a control-aware scheduling
formulation. A schematic representation of the decision-
making configuration is presented in Fig. 4. At the DRTO
level, we solve the control-aware scheduling problem to
compute the set-points trajectories ySPj∗ tracked by the
lower-level linear MPC. The MPC controller computes
the input values uj∗,0 applied to the plant. Output ymj∗
and inventory Ij∗,g measurements are provided as feedback
information from the plant to the upper layers. The DRTO
problem is solved periodically to account for real-time
market and plant information.

4.1 Plant

The plant is represented by a nonlinear CSTR model
adapted from Ellis and Christofides (2014) where a re-
action A → B takes place:

dT

dt
=

F

VR
(T0 − T )− ∆Hk0

ρcp
e−E/RTCA +

Q

ρcpVR
(1)

dCA

dt
=

F

VR
(CA0 − CA)− k0e

−E/RTCA (2)

The inputs are the inlet concentration CA0 and heat input
Q to the reactor. The outputs are the concentration CA

and temperature T in the reactor. This process produces
three product grades, A, B and C. More details about
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Fig. 4. Schematic representation of case-study framework.

this process, including the model parameter values, can
be found in Dering and Swartz (2023b).

4.2 Model predictive controller (MPC)

The lower-level MPC problem is formulated as:

min
uj,k

P∑
k=1

(
yj,k − ySPj

)T
Q
(
yj,k − ySPj

)
+

M−1∑
k=0

(∆uj,k)
T
R (∆uj,k)

(3)

subject to:

xj,k+1 = Axj,k +Buj,k ∀k ∈ JM−1
0 (4)

xj,k+1 = Axj,k +Buj,M−1 ∀k ∈ J P−1
M (5)

yj,k,i = Cxj,k + dj ∀k ∈ J P
1 (6)

∆uj,k = uj,k − uj,k−1 ∀k ∈ JM−1
0 (7)

umin ≤ uj,k ≤ umax ∀k ∈ JM−1
0 (8)

where Q > 0, and R ≥ 0 are diagonal weighting matrices.
A, B and C are state-space matrices. M and P are the
control and prediction horizon, respectively. We define
J b
a = {i|a ≤ i ≤ b, i ∈ Z} as the set of discrete time-

steps. The subscript j indicates the simulation time-step
in the closed-loop simulation studies, and the DRTO time-
step in the control-aware scheduling formulation discussed
in next section. yj,k ∈ Rny , uj,k ∈ Rnu , and xj,k ∈ Rnx

are output, input and state vectors, respectively. dj is a
disturbance estimate given by dj = ymj − Cxj−1,1, where

ymj is the vector of output measurements. ySPj is a vector of
output set-points computed via the solution of the control-
aware scheduler problem in the next section.

4.3 Control-aware scheduler

In this section, we present an overview of the control-aware
scheduling formulation used in this case study. We refer the
reader to Dering and Swartz (2023a) for more details.

Process model: We use a linear model to represent the
plant:

x̄j+1 = Āx̄j + B̄ūj ∀j ∈ JN−1
0 (9)

ȳj,k = C̄x̄j + d̄j ∀j ∈ JN
1 (10)

where Ā, B̄ and C̄ are state-space matrices. N is the
DRTO prediction horizon. x̄j ∈ Rnx , ūj ∈ Rnu , ȳj ∈ Rny

are state, input and output vectors, respectively. d̄j =
ymj∗−C̄x̄j∗−1,1 is a disturbance estimate. Here, j∗ indicates
the current simulation time-step, while j indicates the
DRTO time-step. We additonally impose bounds on the
states and outputs.

MPC-KKT subproblems: We use the associated first-order
(KKT) conditions of the optimization problem in Section
4.2 to account for the lower-level control action in the
control-aware scheduling formulation. Because the MPC
problem in Section 4.2 is convex, the first-order KKT con-
ditions are necessary and sufficient for optimality. We solve
one MPC problem (i.e. a KKT problem) at every time-step
j to obtain the input trajectory uj,0, uj,1, · · · , uj,M−1, from
which the first element is applied to the process model in
(9):

ūj = uj,0, ∀j ∈ JN−1
0

The disturbance estimate for the jth MPC-KKT subprob-
lem is computed as dj = ȳj − Cxj−1,1 for all j ∈ JN−1

1 .
That is, the process model prediction ȳj is used as a
surrogate for the measurement ymj∗. For j = 0, d0 = ymj∗ −
Cxj∗−1,1.

The MPC-KKT subproblems are additionally linked via

xj,0 = xj−1,1 and uj,−1 = uj−1,0 (11)

for all j ∈ JN−1
1 . Note that the above constraints mimic

the closed-loop interaction between the lower-level MPC
and the plant.

The set-point ySPj for every MPC-KKT subproblem con-
stitutes one of the main degrees of freedom for the control-
aware scheduling formulation:

ySPmin ≤ ySPj ≤ ySPmax

The subscripts min and max denote lower and upper
bounds.

Scheduling constraints: The scheduling constraints are
used to define the production sequencing, production
amounts, and whether or not the output is meeting the
quality specifications. The following constraints specify
that only one grade can be produce at any time-step j:∑

g∈G
zj,g ≤ 1, ∀j ∈ JN

1 (12)

where zj,g is a binary variable, and G = {A,B,C} is the
set of grades. We use the following to guarantee that zj,g
is one only if all outputs are simultaneously within their
quality target band for grade g at time-step j

ȳj,i ≥
∑
g∈G

zj,g
(
ytargetg,i − ϵg,i

)
+ (1−

∑
g∈G

zj,g)ȳmin,i (13)

ȳj,i ≤
∑
g∈G

zj,g
(
ytargetg,i + ϵg,i

)
+ (1−

∑
g∈G

zj,g)ȳmax,i (14)

∀j ∈ JN
1 , i ∈ Y. ytargetg,i ± ϵg,i is the quality target band for

grade g and the ith element of the output vector ȳj (i.e.
Y = {1, . . . , ny}). The subscript min and max indicates
lower and upper bounds on the ith output. The inventory
level Ij,g of grade g at time-step j is given by:

Ij,g = Ij−1,g + zj,g(∆tF )−Dj,g, g ∈ G, j ∈ JN
1 (15)

Ij,g ≥ 0, g ∈ G, j ∈ JN
1 (16)

Where Dj,g is the product demand, ∆t is the MPC
sampling time, F is the outlet flow rate of the reactor.
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∆tF is the amount of product produced at a given time-
step j. We impose additional constraints to limit grade
transition changes within a each DRTO execution.

Objective function: The objective function is to minimize
the input and inventory costs:

Φ =
∑

j∈JN−1
0

 ∑
i∈{1,...,nu}

cui ūj,i +
∑
g∈G

cIgIj,g

 (17)

where cui and cIg are cost coefficients. For improved perfor-
mance, we augment this objective function with two terms:
(1) a soft constraint on the inventory level to encourage
inventory build-up (prevent depletion), and (2) a soft
constraint on the outputs to prevent them from settling at
the boundary of the quality target band during production
mode (Dering and Swartz, 2023b).

4.4 Closed-loop simulation

The MPC sampling time is chosen as ∆t = 0.1 h. We
also set P = 15, M = 3, N = 30, Q = diag(0.01, 1), and
R = diag(1 × 10−6, 0.1). The state-space matrices A, and
B for the MPC controller are obtained via linearizaton of
the nonlinear process model at T = 320 K, CA = 1.041
kmol/m3, Q = 2.06 × 104 kJ/h, and CA0 = 1 kmol/m3.
The state-space matrices Ā and B̄ used at the DRTO level
are obtained via linerization of the nonlinear model at
T = 330 K, CA = 3 kmol/m3, Q = 2.15 × 104 kJ/h, and
CA0 = 3.219 kmol/m3. We have that C̄ = C = diag(1, 1).

The control-aware scheduler is implemented in AMPL
and solved using Gurobi, while the plant and lower-level
MPC are implemented using CasADi (Andersson et al.,
2019) and solved using IDAS (Gardner et al., 2022) and
IPOPT (Wächter and Biegler, 2006), respectively. The
actual plant is represented in the overall simulation by the
nonlinear model described in (1)-(2). The control-aware
scheduling problem is solved at every 0.2 h to compute
set-points ySPj for the lower-level MPC. Only the first two

pieces of the DRTO computed set-point trajectory, ySP
0

and ySP
1 , are assigned to the controller. This is because

there are only two MPC executions between consecutive
solutions of the control-aware problem. Note also the
presence of plant-model mismatch since we utilize a linear
process model representation in (9).

The input trajectories computed by the lower-level MPC
are presented in Fig. 5, while the simulated plant response
is shown in Fig. 6. The dashed lines correspond to the first
two pieces of the set-point trajectories computed by the
DRTO at every 0.2 h. The quality target bands for each
grade are indicated by the shaded area. The inventory of
each grade is presented in Fig. 7.

The DRTO-computed set-point trajectories successfully
drive the plant to meet the demand of all the grades,
and to build-up some inventory, despite the plant-model
mismatch.

5. CONCLUSION

We provided an overview of paradigms for integrating
scheduling and control, with a special focus on control-
aware scheduling formulations. Subsequently, we presented
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Fig. 5. Heat input Q (kJ/h) and inlet concentration CA0
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Fig. 7. Inventory trajectory in m3. The demand is indi-
cated by shaded bars.

an application case study that demonstrates the use of a
control-aware formulation to compute set-point trajecto-
ries for the model predictive controller of a nonlinear plant.
The calculated set-point trajectories effectively guided the
plant to meet the demand for all product grades, even in
the presence of structural plant-model mismatch, illustrat-
ing the potential of control-aware scheduling formulations.
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